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Rheology of three-dimensional packings of aggregates: Microstructure and effects of nonconvexity
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We use three-dimensional contact dynamics simulations to analyze the rheological properties of granular
materials composed of rigid aggregates. The aggregates are made from four overlapping spheres and described by
a nonconvexity parameter depending on the relative positions of the spheres. The macroscopic and microstructural
properties of several sheared packings are analyzed as a function of the degree of nonconvexity of the aggregates.
We find that the internal angle of friction increases with the nonconvexity. In contrast, the packing fraction first
increases to a maximum value but declines as the nonconvexity increases further. At a high level of nonconvexity,
the packings are looser but show a higher shear strength. At the microscopic scale, the fabric and force anisotropy,
as well as the friction mobilization, are enhanced by multiple contacts between aggregates and interlocking, thus
revealings the mechanical and geometrical origins of shear strength.
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I. INTRODUCTION

Particle shape is a major parameter for the rheological
properties of granular materials such as their shear strength,
flowability, and packing structure. However, recent research
has mostly focused on the complex rheology and microme-
chanical properties of granular materials by considering simple
shapes such as disks and spherical particles. More realistic
materials composed of nonspherical particles now have begun
to be investigated in experiments and discrete element nu-
merical simulations [1–14]. This interest is motivated by new
challenges in civil engineering and powder technology where
most processes need to be optimized or revised following
the dramatic degradation of natural resources [5,10,15–19].
Realistic particle shapes also raiseo fundamental issues. In par-
ticular, it is essential to understand to what extent our present
understanding of the rheology of granular materials based on
model packings can be extended to complex granular materials
for the understanding of the behavior and primary mechanisms
at the natural scale of particles and their interactions.

Most granular materials are found with particles of various
degrees of sphericity, elongation, angularity, facetedness, and
convexity. A general observation is that angular and elongated
particles present a higher shear strength than spherical particles
[8,11,19–24]. But only recently was it evidenced by systematic
simulations that the shear strength is an increasing linear
function of elongation [25,26], whereas it first increases with
particle angularity up to a maximum value and then saturates
as the particles become more angular [27,28]. In contrast, the
packing fraction varies nonmonotonically with elongation as,
for example, in packings of ellipsoidal shapes [4,25,29–31]. In
all reported cases, the networks resulting from various shapes
appear to be complex and hardly amenable to simple statistical
modeling.

A systematic study is now possible not only due to the
available computer power and memory required for contact
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detection algorithms between complex shapes [23,32–34], but
also because recent investigations have shown that simple
parameters can be defined to generate particle shapes with
continuously variable shape parameters. Among others, the
shape parameter η, describing the degree of distortion from a
perfectly circular or spherical shape, was used successfully
recently in two dimensions to analyze several packings
composed of elongated (rounded-cap rectangles) [25,35],
angular (irregular hexahedra) [26], and nonconvex (aggregates
of overlapped disks) shapes [36,37]. The shear strength and
packing fraction for all these particle shapes are mainly
controlled by η so that the effect of the parameters specific
to each shape (angularity, nonconvexity, elongation) may be
considered to be of second order as compared to η [38].

In this paper, we investigate granular materials composed of
nonconvex particles in three dimensions. Nonconvex particles
are of special interest because the collective behavior of such
particles has only been studied in two dimensions [36,37,39]
and also because they give rise to a rich microstructure
where a pair of particles can interact at several contact
points (multiple contacts), leading to the possibility of inter-
locking between particles. The nonconvexity may affect the
behavior through various mechanisms such as the resulting
microstructure (contact network and compactness), hindrance
of particle rotations due to interlocking, enhanced mobilization
of friction, and multiple contacts between particles with an
effect similar to that of face-face contacts between angular
particles [22,27,28,40].

We consider rigid aggregates of four overlapping spheres
with a fourfold rotational symmetry (see Fig. 1). Their
nonconvexity can be tuned by adjusting the overlap, the range
of shapes thus varying from a sphere, for a full overlap of
the four spheres, to an aggregate of four tangent spheres. We
focus on the quasistatic behavior and analyze the underlying
microstructure with increasing level of nonconvexity. We also
compare our data with two-dimensional results for aggregates
of three overlapped disks.

In the following, we first introduce in Sec. II the technical
details of the simulations and procedures for sample prepara-
tion. In Sec. III we present the evolution of shear stress and
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FIG. 1. (Color online) Geometry of a regular aggregate.

packing fraction with shear strain and at an increasing level of
nonconvexity. Sections IV and V are devoted to the analysis
of contact network topology, force distributions, friction
mobilization, and force-contact anisotropy. We conclude with
a discussion of the most salient results of this work.

II. MODEL DESCRIPTION

Simulations were carried out by means of the contact
dynamics method [41–43]. The contact dynamics method is
a discrete element approach for the simulation of nonsmooth
granular dynamics with contact laws expressing mutual exclu-
sion and dry friction between particles and an implicit time
integration scheme. Hence, this method is numerically uncon-
ditionally stable and particularly adapted for the simulation of
frictional contacts between particles. It has been extensively
employed for the simulation of granular materials in two and
three dimensions [5,10,11,22,24,25,27,35,44–51].

The particles are regular aggregates of fourfold rotational
symmetry composed of four overlapping spheres of the same
radius r as shown in Fig. 1. This shape can be easily
characterized by the ratio λ = l/2r , where l is the distance
between the centers of spheres. This parameter varies from
0, corresponding to a sphere, to

√
3/2, corresponding to an

aggregate where three coplanar spheres intersect at a single
point, so that the radius R of the circumscribing sphere is
given by R = r(1 + λ

√
3/2).

The aggregates may also be characterized by their non-
convexity, i.e., their degree of distortion η from a perfectly
spherical shape, defined as [25,35,38]

η = �R

R
, (1)

where �R = R − R′, and R′ is the radius of the inscribed
circle. �R can be seen as the concavity of the aggregate.
The parameter η has been used to analyze the effect of
particle shape on the quasistatic rheological parameters of
assemblies of elongated, angular, and nonconvex particles in
two dimensions [25,26,35–38] as well as for platy particles in
three dimensions [52].

We prepared eight different packings of 12 000 aggregates,
with η varying from 0 to 0.7 in steps of 0.1. In order to avoid
long-range ordering in the limit of small values of η, we intro-
duce a size polydispersity by taking R in the range [Rmin,Rmax],

−→x
−→y

−→z

σ0

σ0σ0

−→x
−→y

−→z

σ0σ0

σ0
σ0

vz

FIG. 2. Boundary conditions for (a) isotropic and (b) triaxial
compaction. The gray levels are proportional (a) to particle pressures
and (b) to particle velocities at εq = 0.15.

with Rmax = 3Rmin, with a uniform distribution of particle
volume fractions, which leads to a high packing fraction.

A dense packing composed of spheres is first constructed by
means of a layer-by-layer deposition model based on simple
geometrical rules [54]. The particles are deposited sequentially
on a substrate. For other values of η, the same packing is
used, with each sphere serving as the circumscribing sphere of
aggregates. The aggregates are inscribed with the given value
of η and random orientation in the sphere.

Following this geometrical process, each packing is com-
pacted by isotropic compression inside a box of dimensions
L0 × l0 × H0 in which the left, bottom, and back walls are
fixed and the top, right, and front walls are subjected to the
same compressive stress σ0 [see Fig. 2(a)]. The gravity g and
the friction coefficient between particles and with the walls
are set to 0 during the compression in order to obtain isotropic
dense packings.

The isotropic samples are then subjected to vertical com-
pression by downward displacement of the top wall at a
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constant velocity vz for a constant confining stress σ0 acting
on the side walls. This is illustrated in Fig. 2(b) at 15% vertical
deplacement of the upper wall. The friction coefficient between
particles is set to 0.4 and to 0 with the walls. Since we are
interested in quasistatic behavior, the shear rate should be
such that the kinetic energy supplied by shearing is negligible
compared to the static pressure. This can be formulated in
terms of an inertia parameter I defined by [55]

I = ε̇

√
m

dσ0
, (2)

where ε̇ = vz/z and m is the mean particle mass. The rate-
independent regime, corresponding to a quasistatic behavior, is
characterized by I < 10−3, which is the case in our simulations
[53].

III. MACROSCOPIC BEHAVIOR

A. Definition of macroscopic parameters

In numerical simulations, the stress tensor can be evaluated
from the contact forces and geometrical configuration of the
packing. Based on the virtual power formalism, an “internal
moment” M can be defined for each particle i [41],

Mi
αβ =

∑
c∈i

f c
α rc

β, (3)

where f c
α is the α component of the force exerted on particle

i at the contact c, rc
β is the β component of the position vector

of the same contact c, and the summation runs over all contact
neighbors of particle i (noted briefly as c ∈ i). Then it can be
shown that the internal moment of a collection of rigid particles
is the sum of the internal moments of individual particles, and
the stress tensor σ in a given volume V is simply the density
of the internal moment [41,48],

σ = 1

V

∑
i∈V

M i = 1

V

∑
c∈V

f c
α 	c

β, (4)

where �c is the branch vector joining the centers of the two
touching particles at contact point c. Note that the first sum-
mation runs over all particles, whereas the second summation
runs over the contacts (each contact appearing once).

Under triaxial conditions with vertical compression, we
have σ1 � σ2 = σ3, where the σα are the stress principal
values. The mean stress p and stress deviator q are defined by

p = (σ1 + σ2 + σ3)/3, (5)

q = (σ1 − σ3)/3. (6)

For our system of perfectly rigid particles, the stress state is
characterized by the mean stress p and the normalized shear
stress q/p.

The cumulative strain components εα are defined by

ε1 =
∫ H

H0

dH ′

H ′ = ln

(
1 + �H

H0

)
, (7)

ε2 =
∫ L

L0

dL′

L′ = ln

(
1 + �L

L0

)
, (8)

ε3 =
∫ l

l0

dl′

l′
= ln

(
1 + �l

l0

)
, (9)
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FIG. 3. (Color online) Normalized shear stress q/p as a function
of the cumulative shear strain εq for all samples with increasing
nonconvexity η.

where H0, l0, and L0 are the initial height, width, and length of
the simulation box, respectively, and �H = H0 − H , �l =
l0 − l, and �L = L0 − L are the corresponding cumulative
displacements. The volumetric strain is given by

εp = ε1 + ε2 + ε3 =
∫ V

V0

dV ′

V ′ = ln

(
1 + �V

V0

)
, (10)

where V0 is the initial volume and �V = V − V0 is the total
volume change. The cumulative shear strain is defined by

εq ≡ ε1 − ε3. (11)

We note that the choice of the deviatoric stress variable q in
Eq. (6) with a prefactor of 1/3 results from the requirement that
the total power Ẇ = σ1ε̇1 + σ2ε̇2 + σ3ε̇3 should be expressed
as a sum of the products of the volumetric and deviatoric
conjugate variables Ẇ = p ε̇p + 2 q ε̇q .

B. Shear strength

Figure 3 displays the normalized shear stress q/p as a
function of εq for all values of η. Due to the initial isotropic
compaction, q/p is nearly 0 in the initial state (εq = 0). Then,
as we assume that the particles are perfectly rigid and because
of the high packing fraction, the shear strength jumps to a
peak stress before relaxing to a constant plateau called the
“residual” state. We see that the value q/p at the peak and
residual states increases with η. The normalized residual stress
(q/p)∗ is independent of the initial state, and it represents the
intrinsic shear strength of the material corresponding to the
internal angle of friction ϕ∗ given in three dimensions by

sin ϕ∗ = 3(q/p)∗

2 + (q/p)∗
. (12)

Figure 4 shows the variation of (q/p)∗ and sin ϕ∗ averaged
in the residual state as a function of η. The error bars represent
the standard deviation computed from the fluctuations around
the mean in the residual state in the interval εq ∈ [0.5,0.9]
as shown in Fig. 3. We see that (q/p)∗ and sin ϕ∗ increase
with η at a decreasing rate. This increase in shear strength
reflects the effect of interlocking due to particle nonconvexity
as we see in Sec. IV. In a recent work, the quasistatic
rheology of granular packings of elongated [25,27], angular
[26], and nonconvex particles [36,37] in two dimensions was
systematically analyzed by means of the parameter η. A similar
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FIG. 4. (Color online) Normalized shear stress (q/p)∗ [(black)
circles] and friction angle (sin ϕ)∗ [(red) squares] averaged in the
residual state as a function of the nonconvexity parameter η.

ascending trend of shear strength with a trend to saturation was
found as a function of η, showing that this low-order parameter
is a generic shape parameter, underlying, to a large extent, the
effect of particle shape.

C. Packing fraction

In Fig. 5, the evolution of packing fraction ρ is shown
as a function of εq for all values of η. All samples dilate
during shear and ρ declines from its value ρ0 in the initial
isotropic state down to a constant value ρ∗ in the residual
state. The samples dilate almost homogeneously at low shear
strains (�0.3) and thus ρ decreases rapidly. At larger strains,
dilation is localized within shear bands appearing throughout
the system. Figure 6 shows a gray level map of particle
velocities in a portion of packing for η = 0.6 at εq = 0.65,
revealing the shear band in the material. As the shear bands
develop inside the system, different locations of the sample
dilate at different times, and a nearly homogeneous density ρ∗
is reached only at εq = 0.5. For our rigid particles the residual
packing fraction ρ∗ is independent of the confining pressure
and it should be considered as an intrinsic property of the
material, i.e., reflecting basically the particle shape and size
distribution as well as the friction coefficient between particles.

Figure 7 displays ρ0 and ρ∗ as a function of η. Remarkably,
in both cases, the packing fraction first grows from its value
for spheres (η = 0) towards a maximum at η = 0.3 and then
declines at higher values of η. The peak value of packing

0 0.2 0.4 0.6 0.8 1
ε

q

0.55

0.60

0.65

0.70

ρ

η = 0.0
η = 0.1
η = 0.2
η = 0.3
η = 0.4
η = 0.5
η = 0.6
η = 0.7

FIG. 5. (Color online) Evolution of the packing fraction ρ with
the cumulative shear strain εq for different values of η.

−→x
−→y

−→z

FIG. 6. Gray level map of particle velocities in a portion of the
packing at εq � 0.65 for η = 0.6.

fraction ρ0 in the isotropic state is as high as 0.70. In the
residual state, the packing fraction ρ∗ takes values as low as
0.55 at η = 0.7. This nonmonotonic variation of the packing
fraction as a function of the nonconvexity shows the complex-
ity of granular textures created by nonspherical particles. On
intuitive grounds, it might be expected that with an increase in
nonconvexity, the packing fraction would increase as a result
of reinforced interlocking between particles. This is clearly
not the prevailing mechanism in the range η > 0.3.

A similar nonmonotonic behavior of the packing fraction
was previously observed for granular packings composed of
nonconvex particles in two dimensions [36–38], as well as
for elongated particles such as ellipses, ellipsoidal particles,
spherocylinders, and rounded-cap rectangles [4,25,29–31].
For elongated particles, the falloff in the packing fraction at
higher aspect ratios is attributed to the increase in the largest
pore volume that cannot be filled by a particle. A similar
effect can be advocated for our nonconvex particles, which
can form an increasingly tortuous and large pore space as the
nonconvexity increases.

IV. GRANULAR TEXTURE

A. Contact and neighbors network topology

In this section, we investigate the general organization
(texture) of our packings in terms of particle connectivity.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
η

0.5

0.55

0.6

0.65

0.7

ρ0

ρ∗

FIG. 7. (Color online) Packing fraction ρ as a function of η both
in the initial isotropic state [(black) circles] and in the residual state
[(red) squares].
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FIG. 8. Contact configurations between two particles:
(1) “simple” (s) contacts, (2a) “double-simple” (ds) contacts,
(2b) “double” (d) contacts (d), (3a, 3b, 3c) “triple” (t) contacts, and
(4) “quadruple” (q) contacts.

The main effect of shape nonconvexity is to allow for multiple
contacts between aggregates as shown in Fig. 8. Seven types
of contacts can occur between two particles: (i) “simple” (s)
contacts; (ii) “double-simple” (ds) contacts, defined as two
simple contacts between two pairs of spheres; (iii) “double”
(d) contacts, defined as two contacts between one sphere of one
aggregate and two spheres belonging on the other aggregate;
(iv) “triple” (t) contacts, defined as a combination of simple
and double contacts or one sphere of one aggregate and three
spheres of another aggregate or three simple contacts; (v)
“quadruple” (q) contacts, defined as a combination of two
double contacts, and (vi) five or six contacts with a negligible
proportion (below 1%) compared to other contact types.

Thus, given multiple contacts between aggregates, we can
distinguish between the coordination number Z, the mean
number of neighbors per particle (multiple contacts seen as
one contact), and the “connectivity” number Zc, defined as the
mean number of contacts per particle. For spherical particles
we have Z = Zc. Considering only the contact types s, ds, t ,
and q and neglecting higher-order contacts, we get

Zc

Z
= ks + 2(kds + kd ) + 3kt + 4kq, (13)

where ks , kds , kd , kt , and kq are the proportions of s, ds, d, t ,
and q contacts, respectively. Figure 9 displays Z and Zc in the
isotropic and residual states as a function of η. The exponents 0
and ∗ refer to the isotropic and residual states, respectively. We
see that Z0

c jumps from 6 for spheres to �12 for η > 0. This
jump is compatible with the isostatic nature of our packings
prepared with a zero friction coefficient [56]. Frictionless
spheres are characterized by 3 degrees of freedom (df; rotations
being immaterial) so that the isostatic condition implies three
independent constraints (normal forces), which amounts to
a connectivity number of 6. For nonspherical particles, the
particle rotations become material and a similar counting

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
η
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Z
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*
c

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

(a)

(b)

η
4
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8

10

12

Z
0
c

Z
0

FIG. 9. (Color online) Coordination Z and connectivity Zc

numbers as a function of η in both (a) initial and (b) residual states.

argument leads to a connectivity number of 12. For frictional
aggregates, in the residual state, Z∗

c is lower but increases
from 3.5 to 5.5 with η. Interestingly, we also see that, in both
isostatic and residual states, Z increases much less slowly with
η than Zc. In others words, as in the two-dimensional (2D)
case [36,37], the effect of increasing nonconvexity is expressed
by an increasing number of multiple contacts with the same
average number of neighboring aggregates, and therefore at
large values of η the packings are loose but well connected.

To gain further insight into the connectivity of the contact
network, we plot in Fig. 10 the proportion of each contact type
in the isostatic and residual states as a function of η. We observe
that the proportions of different types of connection between
aggregates are nearly independent of η in the isostatic state.
The simple contacts represent the highest proportion (�0.56),
whereas ds, t , and q contacts have the lowest proportions
(�0.15). The d contacts are represented by an intermediate
proportion of nearly 0.3. In the residual state, the proportion of
simple contacts declines as η is increased but its value remains
above that in the isotropic state, at the expense of the increasing
number of other contact types, which are fewer in number.

We also observe a drastic loss of double contacts in the
residual state compared to the initial isotropic state for all
values of η, whereas the proportions of double-simple and
triple contacts are nearly the same and the proportion of
quadruple contacts is nearly 0. This can be explained by the fact
that the residual state is governed by shear-induced dilation. In
this, the particles explore constantly metastable states and thus
double and multiple contacts are less involved in the stability
of the packing. In contrast, the isostatic state corresponds to
the unique minimum of the total potential energy σ0V of the
packing. This state is achieved by the enhanced number of
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FIG. 10. (Color online) Proportions of simple, double, double-
simple, triple, and quadruple contacts as a function of η in the
(a) isotropic and (b) residual states.

double and triple contacts, which, by interlocking, contribute
to increasing the packing fraction.

The description of the microstructure in terms of the average
coordination and connectivity between the aggregates provides
a clear picture of the effect of shape nonconvexity. It is also
remarkable that the trends observed here by 3D simulations are
nearly identical to those observed by Saint-Cyr et al. and Szarf
et al. by means of 2D simulations [36,37]. In the following,
we analyze higher order descriptors of the microstructure and
their relationship to the macroscopic behavior.

B. Fabric and branch-length anisotropy

A well-known feature of dry granular materials is that
the shear strength is related to the buildup of an anisotropic
structure during shear due to (i) friction between the particles
and (ii) as a result of steric effects depending on particle
shape [57]. A common approach used by various authors is to
consider the probability distribution P (n), where n is the unit
vector of contact normals in the contact frame (n,t), with t an
orthonormal unit vector oriented along the tangential force as
illustrated in Fig. 11(a). In three dimensions, let � = (θ,φ) be
the angles that define the orientation of n, where θ is the radial
angle and φ the azimutal angle as defined in Fig. 11(c). From
numerical data we can then evaluate the probability density
functions P�(�) of contacts pointing along a direction �.

We have seen previously that, due to multiple contacts
between nonconvex particles, the contact network is different
from the network of neighboring particles. Thus, in addition
to the distribution P (n) of contact normals n, we define the
probability distribution P (n′) for the neighbor network, where

−→

−→
f

−→n

−→
t

(a)

−→

−→
f

−→
n

−→
t

(b)

−→x
−→y

−→z
−→n

θ

φ

(c)

FIG. 11. (Color online) (a) Contact frame (n,t); (b) intercenter
frame (n′,t ′); (c) azimutal angle � and radial angle �.

n′ is the unit branch vector joining the centers of two touching
aggregates and pointing in a direction �′ = (θ ′,φ′). We also
associate a local frame (n′,t ′), with t ′ an orthonormal unit
vector [see Fig. 11(b)]. Under the axisymmetric conditions of
our simulations, P� and P�′ are independent of the azimuthal
angles φ and φ′ so that we may consider in the following
only the probability densities Pθ and Pθ ′ of the radial angles θ

and θ ′.
The inset in Fig. 12 displays a polar representation of

the above functions in the θ plane in the critical state for
η = 0.4. We observe an anisotropic behavior in all cases. The
peak value occurs along the compressive axis (θc = θ ′

c = π/2)
and coincides with the principal stress direction θσ = π/2.
The peak is less marked for Pθ ′ than for Pθ . The simple
shapes of the above functions suggest that the harmonic
approximation based on spherical harmonics at leading terms
captures the anisotropies of both neighbor and contact net-
works. There are nine second-order basis functions Y l

m(�,�)
[11,28], where (�,�) stands either for (θ,φ) or for (θ ′,φ′),

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
η

0.1

0.2

0.3

0.4

a
c

a′c

FIG. 12. (Color online) Contact anisotropy ac [(black) circles]
and branch vector anisotropy a′

c [(red) squares] as a function of the
shape parameter η averaged in the residual state. Error bars represent
the standard deviation in the residual state. Inset: Angular probability
densities Pθ (θ ) [(black) circles] and Pθ ′ (θ ′) [(red) squares] for η =
0.4 calculated from the simulations (data points) together with the
harmonic approximation (lines).
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depending on the local frame used, but only the functions
compatible with the symmetries of the problem (i.e., indepen-
dent with respect to � and π -periodic with �) are admissible.
The only admissible functions are therefore Y 0

0 = 1 and
Y 0

2 = 3 cos2 � − 1. Hence, within a harmonic model of fabric,
we have

P�(�) = 1

4π
{1 + āc[3 cos2(� − �c) − 1]}, (14)

where (āc,�c) = (ac,θc) are the contact anisotropy and the
privileged contact direction of the contact network and
(āc,�c) = (a′

c,θ
′
c) are the branch anisotropy and the privileged

branch direction of the neighbor network. In practice, the
values of āc can be calculated from generalized fabric tensors
as described in Ref. [28].

Figure 12 shows the variation of ac and a′
c averaged in the

residual state as a function of η. We see that both anisotropies
increase with η from 0.2 to a nearly constant value of 0.3 and
0.36, respectively, beyond η > 0.4. We also have a′

c < ac. The
saturation of a′

c in the residual state is compatible with the
saturation of Z, which represents the coordination number of
the network of neighbors, as shown in Fig. 9. On the other hand,
ac slightly increases as Zc with η due to enhanced interlocking
and gain of contacts with the same neighboring aggregates
(since Z is nearly independent of η in the range η > 0.4).
Hence, the effect of the nonconvexity of the aggregates on the
texture manifests itself in increased coordination, connectivity,
and contact anistropy in the range η � 0.4 and in enhanced
connectivity and anisotropy due to interlocking.

This increase in interlocking can also be observed for the
projections 	nn and 	t t of the branch vector 	n′ n′ along the
normal and tangential forces, respectively. In close correlation
with contact and branch anisotropies, we can define the average
angular dependance of this quantity. We consider the joint
probability density P (	n,n), P (	t ,t), and P (	n′ ,n′) of the
normal, tangential, and radial branch lengths. We have the
three expressions

〈	n〉(�)P�(�) =
∫ ∞

0
	nP (	n,n)d	n, (15)

〈	t 〉(�)P�(�) =
∫ ∞

0
	tP (	t ,t)d	t , (16)

〈	n′ 〉(�′)P�′(�′) =
∫ ∞

0
	n′P (	n′ ,n′)d	n′ , (17)

where 〈	n〉(�), 〈	t 〉(�), and 〈	n′ 〉(�′) are the average normal,
tangential, and radial lengths along the directions � and �′,
respectively [28] The mean normal, tangential, and radial
lengths are simply given by

〈	n〉 = 1

4π

∫
S
〈	n〉(�)P�(�)d�, (18)

〈	t 〉 = 1

4π

∫
S
〈	t 〉(�)P�(�)d�, (19)

〈	n′ 〉 = 1

4π

∫
S
〈	n′ 〉(�′)P�′(�′)d�′, (20)

where S is the integration domain [0,π ] × [0,2π ]. 〈	n〉 and
〈	n′ 〉 are always positive by construction. In contrast, 	t can
be negative and we get 〈	t 〉 ∼ 0 in all our simulations. This

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
η
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0.08
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ln

a
lt

a
ln′

FIG. 13. (Color online) Normal and tangential branch length
anisotropies aln (circles) and alt (squares) and branch-length
anisotropy aln′ (triangles) as a function of the shape parameter η

in the residual state. Error bars represent the standard deviation in
the residual state. Inset: Angular average functions 〈	ln〉(θ ) [(black)
circles], 〈	lt 〉(θ ) [(red) squares], and 〈	ln′ 〉(θ ) [(green) triangles]
for η = 0.4, calculated from the simulation data (points) and
approximated by harmonic fits (lines).

condition implies that the functions 〈	t 〉(�) and P�(�) are
orthonormal. Moreover, under the axisymmetric conditions
of our simulations, these functions are independent of the
azimuthal angles φ and φ′. These functions can then be
expanded at first order over a spherical harmonic basis as
follows:

〈	n̄〉(�) = 〈	n̄〉{1 + aln̄[3 cos2(� − �ln̄) − 1]}, (21)

〈	t 〉(θ ) = 〈	n〉alt sin 2(θ − θlt ), (22)

where (	n̄,aln̄,�ln̄) = (	n,aln,θln) are the normal branch-
length anisotropy and privileged orientation of 〈	n〉(θ ) in the
frame (n,t), (	n̄,aln̄,�ln̄) = (	n′ ,aln′ ,θln′ ) are the radial branch-
length anisotropy and privileged orientation of 〈	n′ 〉(θ ′) in
(n′,t ′), and (alt ,θlt ) are the tangential branch-length anisotropy
and the privileged orientation of 〈	t 〉(θ ) in (n,t), respectively.

The inset in Fig. 13 shows the polar diagrams of the
simulation data for 〈	n〉(θ ), 〈	t 〉(θ ), and 〈	n′ 〉(θ ′) at η = 0.4,
together with the harmonic approximations in the residual
state. We see that the distributions of normal and radial
branch length are nearly isotropic, whereas the distribution of
tangential branch-length components has two modes along the
directions θt ± π/4. The variation of normal, tangential, and
radial length anisotropies is plotted in Fig. 13 as a function
of η. We see that aln ∼ aln′ ∼ 0. This is due to the absence
of shape eccentricity of the particles [25,27,28,35,58,59] and
also because of the low span in the particle size distribution
[46]. This shows that, even if the particles and contacts
are nonuniformly distributed around each particle, the mean
distance between particles remains nearly constant. In contrast,
we see that alt increases with η from 0 to 0.06. These values
are weak but their global increase is directly related to the
increase in interlocking. In fact, the tangential projection of the
branch vector 	t on the contact plane between two aggregates
increases with interlocking. This leads to the increase in
the ratio 	t/	n for the interlocked aggregates and thus the
average value 〈	t 〉/〈	n〉 at θ = θlt + π/4, which is equal to alt

according to Eq. (22).
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FIG. 14. (Color online) Probability density functions of normal
forces on (a) log-linear and (b) log-log scales.

V. FORCE TRANSMISSION

A. Force distribution

We consider in this section the distribution of contact forces,
which reflects the inhomogeneity of the contact network
[47,60–62]. The normal-force probability density functions
averaged in the residual state are shown in Fig. 14 on a
log-linear [Fig. 14(a)] and log-log [Fig. 14(b)] scale for all
values of η. The distribution becomes increasingly broader
as the nonconvexity increases but the relative changes are
surprisingly small. Indeed, the maximum force varies from
10× the mean force for spheres to 12× the mean force for η =
0.7. We also observe an increasing number of contacts carrying
weak forces (below the mean) as η increases. This rather small
change in the distributions with η may be attributed to the fact
that the contacts are always between the spheres belonging
to the aggregates, and from this viewpoint the distribution of
forces is not very different from that for a packing of spheres.

Another way to highlight the role of multiple contacts in
force transmission is to consider the reaction forces between
aggregates. The reaction force F between two aggregates is
the result of point forces acting at their contacts, and it can be
projected onto the intercenter frame. In this way, the contact-
force network can be replaced by the simplest neighbor-force
network carrying the radial forces fn′ = Fn′. Figure 15(a)
shows the neighbor-force network in the residual state for
η = 0.6. The “force forest” shown in this figure represents
the force chains along the branch vectors. Figure 15(b) shows
the same snapshot with the radial forces colored according
to contact type. It seems that stronger force chains are
composed essentially of double and double-simple contacts
and occasionally mediated by simple, triple, and quadruple
contacts.

−→z
−→y

−→x

−→z
−→y

−→x

(a)

(b)

FIG. 15. (Color online) Snapshot of radial forces for η = 0.6.
(a) Line thickness is proportional to the radial force. (b) Forces are
plotted in different colors, depending on the contact type: s contacts,
black; d contacts, red; ds contacts, green; t contacts, purple; and q

contacts, yellow.

The radial-force probability density functions averaged in
the residual state are shown in Fig. 16 on log-linear [Fig. 16(a)]
and log-log [Fig. 16(b)] scales for all values of η. The
distribution becomes broader than contact-force distributions
as the nonconvexity is increased. We observe an increasing
number of both weak forces and stronger forces. This means
that the packings of more nonconvex aggregates, though more
closely connected, are more inhomogeneous in terms of radial
forces.

The anisotropic structures shown in Fig. 15 can be charac-
terized more generally through the angular dependence of the
average normal and radial forces via the same methodology as
given in Sec. IV for branch-length orientations. Considering
the joint probability densities P (fn,n) and P (fn′ ,n′) of the
normal and radial forces, we have

〈fn̄〉(�̄)P�̄(�̄) =
∫ ∞

0
fn̄P (fn̄,�̄)dfn̄, (23)

where (n̄,�) stands alternatively for (n,θ ) in the contact frame
or for (n′,θ ′) in the branch frame. 〈fn〉(�) and 〈fn′ 〉(�′) are the
average normal and radial forces along the directions θ and θ ′,
respectively. The average normal/radial force is given by

〈fn̄〉 = 1

4π

∫
S
〈fn̄〉(�̄)P�̄(�̄)d�̄. (24)
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FIG. 16. (Color online) Probability density functions of radial
forces on (a) log-linear and (b) log-log scales.

Under the axisymmetric conditions of our simulations,
the above probability density functions are independent of
the azimuthal angle φ and can be expanded on a spherical
harmonics basis as

〈fn̄〉(�) = 〈fn̄〉{1 + af n̄[3 cos2(� − �n̄) − 1]}, (25)

where (fn̄,an̄,�n̄) = (fn,af n,θn) are the normal-force
anisotropy and privileged orientation of 〈fn〉(θ ) in (n,t), and
(fn̄,an̄,�n̄) = (fn′ ,af n′ ,θn′ ) are the radial-force anisotropy and
privileged orientation of 〈fn′ 〉(θ ′) in (n′,t ′). This form is well
fit to the data as shown in the inset in Fig. 17 in the residual
state for η = 0.4. We also see that both θn and θn′ coincide
with the principal stress direction θσ = π/2.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
η
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0.40

0.50
afn
afn′

FIG. 17. (Color online) Normal and radial force anisotropies
af n [(black) circles] and af n′ [(red) squares] as a function of η

in the residual state. Error bars represent the standard deviation in
the residual state. Inset: Angular average functions 〈fn〉(θ ) [(black)
circles] and 〈fn′ 〉(θ ) [(red) squares] for η = 0.4 calculated from the
simulation data (points) together with the harmonic approximation
(lines). Error bars represent the standard deviation in the residual
state.
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FIG. 18. (Color online) Normalized shear stress supported by s,
ds, t , and q contacts as a function of η.

The residual-state values of af n and af n′ are displayed
together in Fig. 17 as a function of η. We see that af n′ > af n

and that both anisotropies increase with η from 0.2 to 0.33 for
af n and to 0.43 for af n′ . The large variation of af n′ with η is
consistent with the fact that the probability density function
of radial forces is increasingly broader with η. Moreover, the
increase in af n and af n′ in connection to the saturation of
ac and a′

c (see Sec. IV), implies that stronger force chains
are transmitted through the principal stress direction, while on
average the mean orientation of contacts remains unchanged at
larger η. This can be attributed to the increase in the proportion
of multiple contacts between particles. Indeed, by restricting
the summation in Eq. (4) to each contact type, one may
partition the stress tensor as a sum of partial stress tensors,

σ = σ s + σ ds + σ d + σ t + σ q, (26)

where σ s , σ ds , σ d , σ t , and σ q represent the stresses carried by
different contact types. The corresponding stress deviators qs ,
qds , qd , qt , and qq averaged in the residual state and normalized
by the mean stress p are shown in Fig. 18 as a function of η.
It is remarkable that the shear stress qs/p supported by simple
contacts remains nearly independent of η and equal to ∼0.2,
whereas the proportion of simple contacts decreases drastically
with η, from 1 to 0.65, as shown in Sec. IV. Hence, the increase
in shear strength with η is mainly due to the increase in qd/p

and, to a lesser extent, to the other contacts. In this way, the
growth of the number of interlocked contacts is clearly at the
origin of the enhanced shear strength of the packings as η

increases.

B. Friction mobilization

The mobilization of friction forces is a basic parameter
in granular materials. A simple way to quantify the friction
mobilization in granular materials is to consider the proportion
S of sliding contacts, i.e., the contacts where the friction force
ft equals μfn in absolute value in steady shearing. Figure 19
displays S in the residual state as a function of η. We see that
S increases from 0.23 for spheres to 0.7 for η = 0.7. Another
key fact is that the sliding contacts are unevenly distributed
among simple, double-simple, double, triple, and quadruple
contacts, as shown in Fig. 20. Only a weak number of double-
simple, triple, and quadruple contacts are sliding, whereas the
proportion of sliding double contacts increases with η at the
expense of simple contacts.

052205-9
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FIG. 19. Proportion of sliding contacts as a function of η in the
residual state. Error bars show the standard deviation in the residual
state.

A somewhat more elegant way of describing friction mobi-
lization is to consider the proportion of contacts in correlation
with the friction force. We consider the probability density
of the tangential and orthoradial forces ft t = fnn′ − f and
ft ′ t ′ = fn′ n′ − f , respectively, which derive from the joint
probability densities P (ft ,t) and P (ft ′ ,t ′), of the tangential
ft and orthoradial ft ′ forces along the directions t and t ′,
respectively. Thus, as for normal and radial forces, we have

〈ft̄ 〉(�̄)P�̄(�̄) =
∫ ∞

0
ft̄P (ft̄ ,�̄)df�̄, (27)

where (t̄ ,�) stands alternatively for (t,θ ) in the contact frame
or for (t ′,θ ′) in the branch frame. 〈ft 〉(�) and 〈ft ′ 〉(�′) are the
average tangential and orthoradial force along the directions θ

and θ ′, respectively. The average tangential/orthoradial radial
force is given by

〈ft̄ 〉 = 1

4π

∫
S
〈ft̄ 〉(�̄)P�̄(�̄)d�̄. (28)

Noting now that, in quasistatic deformation the force accel-
erations are negligible so that the forces and force moments
acting on the aggregate a are balanced, we have∑

c∈a

f c = 0, (29)

∑
c∈a

{
rc
nf

c
t + rc

t f
c
n

} = 0, (30)
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FIG. 20. (Color online) Proportion of sliding contacts as a
function of η in the residual state for different contact types. Error
bars show the standard deviation in the residual state.

where rc
n = rc · n and rc

t = rc · t , where rc is the contact
vector joining the center of inertia of the aggregate a to the
contact c. Taking the average of Eq. (30) over all aggregates
a, and assuming that 	n, ft , and 	t , fn are statistically
independent, we get 〈	n〉〈ft 〉 = 〈	t 〉〈fn〉. As mentioned in
Sec. IV, 〈	t 〉 = 0, thus as 〈	n〉 > 0, the average tangential force
in the packing vanishes. Similarly, considering the contacts
projected onto the branch frame (n′c

,t ′c), we have 〈ft ′ 〉 = 0.
Since the average tangential and orthoradial forces vanish,

〈ft̄ 〉(�̄) and P�̄(�̄) are orthonormal. Given that under the
axisymmetric conditions of our simulations these probability
density functions are independent of the azimuthal angle
φ, these functions can thus be expanded over a spherical
harmonics basis as

〈ft 〉(θ ) = 〈fn〉af t sin 2(θ − θt ), (31)

〈ft ′ 〉(θ ′) = 〈fn′ 〉af t ′ sin 2(θ − θt ′), (32)

where (af t ,θt ) are the tangential anisotropy and privileged
orientation of 〈ft 〉(θ ) in the frame (n,t), and (af t ′ ,θt ′ ) are the
orthoradial anisotropy and privileged orientation of 〈ft ′ 〉(θ ′) in
the frame (n′,t ′).

The inset in Fig. 22 shows polar diagrams of the simulation
data for 〈ft 〉(θ ) and 〈ft ′ 〉(θ ′) together with plots of function (31)
in the residual state for η = 0.4. We see that the function fits
the data excellently. We also see that θt = θt ′ = π/2 coincides
with the principal stress direction. We thus define a friction
mobilization function [28,35],

M̄fric(�) = 〈ft̄ 〉(�)

μ̄〈fn̄〉 = af t̄

μ̄
sin 2(� − �t̄ ), (33)

where μ̄ = μ and (af t̄ ,�t̄ ) = (at ,θ ) in the local contact frame
and μ̄ = 〈(fn′/fn)

√
(1 + μ2) − (fn/fn′ )2〉 and (af t̄ ,�t̄ ) =

(at ′ ,θ
′) in the local neighbor frame. This function has two

modes along the directions �t ± π/4 and the ratio af t̄ /μ̄ is
simply their amplitude. Hence, integrating Eq. (33) in the range
of [0,π ] we can define an “index” Īfric for friction mobilization
by

Īfric = 5

2μ̄
af t̄ . (34)

The friction mobilization increases from 0 in the isotropic state
with shear strain and its value in the residual state depends
on the nature of the material. Figure 22 shows af t and af t ′

averaged in the residual state as a function of η. We see that af t

and af t ′ increase both from 0.05 to 0.1 and 0.3, respectively, at
larger η, in close correlation with the variation of S, indicating
that stronger tangential and radial forces are mobilized at larger
η. This is what we observe also by visual inspection of Fig. 21,
where two maps of radial mobilized friction forces are shown
for η = 0.1 and η = 0.6 in the residual state.

The force and fabric anisotropies are very interesting
descriptors of granular microstructure and force transmis-
sion properties, because they underlie the different micro-
scopic origins of shear strength. Indeed, it can be shown
that the general expression of the stress tensor [Eq. (4)],
together with the spherical harmonics approximation of
the texture by Eqs. (14) and (22) and the force network
by Eqs. (25) and (31), leads to the following simple
expression in both contact-network and neighbor-network
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FIG. 21. (Color online) Map of mobilized forces (in red) for
(a) η = 0.1 and (b) η = 0.7. The line thickness is proportional to
the radial force.

frames [11,25,28,59]:

q

p
� 2

5
(ac + aln + alt + af n + af t ), (35a)

q

p
� 2

5
(a′

c + aln′ + af n′ + af t ′). (35b)

These expressions are based on the following assumptions,
which are satisfied with a good approximation in the residual
state: (i) The contact forces and branch-vector lengths are
weakly correlated; (ii) the reference directions coincide with
the major principal stress direction, i.e., �c = �ln̄ = θlt =
�f n̄ = �f t̄ = θσ ; and (iii) the cross products among all
anisotropies are negligible. Equation (35) is based on general
considerations and the values of shear strength given by this
equation from the anisotropies are expected to predict correctly
the measured shear strength of a packing of nonconvex
aggregates too. Note, however, that the second expression
given by Eq. (35) is simpler than the first expression (four
anisotropy parameters instead of five anisotropy parameters).

Figure 23 shows the normalized shear strength q/p in the
residual state together with the two approximations given by
Eq. (35). We see that the fit by Eq. (35b) is excellent for all val-
ues of η, whereas Eq. (35a) underestimates the shear strength as
particle shapes deviate more strongly from the circular shape.
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FIG. 22. (Color online) Tangential and orthoradial force
anisotropies at [(black) circles] and af t ′ [(red) squares] as a function
of η in the residual state. Error bars represent the standard deviation
in the residual state. Inset: Angular average functions 〈ft 〉(θ ) [(black)
circles] and 〈ft ′ 〉(θ ) [(red) squares] for η = 0.4 calculated from the
simulation data (points) together with the harmonic approximation
(lines). Error bars represent the standard deviation in the residual state.

A similar result was reported in three dimensions by Ouadfel
et al. [59] with ellipsoidal particles and by Azema et al., who
varied the angularity of polyhedral particles [11,28]. But the fit
can be improved by including in Eq. (35a) the cross products
of the anisotropies as follows [28,59]:

q

p
� 2

5
(ac + aln + alt + af n + af t )

+ 4

105
(ac.af n + ac.aln + aln.af n)

+ 16

105
(ac.af t + ac.alt + aln.af t + alt .af n). (36)

As we see in Fig. 23, Eq. (36) gives a better approximation
of q/p than Eq. (36a) but is more complicated. This indicates
that the analysis of the texture and force chains in terms of the
neighbor network is more relevant than that in terms of the
contact network, due precisely to the role of multiple contacts.
Thus, for η < 0.4 the increase in shear strength with η can be
attributed to the increase in the anisotropies, and in particular,
the increase in af n′ and af t ′ underlies the increase in shear
strength at the largest values of η despite the plateau observed
for a′

c.
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FIG. 23. (Color online) Normalized shear stress as a function of η

together with harmonic approximations given by Eqs. (35) and (36).
Error bars represent the standard deviation of the data.
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VI. CONCLUSIONS

In this paper, a systematic analysis of the effect of
shape nonconvexity on the rheological parameters of sheared
granular materials has been presented by means of 3D contact
dynamic simulations. Nonconvex particle shapes are modeled
as aggregates of four overlapped spheres and characterized
by a single parameter η, which we varied, in steps of 0.1,
from 0 (spheres) to ∼0.7. Note that an aggregate of four
tangent spheres corresponds to η ∼ 0.73. The macroscopic
and microstructural properties of several packings of 12 000
aggregates under triaxial compression in a rectangular simu-
lation cell were analyzed as a function of η.

It was shown that the shear strength in the residual state
is an increasing function of η, whereas the packing fraction
increases up to a maximum value before decreasing down to
values comparable to that of sphere packings. It is remarkable
that these two macroscopic features are shared with other
nonspherical shapes described by their degree η of deviation
from circular shape. This suggests that η is a “good” low-order
shape parameter for describing the shape effect. This finding
also extends the results of a previous investigation with regular
aggregates of three overlapped disks in two dimensions [36].

Another interesting feature of the aggregate packings is
that their connectivity does not follow the packing fraction.
Increasing the nonconvexity leads to an increase in multiple
contacts between aggregates with essentially the same number
of neighbors per particle. This microstructural property un-
derlies the fact that the packings are increasingly looser, but
with a higher shear strength. As already shown for elongated
and angular particles, the case of nonconvex particles again

illustrates clearly that the packing fraction and its evolution are
not sufficient for description of the plastic behavior of granular
media composed of nonspherical particles. The relevant
internal variables as suggested by the harmonic decomposition
of the stress tensor are the fabric anisotropy, normal- and
radial-force anisotropies, and friction mobilization. A detailed
analysis of the fabric and force anisotropies developed in
the contact network and neighbor network frames allowed
us to highlight the microscopic mechanisms leading to their
observed dependence with respect to η.

The increase in shear strength stems from that in all
anisotropies. Nevertheless, at higher levels of nonconvexity
our data indicate that the force and friction anisotropies prevail
compared to the fabric anisotropy, which tends to saturate.
This saturation is related to both the increase in interlocked
contacts (double and triple contacts) and the fact that the
mean number of neighbors per particle remains constant. As
a consequence, the aggregates can move only in the form of
clusters, with relative sliding and rolling localized mainly at
the simple contacts leading to the increase in force and friction
force anisotropies. At the same time, larger pores occur due to
this “clustered” motion of the aggregates, partially explaining
the decrease in packing fraction observed at higher levels of
nonconvexity.

Therefore, friction mobilization and interlocking appear to
play a major role at high nonconvexity and more analysis
should be performed specifically for highly nonconvex parti-
cles but also for other particle shapes and higher sliding friction
or rolling friction between particles in order to characterize the
local kinematics and clustering effects.
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V. Richefeu, J.-Y. Delenne, G. G. Combe, C. Nouguier-Lehon,
P. Villard, P. Sornay, M. Chaze, and F. Radjaı̈, Europhys. Lett.
98, 44008 (2012).

[39] F. Ludewig and N. Vandewalle, Phys. Rev. E 85, 051307 (2012).
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