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Width of laminar laboratory rivers
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A viscous fluid flowing over plastic grains spontaneously generates single-thread channels. With time, these
laminar analogues of alluvial rivers reach a reproducible steady state, showing a well-defined width and cross
section. In the absence of sediment transport, their shape conforms with the threshold hypothesis which states
that, at equilibrium, the combined effects of gravity and flow-induced stress maintain the bed surface at the
threshold of motion. This theory explains how the channel selects its size and slope for a given discharge. In this
light, laboratory rivers illustrate the similarity between the avalanche angle of granular materials and Shields’s
criterion for sediment transport.

DOI: 10.1103/PhysRevE.87.052204 PACS number(s): 45.70.−n, 92.40.Gc, 92.40.Qk, 92.40.qh

I. INTRODUCTION

As alluvial rivers carve their bed in the sediment they
carry, they show a beautiful variety of shapes and sizes [1].
The interaction between water flow and sediment transport
spontaneously generates a specific morphology and selects a
characteristic scale, in a remarkable illustration of morpho-
genesis [2,3]. When the sediment discharge increases, rivers
typically develop a network of closely intertwined threads
to produce a braided pattern [4–6]. Conversely, at moderate
transport rates, alluvial rivers exhibit a well-defined channel
over distances much longer than their width. The morphology
of single-thread rivers obeys empirical scaling laws [7,8] such
as Lacey’s equation [9], which states that the width of a river is
proportional to the square root of its discharge. This universal
behavior suggests a common physical origin [10], yet there is
no consensus about what this origin is.

A simple way to explain Lacey’s law is to assume that the
river bed is at the threshold of sediment transport [11–13].
According to this theory, the sum of gravity and fluid friction
maintains the sediment exactly at the threshold of motion,
everywhere across the river bed. For a given discharge, this
mechanism sets the width and the streamwise slope of a
channel. Despite its simplicity, this theory accords well with
field data [14–16], at least in order of magnitude. However,
it is often considered incomplete, as it cannot account for
sediment transport [17] while most alluvial rivers are active. In
addition, the threshold theory neglects many aspects of natural
streams, such as bank cohesion and vegetation, sediment
heterogeneity, or variations of the water discharge. It is
therefore delicate to discriminate between theories on the basis
of field measurements only [18,19].

Laboratory flumes imitate natural rivers, while vastly
reducing the number of parameters susceptible to influence
their shape [20,21]. This relative simplicity facilitates the
physical interpretation of experimental observations. As long
as the experimental setup preserves the essential processes,
laboratory experiments can greatly help us to understand
natural rivers.

Most laboratory flumes form braids [22,23], probably due
to the growth of unstable bedforms [24]. To maintain a single
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channel, Ikeda halved his flume with a solid wall [25]. Here,
we combine a viscous fluid with low-density sediment grains
to increase the saturation length of sediment transport, and
thus stabilize the bed [26,27]. As a result, our experimental
setup spontaneously generates stable single-thread channels.
We use these channels to evaluate the threshold hypothesis.

II. LABORATORY RIVERS

The experimental setup consists of an inclined plane (190 ×
90 cm) covered with an initially flat layer of plastic sediment
(Fig. 1). We use plastic grains (density ρs ≈ 1520 ± 50 g L−1,
grain diameter ds ≈ 220 ± 80 μm) to reduce their density, and
thus increase the typical distance a grain travels over when
transported by the flow. The grains are irregularly shaped. At
the outlet, the sediment layer is held by a 25-mm-high slat, over
which water runs before leaving the experiment. The sediment
layer is always thicker than the river depth.

An experiment begins when water is allowed to flow over
the sediment bed at a constant discharge. To increase the
viscosity of the fluid, we mix glucose and water (about 50%
in weight, viscosity ν ≈ 15 × 10−6 ± 5 × 10−6 m s−2, density
ρf ≈ 1220 ± 30 g L−1). This maintains the Reynolds number
at a low value and guarantees that the flow remains laminar
(Re ≈ 20–50, calculated with the flow depth). Additionally, a
high viscosity further increases the sediment travel distance.

During the first minutes of an experiment, the flow spreads
over the entire sediment surface, forming a uniform sheet
of water. After a few tens of minutes, a favored flow path
appears near the center of the experiment. As sediment is
further removed from this higher-flow area, a channel becomes
apparent. Around it, the sediment surface emerges from the
flow.

During the next day or two, the channel gets narrower and
deeper, as it transports less and less sediment, until it reaches its
equilibrium state (no visible moving grains). At equilibrium,
a channel is a few centimeters wide, depending on the fluid
discharge. In most experimental runs, the channel is a single
straight thread, although some rivers show a weak sinuosity
and multiple threads near the outlet.

The channel planform is typically smooth, with a well-
defined width (Fig. 1). The inlet deforms the channel mor-
phology over 5 to 20 cm, a distance much larger than the
expected saturation length for sediment transport (about the

052204-11539-3755/2013/87(5)/052204(5) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.87.052204


SEIZILLES, DEVAUCHELLE, LAJEUNESSE, AND MÉTIVIER PHYSICAL REVIEW E 87, 052204 (2013)

FIG. 1. (Color online) Schematic view of the experimental setup.
Inset: top view of a laminar river, with the two laser sheets used to
measure the cross section.

grain size in a viscous flow [28]). The influence of the outlet
extends upstream over a comparable distance.

The equilibrium state of the channel does not depend
significantly on the initial conditions. Imperfections of the
sediment layer do not seem to force the final position of the
stream, nor does an initially fabricated channel. If the plane is
steeper than the equilibrium slope, the channel incises the
sediment layer in the neighborhood of the water inlet and
deposits sediment near the outlet, creating a small alluvial fan.
If, conversely, the initial slope is too low, the channel reaches
its equilibrium slope with the inverse configuration. In both
cases, the time to equilibrium increases. We therefore start
each experiment as close to the equilibrium slope as possible,
by trial and error.

Once the channel has reached equilibrium, we measure its
cross section with two laser sheets at different incidence angles
(Fig. 1). This technique yields both the sediment bed elevation
and the position of the water surface [29]. Most channels have a
regular and symmetrical cross section (Fig. 2), perturbed only
by low-amplitude bedforms or miniature terraces created by
the lateral displacement and the narrowing of the channel. In
some cases, the river has created small levees in the deposition
zone.

Overall, the experiments are very reproducible. The channel
width is chiefly controlled by the water discharge and it varies
by less than 30% along the river (except near the plane limits).

FIG. 2. (Color online) Example of a laminar river cross section
at equilibrium. The brown (below) and blue (above) lines show the
sediment bed elevation and the average position of the water surface,
respectively. The discharge is Qw = 1.1 L min−1. The dashed red line
shows the theoretical cross section [Eqs. (9) and (13)].

III. RIVERS AT THRESHOLD

Our experimental rivers slowly evolve towards a stationary
shape, which does not depend significantly on the initial
conditions. This behavior suggests that, at the end of an
experiment, the channel has reached a mechanical equilibrium.
We suggest that this equilibrium corresponds to the theory first
proposed by Glover and Florey [11], namely, that the river bed
is at threshold for sediment transport.

In this section, we rederive the threshold theory from basic
principles in order to (i) adapt it to laminar flows and (ii) relate
the Shields parameter, which defines the threshold for sediment
transport, to the avalanche angle of granular materials.

A. Avalanche angle and Shields parameter

The conical shape of a heap of dry sand is determined,
at first order, by the avalanche angle of the sand. This angle
materializes the equilibrium of a grain lying at the surface of
the heap and submitted to gravity. The tangential force ft tends
to dislodge the grain, whereas the normal force fn holds the
grain in place. The maximum slope a heap can sustain defines
the Coulomb friction coefficient μ as

μ = ‖ft‖
‖fn‖ = tan φr, (1)

where φr is the avalanche angle. The slope of a slowly built
heap of our sediment corresponds to a friction coefficient of
μ ≈ 0.7, a typical value for a noncohesive granular material.

When a flow applies a force on a grain, the same reasoning
holds. A fluid flowing above a horizontal layer of sediments
applies a tangential force to each grain, of norm

‖ft‖ = αd2
s τ, (2)

where ds , τ , and α are the grain diameter, the shear stress
applied by the flow, and a coefficient of order one, respectively.
The coefficient α depends on the grain’s shape and on the
Reynolds number of the flow around it. At low grain Reynolds
number [Res = d2

s τ/(ρf ν2)], we expect no vertical force on
the grain other than weight and buoyancy. The normal force
thus reads

‖fn‖ = β(ρs − ρf )gd3
s , (3)

where g and β are the acceleration of gravity and a shape
factor of order one, respectively. At the threshold of motion,
the ratio of tangential and normal forces equals the critical
friction coefficient. This relationship is usually expressed with
the Shields parameter and its threshold value θt [30]:

τ

(ρs − ρf )gds

= β

α
μ ≡ θt . (4)

The threshold Shields parameter depends weakly on the grain
Reynolds at the grain scale, with typical values between
0.01 (turbulent flow) and 0.3 (viscous flow [31]). We have
measured the threshold of motion for our plastic sediment in
an independent 3-cm-wide, hard-walled channel. At a grain
Reynolds number of Res ≈ 0.03, we find θt ≈ 0.25.

Equation (4) illustrates the fundamental equivalence be-
tween the threshold for sediment transport and the onset of
avalanches in dry granular materials [32]. This equivalence
manifests itself in the geometry of laminar rivers.
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FIG. 3. (Color online) Schematic representation of a laboratory
river. Both the depth D and the velocity U are functions of the
transverse coordinate y. The river is invariant in the streamwise
direction x.

B. Equilibrium theory

As long as we consider a horizontal layer of sediments, the
shape factors α and β may seem artificial since experiments
yield directly the critical Shields parameter (although Shields
himself introduces shape factors [30]). However, the configu-
ration of alluvial rivers requires that we explicitly distinguish
between the effect of gravity and the effect of the flow.

We consider a straight laminar river, which has carved its
bed in a layer of uniform sediment (Fig. 3). We further assume
that the equilibrium channel is such that, everywhere across the
bed, sediment grains are at the threshold of motion. Noting that
gravity and the flow-induced stress are orthogonal components
of the tangential force, the threshold condition reads

[
ατ

β(ρs − ρf )gds

]2

+ sin2 φ = μ2 cos2 φ, (5)

where φ is the angle of the bed with respect to the horizontal,
in the transverse direction. We have neglected the longitudinal
slope of the river in the expression of the grain weight (the
effect of slope is embedded in the fluid friction only). In our
experiments, the resulting error is less than 1%.

The shear stress τ results from the flow which, in turn,
depends on the river’s shape. Equation (5) thus defines a free-
boundary problem—the channel cross section must be such
that the flow satisfies it. At low Reynolds number, the flow in
a straight channel is laminar and satisfies a two-dimensional
Poisson equation in the transverse plane (y,z). However, the
exact two-dimensional free-boundary problem is not solvable
analytically and proves numerically challenging. For the sake
of simplicity, we assume that the channel is flat enough to
use the shallow-water approximation (that is, we neglect the
cross-stream transfer of momentum). Consequently, the fluid
friction on the river bed balances gravity:

τ = ρf gSD, (6)

where S is the longitudinal slope of the channel. In accordance
with the shallow-water approximation, the transverse slope
is moderate (cos φ ≈ 1) and Eq. (5) becomes a first-order

FIG. 4. (Color online) Aspect ratio of laminar laboratory rivers at
equilibrium, as a function of the water discharge (blue dots). The red
line corresponds to the theoretical aspect ratio π 2/(2 μ) ≈ 7.0. Each
data point is the average of two or three cross sections measured on the
same river (for the fifth run only, width and depth were measured with
a ruler). The width varies by less than 30% along the river (vertical
error bars). During an experiment, the water discharge varies by less
than 0.1 
 min−1 (horizontal error bars).

differential equation,
(

SD

L

)2

+
(

∂D

∂y

)2

= μ2, (7)

where we define the characteristic length

L = θt (ρs − ρf )ds

μρf

, (8)

based on Eq. (4). This length, which depends on the sediment
only, is of the order of the grain size (except for almost buoyant
materials). After Eq. (7), the typical scale of the channel is
L/S. A small slope thus induces a clear separation between
the grain scale and the channel size.

A solution to the differential equation (7) is

D = μL

S
cos

(
Sy

L

)
. (9)

The cross section of our laboratory channels resembles a cosine
(Fig. 2). More specifically, the theory predicts an aspect ratio
of π2/(2 μ) ≈ 7.0 (width over average depth), regardless of
the water discharge. Despite considerable scatter in the data,
our experiments reasonably conform to this prediction (Fig. 4).

According to Eq. (9), the banks are at the angle of repose.
This remark holds beyond the shallow-water approximation
since the fluid friction vanishes at the bank.

As illustrated by Eq. (7), a river at threshold embodies
the two end members of a grain equilibrium: the force balance
introduced by Shields at the center of the channel (∂D/∂y = 0)
and Coulomb’s equilibrium at the banks (D = 0).

C. Scaling laws for laminar rivers

So far, the threshold hypothesis predicts the river’s shape,
but not its size. Indeed, the scale of the cosine channel
represented by Eq. (9) depends on the river slope S. To go
further, we need to consider the mass and momentum balances
for the fluid.

According to the shallow-water approximation (also re-
ferred to as the “lubrication approximation” for viscous flows),
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FIG. 5. (Color online) Width of laboratory rivers as a function
of discharge (blue dots). The red line corresponds to the threshold
theory, without any fitted parameter [Eq. (13)]. Each data point is the
average of two or three cross sections measured on the same river
(for the fifth run only, width and depth were measured with a ruler).
The width varies by less than 30% along the river (vertical error
bars). During an experiment, the water discharge varies by less than
0.1 
 min−1 (horizontal error bars).

the fluid friction at the bottom of the channel balances gravity.
The resulting Poiseuille flow satisfies

3νU

D
= gSD, (10)

where U is the vertically averaged water velocity. Finally, the
discharge reads

Qw =
∫

channel
UDdy. (11)

In combination with the momentum balance (10) and the
threshold cross section (9), the water mass balance yields two
scaling laws:

S =
[
θt (ρs − ρf )ds

ρf

]4/3( 4g

9μνQw

)1/3

, (12)

W = πL

S
= π

μ2/3

[
9νρf Qw

4gθt (ρs − ρf )ds

]1/3

. (13)

Equation (13) is the equivalent of Lacey’s law for a laminar
river, where the cubic root of the water discharge takes the
place of the classical square-root dependence.

Our experimental data gather around this prediction (Fig. 5).
Its significant dispersion results from the actual variability of
the river width, rather than from measurement uncertainties.
Indeed, the widest cross section of a river can be 30% wider
than the narrowest one, whereas the measurement uncertainty
is of the order of the capillary length only (a few millimeters).

With our experimental setup, discharges smaller than
0.5 
 min−1 or larger than 2.5 
 min−1 are impracticable. As a
consequence, the data do not constrain strongly the exponent
of the width-discharge relation. However, the threshold theory
correctly predicts both its order of magnitude and its trend,
without any fitted parameter. We thus believe that the balance
between shear stress and fluid friction embodied by Eq. (7)
sets the size of our laboratory rivers.

Assuming this is correct, we use Eqs. (8) and (12) to rescale
the measured cross section according to the water discharge.
Doing so for each run, we then compute the mean cross

FIG. 6. (Color online) Average cross section of laboratory rivers
(blue solid line). For each water discharge, the cross section is rescaled
with L/S [Eqs. (8) and (12)]. The average is computed in polar
coordinates relative to the center of the cross section. The shaded
area indicates the variance of the cross-sections sample. Red dashed
line: cosine cross section predicted by Eq. (9).

section for all of our experiments (Fig. 6). The resulting shape
resembles a cosine, with a more rounded base. This slight
disagreement might result from the flow two-dimensionality,
which we have neglected in order to derive the cosine cross
section.

According to Eq. (12), the discharge of a river not only sets
its size, but also imposes its slope. Unfortunately, assessing
this prediction experimentally is difficult. In our experiments,
we expect a slope of about 10−3; over the entire river, this
corresponds to a change of about a millimeter in bed elevation.
We have not reached this accuracy, despite an attempt with
a moiré technique [33]. However, before each experiment,
we set the slope of the initial flat bed close to its theoretical
value. If the initial bed is too steep, the river incises deeply
into the sediment layer near the water inlet. Conversely, too
small a slope generates an alluvial fan near the inlet, indicating
deposition. These observations suggest that the river tends
towards an equilibrium slope.

IV. DISCUSSION AND CONCLUSION

The characteristic size and shape of laminar laboratory
channels accord closely with the threshold theory of alluvial
rivers. This need not have been the case, for two reasons at
least. First, the shallow-water hypothesis is a rather severe
approximation, especially since we expect the slope to reach
the avalanche angle at the bank. Second, the cosine solution
to the equilibrium equation (7) is not unique. Indeed, as
Henderson pointed out, a flat section at threshold enclosed
with two half cosines is also a solution [12]. To understand
why the narrowest solution is selected, we need to consider the
path towards equilibrium. To take this history into account, we
must add sediment transport to the theory.

The threshold theory has been compared with reasonable
success to field data [14,15], suggesting that the force balance
which it is based on sets the shape of alluvial streams. However,
the aspect ratio of most rivers is significantly larger than the
theoretical value. Since alluvial rivers generally transport a
nonvanishing load of sediments, the threshold theory appears
as a limit case that explains the orders of magnitudes, but still
lacks an ingredient.

Assuming that the bed is slightly above threshold in the
framework proposed here leads to a paradox: moving particles
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would be pulled towards the middle of the channel by gravity,
thus preventing equilibrium [17]. Various mechanisms have
been invoked to compensate for gravity: suspended particle
diffusion [34], diffusion of lateral momentum [17], or riparian
vegetation [35]. None of them, though, applies to laminar
laboratory rivers and the stable channel paradox remains a
stimulating question for future investigations.
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