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Global asymmetry of fluids and local singularity in the diameter of the coexistence curve
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By combining a measurable vapor-liquid coexistence curve and the extended van der Waals-type of equation
of state (EOS) with the additional temperature-dependent coefficient, the phenomenological model of global
fluid asymmetry has been developed separately for both coexisting bulk phases in the entire range of subcritical
states. It is shown, in particular, that the adequate description of a liquid branch and its near-critical vicinity in
terms of appropriate critical exponents and amplitudes connected by the two-scale-factor universal interrelations
can be achieved. The asymmetric influence of heterophase fluctuations on the criticality of gaseous states is
demonstrated. It is inherently similar to the well-known Fisher’s droplet model, which corresponds to the scaling
EOS too. The principle of corresponding isotherms has been formulated without any adjustable parameters. An
attempt to avoid the use of a locally singular coexistence-curve diameter is proposed in the framework of two
alternative models. The accurate vapor-liquid data for two fluid metals, Rb and Cs, as well as two molecular
fluids, C2H6 and CO2, are reanalyzed by the above models to confirm the presumed opportunity.
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I. INTRODUCTION

The terms global fluid asymmetry (GFA) and local singu-
larity in the coexistence curve (CXC) “diameter” [1] need
an explanation if one undertakes the task of converting a
cubic (classical) equation of state (EOS) so as to incorporate
the near-critical asymptotic behavior [2]. There are two
conventional directions of such enlargement which can be
conditionally specified as Ising-model-based and the van der
Waals (vdW)-fluid-based. The starting point of the former is the
local symmetry of CXC and its fluctuation flattening with the
exponent β similar to those observable in the basic lattice-gas
model of Ising-like universality. The renormalization group
methodology developed mainly by Wilson [3], Fisher [4],
and Wegner [5] provides the well-founded theoretical tool for
the further extension of scaling concepts in the framework of
crossover approach [2].

The alternative way is the vdW-like crossover formalism
connected with the names of Fox, Eu, and many others (a
brief review of such attempts to incorporate on an ad hoc
basis the nonanalytic T - and/or ρ-dependent vdW coefficients
(a,b) can be found in [2]). The advantages of simplicity
and somewhat more realistic values of the critical exponents
α,β,γ,δ are, however, insufficient to satisfy universality
of the known interrelations between the respective critical
amplitudes A0,B0,C0,D0 (see below Table I). One may see
that the theoretically based (Ising-like) crossover procedure [2]
connects the actual critical point (Pc,Tc,ρc; Zc = Pc/ρckBTc)
with the fictive mean-field one (P 0

c ,T 0
c ,ρ0

c ; Z0
c = 3/8), while

the vdW-like crossover approach requires further modifica-
tion to be consistent with the well-established criteria of
universality.

The fluctuational-thermodynamic (FT) model [6–8] is an
attempt to demonstrate that a third way exists. From the
crossover approach one can ask two general questions. Can
the original vdW-EOS with two constant coefficients (a,b)

*Author to whom all correspondence should be addressed:
vrogankov@yandex.ua

provide the realistic information about the actual criticality
of real fluids? How can any classical EOS describing ex-
clusively stable one-phase states (χT > 0,Cp > 0) located
outside its binodal determine the possible region of anomalous
heterophase fluctuations? An affirmative answer, at least to the
former question, is achievable by the rejection of a mean-field
critical point’s concept and by the incorporation of a third
constant coefficient c to map the actual values of critical
parameters onto the coefficients (a,b,c).

To avoid any ambiguities, the main paths following from
the scaling vdW form [6] are represented below, as is the
constrained Griffiths’ equality (3/2 law) used in FT-EOS [6–8]
for the estimate of the remainder (additional to the principal
exponent β = 1/3) of the critical FT exponents α,γ,δ from
Table I (T̄ = 1 − T/Tc,P̄ = 1 − P/Pc,ρ̄i = 1 − ρi/ρc):

critical isotherm, (T̄ = 0)P̄ = ± (
Z0

cA
0
c

)
ρ̄3

/ (
1 ± ρ̄/B0

0

)
;

(1a)

critical isobar, (P̄ = 0)T̄ = ∓Z0
c ρ̄

3
/ (

1 ∓ 2ρ̄/B0
0

)
; (1b)

critical isochore, (ρ̄ = 0) P̄ = A0
c T̄ ; (1c)

pseudo-CXC, ρ̄i = ±B0
0 T̄ 1/2, P̄ = A0

c T̄ ; (1d)

βδ = β + γ = 3/2;
(
B0

0 = 2,A0
c = 4, Z0

c = 3/8
)
. (1e)

Despite widespread belief to the contrary, we claim now
that both cubic roots of fields P̄ ,T̄ in Eqs. (1a) and (1b)
play fundamental roles [see Eqs. (29) and (30) below] in
the description of actual g branch and l branch, respectively,
for realistic CXC. The necessary condition for this aim is
the change of any vdW amplitude by its actual counterpart
(B0, Ac, Zc), as is demonstrated in Table I. Contrary to the
mean-field concept, we consider that Eq. (1d) and its supposed
exponent β0 = 1/2 have nothing in common with the realistic
(g,l) transition because the equality of chemical i potentials
has not been used at its derivation. Thus, the exact exponent
β = 1/3 can be defined by Eq. (1b) without any appeal to a
Taylor series, at least along the l branch of real fluids.

Obviously, that FT model combines the tasks considered
by the theoretically based and phenomenological crossover
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TABLE I. Critical exponents and amplitudes accepted by the Ising-like and vdW-like classes of universality for liquidus (ρ � ρc) states.

Theory Exponents Amplitudes, functions Interrelations

Scaling [2] α = α′ = 0.11, ρ = ρl(T ) A+
0 , Cv/kB

αA+
0 C0

B2
0

= 0.0581

β = 0.326 B0, ρ̄l(T̄ ) (αβ = 0.0359)

γ = γ ′ = 1.239 C+
0 ,χT ρlkBT

C+
0 D0

B1−δ
0

= 1.57

δ = 4.8 D0,P̄ (ρ̄,Tc) (βδ = 1.565)

FT model [6–8] α′ = 1/6,ρ = ρl(T ) A−
0 = A2/3

c /(3Zc)
α′A−

0 C0

B2
0

= α′β = 1/18

β = 1/3 B0 = A1/3
c ≈ 1/(2Zc) A+

0 ≈ B0/(3Zc)

γ ′ = 7/6 C0 = Zc
C0D0

B1−δ
0

= βδ′ = 3/2

δ = δ′ = 9/2 D0 = 3/(2ZcA
7/6
c )

approaches. The former uses the original vdW-EOS to trans-
form it into the scaling EOS by the shift of critical parameters
[2],

Tc/T 0
c − 1 = −ct/8, ρc/ρ

0
c − 1 ≈ ct/54,

Pc/P
0
c ≈ (

Zc/Z
0
c

)(
1 − 46ct/432 − c2

t /432
)
, (2)

where the estimate of the third individual coefficient ct (Zc)
is based on two phenomenological assumptions. The first one
is that far away from Tc the T -dependent CXC diameters of
crossover and classical EOSs coincide in the (T/T 0

c ,ρ/ρ0
c )

plane (see Fig. 2 in [2]). The second one is that the actual
critical point is located below the mean-field critical point
but on the same classical vapor-pressure curve P 0

σ (T ) (see
Fig. 3 in [2]). The similar distinctive feature of the FT model
is the proven existence of two different reduced slopes: Ac =
(Tc/Pc)(dPσ /dT )c (actual) and A0

c = (Tc/Pc)(dP 0
σ /dT )c = 4

(classical) at the same actual value of Zc (see Fig. 7 below).
It was demonstrated by the FT model that the both slopes
generate [6] two alternative sets of critical coefficients:

a0
c = 3Pc/ρ

2
c ; b0

c = 1/3ρc; c0
c = 1 − Zc/Z

0
c , (3)

ac = Pc(Ac − 1)/ρ2
c ; bc = (Ac − 2)/[2ρc(Ac − 1)];

cc = 1 − ZcA
2
c/[2(Ac − 1)], (4)

related to the asymmetric behavior of l and g branches,
respectively, at the same critical point.

The acceptable correspondence of the phenomenological
predictions obtained by the FT model with the well-established
results of asymptotic scaling theory [2] in a dense l phase
make the further investigation of an asymmetric g phase and
of its close one-phase vicinity to be very interesting. The
evident indicator of such asymmetry may be the shape of
rectilinear CXC diameter and its possible local singularity,
which remains a widely debatable problem [9–28]. There are
the certain substances in which CXC diameter is strongly
curved just to the side of the g phase and, maybe, is singular.
This discrepancy with the classical rectilinear shape has
been discussed recently by Wang and Anisimov [13] in the
framework of complete-scaling methodology developed by
Fisher et al. [14].

An attempt to avoid the subtle (for real fluids) singularity
of diameter with the exponent (1 − α) adopted for the CXC of
continuous systems on the base of decorated lattice-gas models

has been made in Sec. II. Two phenomenological limiting GFA
models are proposed:

(1) regular GFA(r) model with the still rectilinear diameter
taking into account the objective experimental errors of CXC
data implied especially in the g phase near the critical point;

(2) singular GFA(s) model with the most singular diameter
and the admissible divergence of its derivative with the
exponent (−2/3 ≈ −2β).

Both GFA models contain the well-known Guggenheim-
Riedel approximation usable in the principle of corresponding
states [29]. It is applicable to the global description of the
entire temperature range for the saturated-liquid density. The
alternative examples of a singular diameter (observed in the
fluid metals Rb and Cs) as well as of a rectilinear diameter
(confirmed experimentally for C2H6 and CO2) have been
reanalyzed in Secs. III and IV to compare the GFA models
proposed here with the scaling treatment of local singularity in
a CXC diameter. It is verified that the account of its rectilinear
contribution is the necessary step at the description of global
CXC properties, while the singular term with the (1 − α)
exponent becomes irrelevant away from the critical point.

It should be stressed that a solution of the crossover problem
proposed by the FT model,

Tc

T 0
c

= 27A2
c (Ac − 2)

32(Ac − 1)3
,

ρc

ρ0
c

= 3(Ac − 2)

2(Ac − 1)
,

(5)
Pc

P 0
c

= 27(Ac − 2)2

4(Ac − 1)3
,

Zc

Z0
c

= 16(Ac − 1)

3A2
c

,

looks similar to that expressed by Eq. (2), only formally.
The fictive mean-field stable critical point considered in [2]
at (Z0

c ,A
0
c) is absent. The classical denotations of critical

parameters in Eq. (5) are related to the predicted unstable
critical point of the FT model. The respective nonclassical
pseudospinodal starts at the actual critical point and goes up
to this point in the (P,T) plane. It is completely located at the
gaslike (ρ � ρc) densities (Sec. V) of a supercritical region
(T � Tc).

II. TWO TRENDS OF (g,l) ASYMMETRY IN
THE RECTILINEAR CXC DIAMETER

The empirical law of rectilinear diameter formulated long
ago by Cailletet and Matthias [1] for two branches, ρg(T̄ ) and
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ρl(T̄ ), of CXC, where T̄ = 1 − T/Tc,

ρ∗
d ≡ (ρg + ρl)/2ρc = 1 + D1T̄ , (6)

is at variance with the perfect asymptotic symmetry of the
lattice gas [2]:

ρ̄i ≡ ρi/ρc − 1 = ±B0T̄
β, (7a)

ρ∗
d = 1, (7b)

where i = l or g, respectively, for the homophase order pa-
rameters ρ̄i . The equality for the heterophase order parameter
	ρ̄ which coincides with that for its homophase counterpart
ρ̄l in orthobaric liquid from Eq. (7a) describes an asymptotic
symmetry:

	ρ̄ ≡ (ρl − ρg)/2ρc = B0T̄
β + · · · . (8)

The additional important equality for the above difference
of CXC densities 	ρ̄ has to be fulfilled to achieve the
consistency with the thermodynamic Clapeyron’s equation.
It is expressed here in terms of the reduced slope taken along
a measurable vapor-pressure curve, Aσ = (T/Pσ )(dPσ /dT ),
and the compressibility factor, Zl = Pσ/(ρlkBT ), of ortho-
baric liquid,

	ρ̄ = (sg − sl)ρg

2kBAσZlρc

, (9)

where si is the orthobaric specific entropy determined per
particle (per mole, per unit of mass). At the actual critical
point (Pc, ρc, Tc) of a fluid one obtains the only asymptotic
trend [6–8],

	ρ̄ = 	s̄/(AcZc)	ρ̄,	s̄→0, (10)

where the appropriate definition of the heterophase disorder
parameter has been introduced:

x ≡ 	s̄ = (sg − sl)/2kB. (11)

This quantity must have the same type of asymptotic behavior
as the heterophase order parameter 	ρ̄ from Eq. (8) if the
scaling assumptions are consistent and adequate in the (T̄ ,ρ̄)
plane.

The spectacular nonanalyticity and asymptotic symmetry
(but found [6–8] in the (x,ρ̄) plane at x � 0.5) for the real fluids
(Ar, C2H4, CO2, H2O) as well as for the original vdW-EOS is
shown in Fig. 1. The coefficient from Eq. (10) for this model
of a fluid is 1/(A0

cZ
0
c ) = 2/3, while the respective disorder

parameter becomes classical, x0 ≡ 	s̄0. Nevertheless, the
vdW model demonstrates the nearly perfect CXC symmetry
with zero slope of “diameter” if the 	s̄ quantity is used instead
of variable T̄ . The asymptotic non-mean-field behavior of both
global CXC branches implied by the common curvilinear
(with an inflection point at x ≈ 2) but regular diameter:
[ρ∗

d (x)]x→0 → 1, [dρ∗
d /dx]x→0 → 0 becomes an explainable

result. The observation of its S shape in a combination with the
obvious nonanalyticity of both (intercrossing) CXC branches
following from Fig. 1 gives a possibility to formulate here
the hypothesis about the existence of a wide vdW-like class
of GFA including the critical universality for real fluids. For
confirmation (or rejection) of it one should not distort the
original vdW EOS by the mean-field analytic interpretation as
well as apply the Wegner’s nonanalytic expansion.

FIG. 1. vdW-like universality and the GFA of real substances.
Comparison of the reduced CXC-densities ρl,g/ρc for real substances:
Ar (triangles), C2H4 (squares), CO2 (diamonds), H2O (circles) with
the vdW-Maxwell-Gibbs model’s predictions (solid line) based on the
disorder parameter x [6]. The characteristic S-shape of CXC diameter
(ρl + ρg)/2ρc and its regular (tangential to the critical isochore ρc)
local near-critical behavior become evident at the replacement of
temperature T̄ = 1 − T/Tc by the heterophase disorder parameter x.

The most striking feature of the above hypothesis illu-
minated by the FT model and by the respective FT-EOS
is the consistency of the most accurate experimental CXC
data [ρg(T ), ρl(T ), Pσ (T )] for a variety of real fluids,
simultaneously, with two different ratios of nonclassical,
x(T )/Aσ (T ), and classical, x0(T )/A0

σ (T ), parameters in the
framework of Clapeyron’s Eq. (9). The existence of two
different functionals [6–8] Pσ [ρg(T )] and P 0

σ [ρg(T )/ρl(T )]
for any CXC was proven. Its asymptotic form expressed by
Eq. (10) demonstrates two alternative near-critical trends either
in the disorder parameter 	s̄ or in the reduced slope Aσ .

The combination based on the known Guggenheim-Riedel
approximation [29],

ρ̄i = ±B0T̄
1/3 + D1T̄ , (12)

is often usable for the global description of CXC with the
restriction B0 = A

1/3
c . One of the goals below is to demonstrate

the shortcomings of the conventional local approach at the
global representation of measurable CXC data. The known
problem is that both contributions of the singular and regular
ρ∗

d behavior cannot be unambiguously separated and must have
opposite signs. An attempt to avoid the use of the (1 − α) term
has been performed below for the vdW-like systems.

The most detailed study of local ρ∗
d singularity was

performed by Wang and Anisimov [13] in the framework of the
Fisher’s complete scaling [14]. One may note an appearance
of the additional singular terms in a combination with the same
Eq. (8):

ρ∗
d = 1 + D0T̄

1−α + D1T̄ + D2T̄
2β, (13)

ρ̄i = ±B0T̄
β + D0T̄

1−α + D1T̄ + D2T̄
2β. (14)

Let us remember that the concept of local ρ∗
d singularity

divides, as a matter of fact, the Ising-like systems into
the certain subclasses of universality with the observable
curvilinear or rectilinear variants of local ρ∗

d behavior. Wang
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and Anisimov [13] proposed the smart explanation of a
system-dependent distinction by the possible compensation
of nonanalytic contributions in Eqs. (13) and (14) when the
description by Eqs. (6), (8), and (12) becomes adequate. In
such a case, the signs of D1,D2 are mainly positive while
the sign of D0 is negative, the opposite of the suppositions
of authors [9,23], for example. The very small size of the D2

amplitude estimated by Hensel and co-workers [9] for liquid
metals in the much wider range of temperature 10−3 < T̄ <

10−1 needs also an explanation.
The FT model was described in full detail [6–8,15,16], so

we only include here its reduced predictive form obtained by
the elimination of dimensional FT coefficients:

π [ϕ(T )] = ϕ{A[1 + C(1 − ϕ)] − B[1 + C(1 − ϕ2)]}
A − Bϕ

,

(15)

where all T -dependent parameters and the universal coef-
ficients are well-defined in both of the coexisting phases
by the input CXC data. So the reduced pressure is π =
P (T )/Pσ (T ) � 1 at any chosen temperature in a one-phase
subcritical gas where the reduced density, ϕ = ρ(T )/ρl(T ),
must be less (ϕ � ϕσ ) than its CXC value, ϕσ = ρg(T )/ρl(T ).
The reduced parameters in a one-phase liquid are, respectively,
π = P (T )/P 0

σ (T ) � 1 and ϕ � 1. The universal coefficients
are positive:

A(T ) = ϕσ (1 + ϕσ )(Aσ − 1) > 0, (16)

B(T ) = ϕσ (Aσ − 2) > 0, (17)

C(T ) = (Aσ − 1)/ϕσ > 0. (18)

Any adjustable coefficients are absent because the classical
(but non-mean-field) bubble-point curve P 0

σ and its reduced
slope A0

σ from Eqs. (16)–(18) are also exactly determined
[15,16] by the FT-converting of input CXC data.

The distinction of reduced FT-EOS (15)–(18) from the
conventional variants of corresponding states principle [29]
is evident. The reduced parameters π,ϕ are determined here
by the entire CXC instead of a single critical point usable for
this aim in the standard methodology. One may consider such
a functional of the reduced density π [ϕ(T )] (15) depending
on the subcritical temperature as the corresponding isotherms
principle. The impressive GFA of Eqs. (15)–(18) is related
to the difference between the supposed classical bubble-point
curve P 0

σ (T ) in l phase and the measurable (input) dew-point
curve Pσ (T ) in g phase.

The dimensional form of FT-EOS [15,16] can be used to
estimate the global difference between the nonclassical and
classical trends in the CXC diameter:

dρd

dT
= − 1

2b2

db

dT
− Aσ

2bT (Aσ − 1)
+ 1

2b(Aσ − 1)2

T

Pσ

d2Pσ

dT 2
.

(19)

Both are determined by the existence of two alternative pairs
of coefficients, (b, Aσ ) and (b0,A0

σ ), respectively, for the same
input CXC data. From a physical viewpoint, such opportunity
is explainable by the significant distinction (asymmetry) in the
molecular behavior and structure of coexisting g and l phases.
This difference is expressed here by the effective T -dependent

sets of coefficients: (a, b, c, Aσ ) and (a0,b0,c0,A0
σ ). The

high predictive ability of Eqs. (15)–(18) in one-phase regions
has been confirmed earlier for the wide class of different
subcritical fluids (Ar, N2, CO2, NH3, H2O, . . . , hydrocarbons,
CH4, C2H2, C2H4, C2H6, . . . , alcohols, CH3OH, C2H5OH,
. . . , ionic liquids, liquid metals, Rb, Cs, . . . , etc.). The
stable and metastable properties of gas were predicted by the
nonclassical set of FT-EOS coefficients while those for liquid
were predicted by the classical set. Interesting consequences
of global asymmetry [8,15,16] are observable in the vicinity of
critical point where distinctions in the coexisting phases must
disappear in accordance with its classical description.

The necessary ingredients of both proposed phenomeno-
logical GFA models are

(1) the contribution of rectilinear diameter;
(2) the elimination of its asymptotic singularity with the

(1 − α) exponent.
We consider that the presence of the latter can be rigorously

confirmed only for the determinate models discussed earlier
while, within the experimental CXC uncertainties, it is simply
the plausible supposition. The objective difference in the
accuracy at the measurements [10] of orthobaric densities
ρg(T ) and ρl(T ) must be taken into account in the estimates
of asymptotic ρ∗

d singularity.
To compose the first phenomenological (regular) GFA(r)

model we propose to use Eqs. (6), (8), and (12) as its
consistent determinate background. It is convenient to fix
below the amplitude B0 the Riedel condition, B0 = A

1/3
c ,

and to adjust, then, the consistent value D1. The following
requirement seems natural if one takes into account the good
correspondence of the Guggenheim-Riedel Eq. (12) with a
positive sign in front of B0 to the experimental ρl(T ) data
for any substances. We propose the choice of D1 based on
the conjecture that the systematic (experimental) deviations
of densities, δl = |ρl/ρ

exp
l − 1| < δg = |ρg/ρ

exp
g − 1|, must

be, respectively, positive in l phase and negative in g phase
at any subcritical temperatures. This choice is mainly an
attempt to take into account the unavoidable phenomenon
of precondensation which increases the measured value of
ρ

exp
g (T ) [10], especially at the near-critical temperatures. The

crucial step to formulate the regular GFA(r) model is the
adjustment of two dimensionless parameters of shift, ε = δl,

and asymmetry, k = δg/δl, for the reasonable representation
of experimental CXC data:

ρ̄l = B0T̄
1/3 + D1T̄ − ερ

exp
l

/
ρc, (20)

ρ̄g = −B0T̄
1/3 + D1T̄ + kερexp

g

/
ρc, (21)

ρ∗
d = 1 + D1T̄ + ε

(
kρexp

g − ρ
exp
l

)/
2ρc, (22)

	ρ̄ = BoT̄
1/3 − ε

(
kρexp

g + ρ
exp
l

)/
2ρc. (23)

The assumptive inconsistency between the left and right sides
at the critical point itself T̄ = 0 imitates here the existence
of actual uncertainty δc = ρc/ρ

exp
c − 1 at the determination of

the ρc value by the rule of rectilinear diameter [13]. One has to
ignore this realistic uncertainty only in the asymptotic range
T̄ � 10−3 by the assumption ε = k = 0 in Eqs. (20)–(23)
(Sec. IV).

The second phenomenological (singular) GFA(s) model has
the same determinate background formed by Eqs. (6), (8), (12)
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exclusively if the special conditions of symmetry, Dl
1 = D

g

1 =
D1 and B0 = 2D1, for amplitudes are fulfilled in the following
system of equalities:

ρ̄l = Dl
1(T̄ + 2T̄ 1/3), (24)

ρ̄g = D
g

1 (T̄ − 2T̄ 1/3), (25)

ρ∗
d = 1 + (

Dl
1 + D

g

1

)
T̄ /2 + (

Dl
1 − D

g

1

)
T̄ 1/3, (26)

	ρ̄ = (
Dl

1 − D
g

1

)
T̄ /2 + (

Dl
1 + D

g

1 )T̄ 1/3. (27)

These conditions can be approximately satisfied for the
substances with the actual rectilinear diameter such as CO2

or C2H6 (Sec. IV). The noticeable difference of GFA(s)
model even from the concept of local ρ∗

d singularity in the
complete scaling described by Eqs. (8), (13), and (14) is quite
essential. Indeed, the derivative dρ∗

d /dT̄ from Eq. (26) has the
much stronger (limiting) divergence than that following from
Eq. (13). Such singularity may be masked in the substances
with the rectilinear diameter, where Dl

1 ≈ D
g

1 and becomes
crucial if Dl

1 is larger than D
g

1 .

III. UNIVERSALITY OF COEXISTENCE CURVE
IN FLUID METALS

Once the CXC data [Pσ (T ), ρg(T ), ρl(T )] are measured one
may investigate to what extent the shape of the T dependencies
(1) matches the expected asymptotic near-critical behavior and
(2) is the thermodynamically consistent. Unfortunately, the
widespread approach is the study of first problem mainly in
the (T,ρ) plane while the second one remains “shadowed.”
The presumed difference between the criticality of molecular
and ionic fluids [18,19] requires for its confirmation just
the consideration of both problems. However, the respective
vapor-pressure data Pσ (T ) in the near-critical region are rather
scarce. The situation with respect to a possible transformation
of the critical exponents into the so-called “near-mean-field”
ones for ionic fluids remains inconclusive.

In this context, an application of GFA models can provide
the additional arguments pro et contra of the above distinction
in the criticality of molecular and ionic fluids. One may note
that the impressive curvature of the CXC diameter found in Rb
and Cs [9] has been observed [13] also experimentally in such
molecular fluids as SF6 [20] and C2F3Cl3 [21]. At the same
time, the other authors [22] have considered the respective
scaling treatment of measured near-critical CXC data for SF6

in [20] as debatable. We do not also dwell any further on the
issue of analytic criticality supposed [29] in the fluid metals.
There are two reasons for such caution:

(1) authors [9] claimed the usage of Pσ (T ) data for Rb
and Cs but neither reported these values nor represented the
orthobaric densities ρg,ρl at the equal temperatures;

(2) we consider the nonanalytic exponent, β = 1/3, in
Eq. (12) determined for both CXC branches far away from the
critical point as the fundamental universal parameter of any
vdW-like fluids including ones with the relatively long-range
interactions.

Hence, it is impossible to use directly the FT model’s
treatment for a fluid metal. It needs the input Pσ (T ) data
too. Another consequence is that the alternative mean-field’s

variant of CXC description with the exponent β0 = 1/2
supposed for all alkali fluid metals in the framework of
thermodynamic similarity [29] is omitted in the present work
(see also our earlier work [24] on the problem of Rb and Cs)
as highly modelistic. The aim below is to demonstrate the
crucial role of rectilinear ρ∗

d diameter even in such fluids with
a striking CXC asymmetry as fluid metals.

There were many interesting attempts [2,13,17–19,
22,25–28] to connect the system-dependent amplitudes
(B0,D0,D1,D2) with the different characteristics of molecular
structure, polarizability, electric conductivity, fictitious diam-
eter, and the well depth of effective interactions. The use of
measurable critical quantities (Ac,Zc) and other parameters
of thermodynamic similarity such as the Pitzer’s acentric
factor [28] based on the vapor-pressure Pσ (T ) data is the
appropriate “bridge” in the search for this connection. It is
also desirable to search for the above correlations within the
common universality classes similar to Ising-like or vdW-like
ones summarized in Table I.

Thus, the correlation of two asymptotic amplitudes, B0 =
A

1/3
c , adopted in the concept of both GFA models has to

be conjugated with the universal set of exponents (α = 1/6,

β = 1/3, γ = 7/6, δ = 9/2), which are close to the best
scaling estimates [2,13] (α = 0.11, β = 0.326, γ = 1.239,

δ = 4.8) accepted for Ising-like systems. Then one may
consider the amplitude D2 (its role is discussed in detail
by authors [13] for molecular substances) as well as the
amplitude D1 from the remaining ones (D0,D1) (taking into
account the possible correlation D1 = B0 − 1 in Eq. (12) [29])
as adjustable parameters. Since these amplitudes (D0,D1)
in Eqs. (13) and (14) are strongly correlated [13] and,
additionally, may have the different signs, it seems preferable,
first of all, to choose the positive amplitude D1 of a linear ρ∗

d

contribution. The results for Cs are represented in Table II and
shown in Fig. 2 to demonstrate the GFA(r) methodology in a
step-by-step manner. Its main advantage is the simplicity and
the applicability to the entire range of subcritical temperatures.
Its constraint is an a priori supposed uncertainty at the
determination of actual critical density ρc as it is shown in
Fig. 6 for ethane. The trial and error method used below
contains the following steps.

Hensel and co-workers [9] have fitted on exclusively
the nonanalytic amplitudes B0,D0 (Table II) by the scaling
approximation but have not reported just the contribution
D1 of rectilinear diameter. Besides, the so-called “confluent
singularity” [2] with the exponent (1 − α + 	) was supposed.
Our attempt to use the above-mentioned approximation D1 =
B0 − 1 [29] far enough from the critical point (without the
confluent contribution) was unsuccessful. Then we have fixed
the amplitude B0 = 2.25 [9] and omitted the singular contri-
bution with the exponent (1 − α) to study the applicability of
original approximation [29] developed by Guggenheim and
Riedel for l branch:

ρ̄l = 0,85T̄ + (0,53 + 0,2Ac) T̄ 1/3, (28)

where Ac = B3
0 = 11,39. One may note that the interpre-

tation of Eq. (28) in terms of Eq. (24) [GFA(s) model]
at the assumption Dl

1 = 0.85 gives the significantly differ-
ent estimates, Ac = 5.85 (close to the argon’s one) and
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TABLE II. Critical parameters, exponents, and CXC amplitudes used by Hensel and co-workers [9] to fit the experimental data for Cs and
Rb in comparison with the reanalyzed description based on the GFA models (see Figs. 2–5).

Cesium [9] Tc = 1924 K; Pc = 9.25 MPa; ρc = 0.379 g/cm3; Zc = 0.2028
CXC-fit [9] Bo = 2.25; Do = 2.1; α = 0.13; β = 0.355
GFA(r) Bo = 2.25; D1 = 2.6; ε = 0.01; k = 7; Ac = 11.39
GFA(s) [24] Bo = 2.167; D1 = 1.0835; D1

l = 1.205; D1
g = 0.962

FT(Tc) ac
o = 3412.6 J dm3/mol2; bc

o = 0.1169 dm3/mol; 1 − cc
o = 0.54075

Rubidium [9] Tc = 2017 K; Pc = 12.45 MPa; ρc = 0.292 g/cm3; Zc = 0.2173
CXC fit [9] Bo = 2.45; Do = 2.3; α = 0.14; β = 0.360
GFA(s) [24] Bo = 2.242; D1 = 1.121; D1

l = 1.316; D1
g = 0.926

FT(Tc) ac
o = 3200 J dm3/mol2; bc

o = 0.097 57 dm3/mol; 1 − cc
o = 0.57947

B0 = A
1/3
c = 1.802, when the correlation [29], D1 = B0 − 1,

is approximately fulfilled. However, Eq. (28) itself and its
symmetric counterparts [Eqs. (24)–(27)] obtained from the
GFA(s) model at the condition Dl

1 = D
g

1 = D1 = 0.85 do not
provide the satisfactory description of CXC data [9] for Cs.

The described unpromising results forced us, first, to use
the correlation (12) with the same fixed B0 = 2.25 value from
[9] but with the free amplitude parameter D1 of rectilinear
contribution as the background for the GFA(r) model. The
chosen value D1 = 2.6 (Table II) guarantees just the necessary
shape of an outer curve shown in Fig. 2 by the dotted line. It is
obvious that the standard correlation [29], D1 = B0 − 1, fails
now completely for the highly asymmetric shape of CXC.

At the same time the parameters of shift assumed here,
ε = 0,01, and asymmetry, k = 7 (Table II) provide excellent
representation of both (g,l) branches and the ρ∗

d diameter
(Fig. 2) up to the immediate neighborhood of the critical
point by the GFA(r) Eqs. (20)–(23).The ε parameter was
chosen as the maximum relative error at the measurements of
orthobaric densities reported by authors [9]. The comparatively
large k parameter reflects, presumably, the great volume

FIG. 2. Reanalyzed by the GFA(r) model (Table II) CXC data for
Cs [9] with the omission of nonanalytic (1 − α) contribution usable
at the scaling treatment of the near-critical experiment; large black
circles, experimental points [9]; small white circles, quasiexperimen-
tal points predicted at the same subcritical temperatures by Eqs. (20)
and (21); small black circles, ρ∗

d diameter’s points predicted as a half
sum of the actual [9] and quasiexperimental (present work) points;
the dotted line represents the preliminary fit by Eq. (12) (see text);
the dashed line is the extrapolated singular ρ∗

d diameter [9], which is
shown for comparison with the GFA(r) model’s results.

change observable in any ionic fluids. Let us recall, once
more, that the incorporation of these adjustable parameters
on the right-hand sides (rhs) of Eqs. (20)–(23) must imitate an
unmeasurable but realistic redistribution of orthobaric masses
between the above volumes implied by the phenomenon of
pre-condensation.

The essential feature of both GFA models is an absence
of the singular 1 − α term and the presence of linear term
in the CXC diameter. From our viewpoint, the similarity of
chosen values for the main subcritical amplitude B0 (2.25
and 2.167 for Cs in Table II; see also Fig. 3) confirms the
physical adequacy of both GFA models. The sharp discrepancy
between the respective D1 amplitudes (2.6 and 1.0835 for Cs in
Table II) gives a possibility to represent the observable global
asymmetry for any substance, including the fluid metals in term
either (ε,k) parameters or (Dl

1,D
g

1 ) amplitudes. In this rather
principled meaning, the vdW-like universality is wider than the
Ising-like universality in which a “near-mean-field” concept of
criticality is often necessary for the liquid metals [29].

The predicted GFA(r)-model values are not represented in
Table II for Rb because the fitted amplitude B0 = 2.45 [9]
(Ac = B3

0 = 14.71) seems strongly overestimated. To obtain

FIG. 3. Comparison (left scale) of the extrapolated (presumably,
with the existence of a Wegner-type correction) CXC diameter for
Cs [9] (dashed line), with its GFA(r) variant (solid line) and the
GFA(s) variant (dotted line); symbols are the quasiexperimental
points (triangles) determined as a half sum for the actual measured ρi

values (i = l or g) [9] and the GFA(r) values predicted for the opposite
side of CXC at the same temperature. Comparison of the respective
heterophase order parameters (right scale); the quasiexperimental
points are shown here by the squares.
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FIG. 4. Reanalysis by the GFA(s) model (Table II) CXC data
for Rb [9] with the omission of the nonanalytic (1 − α) contribution
usable at the scaling treatment of near-critical experiment. Symbols
and lines are the same as those shown in Fig. 2.

the more realistic estimate of critical slope Ac (the Riedel
factor of thermodynamic similarity) we have used the GFA(s)
model as is shown in Fig. 4 and represented in Table II.
Its preferableness far away from the critical point at T̄ �
5 × 10−2 is obvious while the extrapolated singular behavior of
ρg branch [9] at B0 = 2.45; β = 0.360 looks here anomalous.
Taking into account the thermodynamic similarity of Rb and
Cs as well as the closeness of critical GFA(s) amplitudes
following from Table II one may consider the respective
near-critical values of density ρg(T ) to be reliable in spite
of the some systematic deviations from experimental data [9].

The hypothesis of vdW-like universality and the phe-
nomenological GFA models provide the unique possibility
to test the consistency of any experimental CXC data by the
reconstruction [15,16] of a dew point’s functional Pσ [ρg(T )]
(see Fig. 5) calculated at the actual critical temperature Tc

FIG. 5. Vapor-pressure curves (dew point’s functionals of the
orthobaric vapor densities Pσ [ρg(T )]) predicted (see text) for Cs
by the GFA(r) model (solid line) and by the GFA(s) model (dotted
line), as well as for Rb by the GFA(s) model (dashed line).
The quasiexperimental Pσ [ρg(T )] points shown by symbols (small
diamonds for Cs and large triangles for Rb) are calculated by the
same Eqs. (2) and (29) on the basis of the orthobaric vapor densities
measured by Hensel et al. [9]. The respective critical points are shown
by the open symbols.

with the classical FT coefficients from Eq. (3):

Pσ [ρg(T )] = ρgRTc

(
1 − c0

c

)
1 − b0

cρg

− a0
c ρ

2
g . (29)

This result demonstrates explicitly the special role of a
classical critical isotherm as the envelope in the (P ,ρ) plane of
the whole family of subcritical isotherms starting in the one-
phase classical liquid. Hence, in such context the conventional
concept of unified EOS fails because one cannot apply to
such a family the standard Maxwell’s rule and to determine,
simultaneously, the total set of binodal CXC data [Pσ (T ),
ρg(T ), ρl(T )]. Only the location of the critical point and one
of the T dependences [ρg(T ) or Pσ (T )] has to be known to
reconstruct the second one by Eq. (29).

The dew point’s trend has the bubble point’s trend coun-
terpart [15,16] generated by the nonclassical T -dependent
FT-EOS coefficients taken along the nonclassical critical
isobar:

Pc = ρlRT (1 − c)

1 − bρl

− aρ2
l . (30)

It is presumably the envelope in the (T,ρ) plane of the
whole family of subcritical isobars starting in the one-phase
nonclassical gas. One must know [30] the above total set
of CXC data to test this correlation. The striking GFA
manifestation, as well as the principal distinction between
the critical isotherm and the critical isobar, become obvious
in the framework of the FT model. Let us remember that
both critical paths above are considered as strong ones in the
conventional terminology of criticality proposed by Griffiths
and Wheeler. On the other hand, the FT model predicts the
existence of two special weak directions of Pσ (T ) and P 0

σ (T )
curves (see below, Fig. 7) while this terminology postulates
the only Pσ (T ) direction that is singled out at T � Tc and
T > Tc.

It is seen from Fig. 5 that the quasiexperimental vapor
pressures (shown by symbols) calculated by Eq. (29) for Rb
and Cs are located relatively close to ones shown by the smooth
curves and based on the ρg(T ) values predicted by the GFA
models. One may notice the significantly less curvature of both
Pσ (T ) functions predicted by the GFA(s) model in comparison
with that for Cs based on the GFA(r) predictions. Just the
latter model will be used for the well-studied substances CO2

and C2H6 in Sec. IV. At the same time, the GFA(s) model
provides the reliable prediction of quasiexperimental pressures
for Rb at lower temperatures, T � 1800 K. We consider that
the experimental ρg(T ) points [9] for Rb in this range need
the correction at which the GFA(r) model should become
applicable to the entire temperature range 1450 � T � Tc. In
any case, the adequate description of the experimental ρg(T )
data by the GFA model is a guarantee of a reliable prediction of
the Pσ [ρg(T )] data by the FT model’s Eq. (29). The verification
of Eq. (30) is the complicated task for Rb and Cs since the set
of CXC data reported by Hensel and co-workers [9] is not
complete.
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IV. THERMODYNAMIC CONSISTENCY OF
ORTHOBARIC DENSITIES WITH THE VAPOR

PRESSURE FOR ETHANE AND CARBON DIOXIDE

The study of C2H6 performed long ago [10] and the similar,
even earlier, study of CO2 [31] remain until now the standard
of careful experimental investigation in the region of (v,l)
transition including the near-critical vicinity. The high quality
of simultaneous measurements of densities [ρg(T ),ρl(T )] and
pressure Pσ (T ) provides the reliable basis to test below the
predictive efficiency of the FT model. It was used in Sec. III for
Rb and Cs at the reconstruction of the vapor-pressure curves.
Another aim is here to estimate the artificial consequences
originated by the several widespread methodologies of CXC
fit used, in particular, by the authors of Refs. [10,31].

The noticeable one is the inconsistent combination of
the rectilinear-diameter rule (6) and the heterophase order
parameter (8) with the (ill-founded in the critical region)
extrapolated low-temperature Clapeyron-Clausius equation,

lg Pσ = −875.186/T + 4.73909, (31)

chosen for CO2 by Michels and coauthors [31]. As a result, the
formal possibility to fit reasonably (see the respective column
in Table IV) on the measured vapor pressure by Eq. (31) in
the limited range of temperature considered in [31] may give
the serious discrepancies in the value of the Riedel factor
Ac. In particular, its approximate estimate by two calculated
pressures (critical and the closest to it) provides the unrealistic
value Ac = 18.1, while the experimental slope [31] for the
same temperatures (304.19 K and 304.1 K) is Ac = 8.196.

Since the halves of orthobaric sum ρ∗
d and difference 	ρ̄

may be transformed into the empirical variant (12) for the
homophase order parameters ρ̄i one can apply the same
amplitudes B0, D1 from Table III to the description of both
CXC branches, separately. However, even the more realistic
critical slope, Ac = B3

0 ≈ 7.55, in the accepted combination
with the other empirical slope, D1 = B0 − 1 ≈ 0.9618, do not
provide, in this case, the reasonable accuracy of description.
The direct application of amplitudes taken from [31] gives the
large systematic deviations (Table IV) at the description of
orthobaric densities for CO2.

To improve the situation we have developed the purely
predictive variant of GFA(r) model based on the only input
parameter Ac = 7.044 taken from the very accurate CXC data
[32] and verified [6] in the framework of the FT model. The
relevant amplitudes and GFA(r) parameters are represented in
Table III. We have used the values of densities ρ̄i previously

predicted by Eq. (12) instead of the unsmoothed experimental
values ρ̄

exp
i [31] in Eqs. (20)–(23). However, the measured

CXC data were also utilized to predict the vapor pressure
Pσ (T ) by Eq. (29). In spite of the small systematic deviations
from the experimental data [31], the FT methodology of the
Pσ [ρg(T )] functional provides the excellent level of predictive
ability. The main condition for such a promising result is the
reliable description of the input ρg(T ) data. The GFA(r) model
corresponds (Table IV) to this requirement, contrary to the
original CXC fit [31].

Sengers and co-workers [33] used the same experimental
basis [31] at the development of crossover model from singular
critical to regular classical behavior of CO2 fluid in the
relatively narrow ranges of temperature (298 K � T � Tc)
and density (5.57 mol/dm3 � ρ � 13.64 mol/dm3). It should
be noted that both unified nonanalytic and analytic types of
EOS (such as those developed for C2H6, respectively, in [23]
and [34]) do not provide the agreement with the accurate
volumetric measurements of liquid [10] at the near-critical
(or lower) temperatures and at the higher densities [23]. In
contrast, the classical FT model gives the reliable prediction
of liquids up to the critical temperature and at the highest
experimental densities.

In the frameworks of GFA models both (nonanalytic and
regular) contributions in Eq. (12) are essential everywhere
along the entire CXC. It follows from Table IV that the
GFA(r) description should be replaced by the asymptotic (at
ε = k = 0) singular Eq. (12) for CO2 only in the immediate
vicinity (303 K� T �304.19 K) of Tc. In the much wider range
of temperatures the thermodynamically consistent predictions
by the FT/GFA(r) model are rather accurate, at least, for the
engineering practice. For the above range any signs of the
singularity with the exponent (1 − α) are not observable in the
described approach.

Douslin and Harrison [10] reported the empirical (with the
nonuniversal exponent β) CXC fit in terms of two asymmetric
i variants of Eq. (12):

ρ̄i = ±B0T̄
β + DiT̄ . (32)

The results of such treatment [similar to that used in the
GFA(s) model] are represented in Table III and shown in Fig. 6.
In spite of the consistent approach to the CXC fit based in
[10], simultaneously, on the careful analysis of ρ∗

d (T ) and
Aσ (T ) behavior, one may note the same evident shortcoming
existing in the CXC fit for CO2 (see Table IV) proposed by
Michels et al. [31]. This is an unsatisfactory description of the

TABLE III. Critical parameters, exponents and CXC amplitudes used by Michels et al. for CO2 [31] and by Douslin and Harrison for
C2H6 [10] in comparison with the reanalyzed description based on the GFA(r) model (see Figs. 6 and 7).

CO2 [31] Tc = 304.19 K; Pc = 7.381 MPa; ρc = 10.6136 g/cm3; Zc = 0.275
CXC fit [31] Bo = 2.0754; D1 = 0.9618; β = 0.357; Ac = 6.625
GFA(r) Bo = 1.9169; D1 = 0.9169; ε = 0.01; k = 4; Ac = 7.044 [32]
FT (TC) [6] ac

o = 196.58 J dm3/mol2; bc
o = 0.03141 dm3/mol; 1 − cc

o = 0.7333
C2H6 [10] Tc = 305.33 K; Pc = 4.8717 MPa; ρc = 6.87 mol/dm3; Zc = 0.2793
CXC fit [10] Bo = 1.7224; D1 = 0.7889; Dl = 0.7566; Dg = 0.8222; β = 0.35
GFA(r) Bo = 1.8566; D1 = 0.8933; ε = 0.015; k = 2; Ac = 6.4 [10]
FT (TC) [8] ac

o = 309.66 J dm3/mol2; bc
o = 0.048 52 dm3/mol; 1 − cc

o = 0.7449
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TABLE IV. Comparison of CXC fit for CO2 [31] with the experimental orthobaric data and the prediction obtained by the FT/GFA(r) model
(see text).

T, K δρl (%) [31] δρl
F T (%) δρg (%) [31] δρg

F T (%) δPσ (%) Eq. (29) δPσ
F T (%) [31] δPσ

F T (%)

276.003 1.33 − 0.92 − 11.8 − 0.75 − 0.01 − 1.04 − 1.63
283.972 1.12 − 0.69 − 7.13 − 0.11 0.33 − 1.20 − 1.28
293.024 0.77 − 0.37 − 3.63 0.17 0.48 − 0.98 − 0.88
298.220 0.59 − 0.01 − 1.83 0.68 0.44 − 0.71 − 0.40
298.448 0.66 0.09 − 2.04 0.41 0.43 − 0.56 − 0.37
301.202 0.46 0.29 − 1.25 0.75 0.19 − 0.37 − 0.12
303.079 0.92 1.10 − 0.54 1.34 0.04 − 0.13 0.14
303.559 0.34 0.62 0.45 − 1.61 0.01 − 0.18 − 0.45
304.163 − 1.82 1.05 1.27 0.04 − 0.09 − 0.02 − 0.02
304.190 0 0 0 0 0 0 0

vapor density at the lower temperatures (Fig. 6). The relative
deviations δρg for C2H6 have the same sign as those for CO2

and become here systematic.
Since the g branch provides the main information at the

calculation of both (nonclassical Pσ [ρg(T )] and classical
P 0

σ [ρg(T )/ρl(T )]) FT functionals, we have used for C2H6 the
same universal GFA(r) methodology developed above for CO2.
The crucial step is the choice of Ac = 6.4 (the asymptotic
value predicted by the analytic Cox’s equation for Pσ (T ) [10])
verified before [8] by the FT model. The amplitudes B0,D1

and the GFA(r) parameters (ε,k) given in Table III provide the
reliable description of g branch as shown in Fig. 6.

The most intriguing result of the FT model is, of course, a
prediction of two close but separate branches, Pσ (T ) � P 0

σ (T )
(Fig. 7), which are represented, respectively, by the dew
point’s Pσ [ρg(T )] functional [Eq. (29)] and by the bubble
point’s P 0

σ [ρg(T )/ρl(T )] functional. This distinction for a pure
substance bears the strong resemblance with the well-known
shape of the (P,T) projection for a mixture of constant

FIG. 6. Trends of the percentage differences (left scale for δρi)
between the experimental CXC densities ρi (i = l or g) obtained by
Douslin and Harrison [10] (zero axis) for ethane and the values of
CXC fit [10] (dotted lines) in comparison with those calculated by
the GFA(r) model (solid lines). Two variants of Aσ (T ) approximation
(right scale for Aσ ) by the analytic Cox’s equation (triangles) [10] and
nonanalytic Goodwin’s equation (diamonds) [10] are shown too (thin
lines). Both demonstrate the Aσ minimum at Tm ≈ 298 K observable
also in many other substances [6–8] near the critical points.

composition. The nonanalytic asymptotic crossing of the
above branches exists at the critical point itself. It corresponds
to the critical crossover from the classical l branch with its
larger bubble point’s pressure P 0

σ (T ) to the nonclassical g
branch with its dew-point’s pressure Pσ (T ). Only the latter
is experimentally detectable while the former is the internal
pressure of l phase at which the first stable bubbles can be
formed. The latent (classical) heat r0(T ) of such onset of the
vaporization is the slightly less than the nonclassical heat r(T )
of condensation following from the differential Clapeyron’s
Eq. (9).

The GFA phenomenology rejects the classical concept of
unified EOS. Such an approach may be important to develop
the nonclassical nucleation theory [30] in which the dynamics
of vaporization and condensation is essentially different. It
should be noted that the scaling analysis of an asymptotic
supercritical behavior of mixtures at the infinite dilution

FIG. 7. The quantitative prediction by the FT model of the
(v,l)-interphase region located between the measurable dew point’s
(solid line) Pσ [ρg(T )] curve and the supposed bubble point’s (dashed
line) Pσ

o[ρg(T )/ρl(T )] curve (see text) and comparison with the
experimental vapor-pressure data (diamonds) for ethane [10]. The
arbitrary chosen subcritical isotherm and isobar (thin dotted lines with
arrows) demonstrate (presumably) vaporization of classical liquid
and condensation of nonclassical (essentially inhomogeneous) vapor,
respectively (see, for comparison, Fig. 3 in [2]).
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reported by Levelt Sengers [35] confirms just the described
beaked shape (Fig. 7) of (P,T) projection in the very vicinity
of a solvent’s critical point. The reliable predictive ability
(see Table III for CO2) of FT functional Pσ [ρg(T )] follows
also from Fig. 7. The GFA(r) model provided the input ρg(T )
data for C2H6 and the deviations between the predicted and
experimental [10] Pσ values were less than 0.5 bar at the
lowest temperature T = 248.15 K. One may note that the
distinction in the critical slope Ac of nonanalytic (6.5) and
analytic (6.4) variants of Pσ (T ) description discussed in [10] is
negligible.

V. THERMODYNAMIC NATURE OF DISTINCTIONS
BETWEEN VDW-LIKE AND ISING-LIKE CLASSES

OF CRITICAL UNIVERSALITY

The origin of nonanalyticity in real fluids is especially
obvious from Figs. 1 and 7. The split of single measurable
vapor-pressure curve Pσ (T ) onto two branches [Pσ (T ) itself
and P 0

σ (T )] gives rise to the existence of a third interphase
located at any subcritical temperature between the stable g- and
l-bulk phases. This term is not equivalent of the standard one
(interface) in which the equality of bulk pressures, Pg = Pl =
Pσ , is supposed while the imbalance with the model tangential
pressure Pxy(z) exists. It determines the surface tension γσ (T )
by the integrable functional [36]:

γσ =
∫ +∞

−∞
[Pσ − Pxy(z)]dz. (33)

By contrast, the concept of interphase well defined here is
completely consistent with the measurable CXC properties
[Pσ (T ), ρg(T ), ρl(T )] but implies the certain shifts of fields,
	Pσ = P 0

σ − Pσ and 	μσ = μ0
σ − μσ , at each subcritical

temperature excepting the critical one. One may suppose the
existence of small “field glides” between two stable phases.
Hence, there is nothing thermodynamically unusual about the
existence of two trend’s singularity in a critical point itself.

The relevant questions were discussed recently by Wang
and Anisimov [13] to map the asymmetric criticality of real
fluids into the symmetric Ising-like criticality. The promoted
methodology was a search for an appropriate mixing of the
reduced thermodynamic fields,

T̂ = T/Tc, μ̂ = μ/kBTc, P̂ = P/ρckBTc = ZcP/Pc, (34)

into the complete scaling’s fields [14]. The chosen scales of μ

and P either imply critical values,

μc = kBTc; Pc = ρckBTc (Zc = 1), (35)

in the lattice-gas model where a linear approximation for the
dependent field P̂ (μ̂,T̂ ) is used,

P − Pσ

ρckBTc

= 	P̂ =
(

∂P̂

∂T̂

)
	μ̂=0

	T̂ , (36)

or suppose the asymptotic proportionality expressed here in
terms of the difference variables,

P̄σ = 1 − Pσ/Pc = (sc/kBZc) T̄ . (37)

One obtains by its differentiation asymptotically:

sc/kB = AcZc. (38)

Substitution into Eq. (10) confirms just the one trend’s nature
of the asymptotic scaling criticality:

	ρ̄ = ρl − ρg

2ρc

= sg − sl

2sc

= 	s̄kB/sc. (39)

The thermodynamically arbitrary value of specific critical
entropy [13] is now exactly determined by Eq. (38). Let us
remember, however, that the more general two-trend’s ap-
proach realizable in the FT model requires also the alternative
determination,

s0
c /kB = A0

cZc = 4Zc, (40)

at the same critical point of the classical l branch in real
fluids (Fig. 7). This uncertainty in the determination of critical
entropy exists at any analytic or nonanalytic fit of the actual
slope Ac. It cannot be eliminated in the framework of two
trend’s approach.

Understandably, in the FT model two system-dependent
amplitudes (B0,D1) or, equivalently, (Ac,D1) play the same
role as those (A−

0 ,B0) used to describe the local singularity
of the CXC diameter (see Table I). Unfortunately, it is hard
to compare experimentally such results since none of the
three standard heat capacities Cv,CP ,Cσ can conveniently be
measured directly for a liquid on its saturation curve [36]. The
similar situation is observable in the two-phase region where
the scarce available heat-capacity data are seldom accurate
enough to estimate reliably the amplitudes and the analytical
“critical-background” term B̂c [13]:

Ĉv = A−
0 |	T̂ |−α(1 + A−

1 |	T̂ |	) − B̂c. (41)

This (modified by the mean-field-contribution) Wegner’s-type
form corresponds to the similar mod-ification (13) adopted
for the CXC diameter [13]. As a result, the amplitude,A−

0 ,

is proportional to the amplitude D0, the amplitude B2
0 is

proportional to the amplitude D2, and the critical-backgro-
und term B̂c is proportional to the amplitude D1.Wang and
Anisimov [13] have supposed the poss-ible compensation of
both singular contributions in Eq. (13) for a set of normal
substances:

D0T̄
1−α = D2T̄

2β. (42)

To illustrate the predictive ability of the FT model in the near-
critical region of liquidus states at ρ > ρc the evaluated values
of amplitudes are represented in Table V.

Some comments about Tables I and V are necessary. The
two-scale-factor universality principle discussed by many
authors [2,13,17,37] adopts the existence of two independent
amplitudes just as there are two independent exponents.
The classical corresponding states principle admits [29] the
existence of linear interrelation between the main criteria
(Zc,Ac) of thermodynamic similarity. The simplified FT
estimates of amplitudes (A+

0 ,A−
0 ) in Tables I and V are based

on this admission but its approximate value follows from the
column ±(AcZc)−1 representing asymptotic slopes in Fig. 1.
Nevertheless, their agreement with the (scarce and scattered)
experimental data collected, for example, in [17] (for Ar,
A+

0 = 1.88 or 2.0, A−
0 = 4.52 or 4.03; for C2H6, A+

0 = 2.22,
A−

0 = 4.09 : for CO2, A+
0 = 2.43 − 3.06, A−

0 = 5.32 − 5.56)
looks to be reasonable. The predicted FT amplitude B0 is larger
than that for C2H4 (B0 = 1.642) and C2H6 (B0 = 1.649) but
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TABLE V. Criteria of similarity and amplitudes predicted by the FT model at sub- and supercritical temperatures of liquidlike densities
ρ > ρc (for FT exponents, see Table I).

Fluid Zc Ac ± (AcZc)−1 B0 = Ac
1/3 ≈A0

+ ≈A0
− = B0A0

+

vdW 3/8 4 2/3 1.5873 1.41 2.24
Ar [6] 0.2919 5.943 0.5764 1.8113 2.07 3.75
C2H4 [6] 0.2812 6.354 0.5597 1.8522 2.20 4.07
C2H6 0.2793 6.400 0.5594 1.8566 2.22 4.11
CO2 0.2745 7.044 0.5172 1.9169 2.33 4.46
H2O [6] 0.2292 7.860 0.5551 1.9883 2.89 5.75
Rb 0.2173 11.27 0.4083 2.242 3.44 7.71
Cs 0.2028 11.39 0.4329 2.250 3.70 8.32

smaller for H2O (B0 = 2.035) from [13]. The predicted FT
amplitudes A−

0 are systematically less than that from [13]
[fitted to Eq. (41)]. However, the difference between the
amplitude A−

0 for C2H6 and H2O (2,16) is similar to that (1,64)
following from Table V.

One may note that the ratio of amplitudes in the FT model
is substance dependent, A+

0 /A−
0 = 1/B0, as the result of GFA

while it is universal [2,13,38], A+
0 /A−

0 = 0.523, in the Ising-
like systems. It is worthwhile also to note that the universal
FT combination of amplitudes and exponents (α′,A−

0 ,C0,B0)
is fulfilled as the equality (Table I) α′β = 1/18 only along
the orthobaric l branch while in the supercritical region of
densities ρ > ρc it becomes for amplitudes and exponents
(α′,A+

0 ,C0,B0) substance dependent with the same B−1
0 factor:

α′β/B0.

Another interesting feature is the exact coincidence of
three FT exponents from Table I (α, β, γ ) with those
following [39] from the Ising type of EOS in the one-loop
approximation. However, the fourth experimentally most
problematic exponent δ = 4 [39] as well as the hyperscaling
one η = 0 are significantly different from the respective
FT estimates (δ = 9/2,η = 1/11). One may notice that the
3/2 law expressed by Eq. (1e) is approximately fulfilled
(βδ = 1.565) for the best Ising-like exponents (Table I) but it
fails for the above quantity δ = 4. The possible interpretation
of such a discrepancy can be obtained phenomenologically
in the framework of the well-known Fisher’s droplet model
[18,40], for example, combined with the FT model’s results.
Indeed, there is a sort of complementarity between both
approaches. The former provides the adequate description
of g branch in terms of two normalization exponents (σ,τ )
but predicts a variety of “pathological” shape for l branch
[40]. The latter, on the contrary, guarantees the reliable
representation of l branch but demonstrates the existence of
some narrow one-phase strip of anomalous behavior in the
vicinity of g branch discussed below. In both approaches the
adopted existence of heterophase fluctuations just in the near-
critical gaseous (ρ < ρc) states is the determinative physical
concept.

The split of the phase boundary in the field (P, μ, T)
space (Fig. 7) predicted by the FT model and the argued
existence of a third interphase in addition to the stable bulk
phases of liquid and gas make the vdW-like problem of
metastability completely nontrivial. While its classical variant
[38] is based on the concept of a unified (cubic) EOS with
the well-defined locations of binodal (Fig. 1) and spinodal,

we have demonstrated the failure of this methodology along
the entire CXC range for real fluids. The same format of cubic
FT-EOS but with the different sets of T -dependent coefficients
was used to reconstruct reliably the one-phase behavior of both
stable regions on the thermodynamic surface of equilibrium
states. Such an approach provides the accurate location of
phase boundary (the input CXC data) and simultaneously
it predicts the shape of nonclassical and classical spinodals
which determine the metastable regions of both phases (Figs. 8
and 9).

The accurate shapes of predicted loci are shown for CO2

in the (T,ρ) plane (Fig. 8) and in the (P,T) plane (Fig. 9).
The unique envelope of all classical subcritical isotherms
determines in the (P,ρ) plane the boundary of interphase
expressed by Eq. (29) written for the critical isotherm Tc,

which coincides with the dew point’s branch of CXC. The
ordinary nonclassical isotherm T < Tm located outside the
CXC must have a finite jump (discontinuity) in the isothermal
compressibility when it attains the Pσ (ρg) parameters of a
respective dew point. This situation resembles the main feature
of second-order phase transition. It is different from the

FIG. 8. Comparison of the nonclassical (open circles) and clas-
sical (solid circles) branches of FT spinodal for CO2; the input
orthobaric densities [32] are shown by solid lines. The anomalous strip
of heterophase fluctuations located between the nonclassical spinodal
and the input orthobaric vapor density ρg(T ) at the upper temperatures
(T � Tm ≈ 292 K) contains the family of near-critical isobars with the
slight positive slope (∂T /∂ρ)p(αp < 0). The spectacular fluctuational
flattening of nonclassical spinodal in comparison with its classical
counterpart (shown by thin line with black symbols) is evident.
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FIG. 9. Comparison of the nonclassical (open circles) and classi-
cal (solid circles) spinodals with the input [32] vapor-pressure curve
Pσ (T ) (solid line) for CO2 demonstrates the anomalous near-critical
behavior of the nonclassical spinodal’s branch. It is tangential to
the vapor-pressure curve just at temperature Tm ≈ 292 K and, then,
predicts the unwanted large supersaturation of nonclassical vapor at
the near-critical temperatures.

both classical concepts of metastability and the first-order
phase transition. One usually adopts that the isothermal
compressibility (and the Gaussian fluctuations of overall
average density) remains the continuous function of density
along the metastable extension of subcritical isotherm into the
two-phase region. On the other hand, this response function
must be formally divergent if the concept of first-order
transition in the infinite-volume system is realized in terms
of an isotherm-isobar coincidence. Such coincidence is absent
in the interphase predicted by the FT model. The certain
decrease of compressibility at the ordinary transition T < Tm

into the two-phase region from the side of nonclassical
gas designates [30] the onset of heterophase equilibrium
nucleation (condensation). The isothermal slope (∂P/∂ρ)T
becomes also (see Fig. 8) the negative in the anomalous strip of
near-critical states (T � Tm). The respective g states located
outside but close to the dew point’s branch Pσ (ρg) cannot
be stable and the probability of dropletlike heterogeneous
structure becomes here obvious. Just such peculiarity of
near-critical vapor states has been admitted by the known
Fisher’s droplet model [40].

The behavior of nonclassical isobars within the near-critical
range [Tm,Tc] is especially interesting. While the classical
critical isotherm demonstrates the inflection at the actual
critical point in the (P,ρ) plane, the nonclassical critical FT
isobar attains only the maximum at the actual critical point
in the (T,ρ) plane. Its other spinodal point (the minimum)
is located in the anomalous near-critical gas. The very small
negative slope of anomalous nonclassical isobars exists outside
the dew-point’s branch and disappears only at the Tm point,
where the nonclassical spinodal coincides with the CXC
(Fig. 8). It touches the vapor-pressure curve Pσ (T ) just at
the Tm point in the P,T plane (Fig. 9). Such unusual shape
of nonclassical FT spinodal predicts the possibility to reach
the very high degree of supersaturation for the nonclassical
metastable g phase just in the anomalous near-critical range
[Tm,Tc]. Obviously, that the presence of metastable gaslike

states may be the misrepresenting factor at the experimental
estimate of exponent δ. As a result, the classical liquid can
demonstrate the scaling Ising-like properties only within the
very narrow asymptotic range.

VI. CONCLUSIONS

The GFA methodology promotes in the framework of
the FT model the rather radical hypothesis of vdW-like
universality which does not need the subdivision of local
thermodynamic potentials into the Ising-like critical term
and the analytical background contribution. Such separation
cannot be reasonably unambiguous, at least, along the CXC
for the whole range of subcritical temperatures where the
both (singular and linear) terms in Eq. (12) are essential.
The GFA methodology developed here is in agreement with
the suggestion formulated by Moldover and Gammon [37]
that the measured near-critical density of the vapor ρg(T )
might be too high (Sec. II) (because of a wetting layer on
the inside of the cell) to cause the (1 − α) singularity found
in such substances as SF6 [20,22]. Presumably, this Ising-like
singularity is not the inherent property implied by the structure
of real fluids. Such a conclusion can be extended to the CXC
description of liquid metals too. The conventional amplitudes
A−

0 ,D0,D2 have not been used in the formulation of GFA
models which are based on the hypothesis of vdW-like univer-
sality with the well-determined and measurable amplitudes:
B0,Ac,D1.

The well-known (with the δ exponent supposed by scaling)
monotonous behavior of nonclassical critical isotherm in the
(P,ρ) plane (non-negative slope) is difficult to achieve from
the equilibrium experiments. If the scaling results of Ising-
like universality are well-determined above Tc, the postulated
“longitudinal” symmetry of Cv(ρc,T ) below Tc as well as the
“transversal” symmetry of βT [ρi(T )] along the both orthobaric
branches need the further investigation.

It is worthwhile to remember that the asymmetric (with
the odd degrees of local density) variant of the Landau-
Ginzburg-Wilson Hamiltonian introduced by Nicoll [41] leads
to the (1 − α) singularity of CXC diameter as well as to
the non-mean-field type of EOS which is close inherently to
that obtained in the framework of complete scaling [42]. The
former approach develops, in fact, the well-known concept of
the continuous interface profile formulated by vdW himself
in terms of the Helmholtz-energy-density functional and the
respective gradient of density. The underlying feature usable
in Eq. (33) is the supposed possibility to describe the both
coexisting phases by the unified EOS (mean-field [36] or
non-mean-field [38,41,42]).

The FT model leading to the concept of GFA is an attempt
to go beyond the constraint of unified EOS and to obviate its
consequences. In particular, it proves that the vdW-classical re-
duced slope A0

c = 4 is essential together with the real slope Ac

in the vicinity of the actual critical point (Tc,ρc,Pc; Zc). On the
other hand, it is straightforward to demonstrate that the local
interpretation of FT-EOS [7] as a unified EOS with the constant
actual critical slope Ac leads, at once, to the odd cubic contri-
bution (∼ T̄ ρ̄3), which is absent in the original vdW-EOS [2].
This assumption is similar to that expressed by Eq. (37) in

052141-12



GLOBAL ASYMMETRY OF FLUIDS AND LOCAL . . . PHYSICAL REVIEW E 87, 052141 (2013)

the one-trend consideration of criticality [13]. Such interre-
lation between the theoretically based and phenomenological

approaches is very interesting and needs, to our mind, further
investigation.
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