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The states of an open quantum system are coupled via the environment of scattering wave functions. The
complex coupling coefficients ω between system and environment arise from the principal value integral and the
residuum. At high-level density where the resonance states overlap, the dynamics of the system is determined by
exceptional points. At these points, the eigenvalues of two states are equal and the corresponding eigenfunctions
are linearly dependent. It is shown in the present paper that Im(ω) and Re(ω) influence the system properties differ-
ently in the surrounding of exceptional points. Controlling the system by a parameter, the eigenvalues avoid cross-
ing in energy near an exceptional point under the influence of Re(ω) in a similar manner as it is well known from
discrete states. Im(ω), however, leads to width bifurcation and finally (when the system is coupled to one channel,
i.e., to one common continuum of scattering wave functions), to a splitting of the system into two parts with
different characteristic time scales. The role of observer states is discussed. Physically, the system is stabilized by
this splitting since the lifetimes of some states are longer than before, while that of one state is shorter. In the cross
section the short-lived state appears as a background term in high-resolution experiments. The wave functions of
the long-lived states are mixed in those of the original ones in a comparably large parameter range. Numerical
results for the eigenvalues and eigenfunctions are shown for N = 2,4, and 10 states coupled mostly to one channel.
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I. INTRODUCTION

The description of quantum mechanical systems by means
of the Schrödinger equation has been developed more than
80 years ago. At that time only a few resonance states that
are well separated from one another in nuclei and atoms
were known. The energies of these states are well described
by means of the Schrödinger equation with a Hermitian
Hamiltonian. In order to describe the finite lifetimes of
these states, the R-matrix theory has been developed, which
is however too complicated for practical calculations. The
finite lifetimes of the individual states are calculated usually
perturbatively, see, e.g., Ref. [1]. Later, systems at high-level
density were in the center of interest. Under these conditions,
a statistical description of the system turned out to be very
efficient [2]. The resonances are well isolated from one
another, and the lifetimes of the states are very long and do not
play any role.

In the course of time, experimental studies have been
performed for different quantum systems with a much im-
proved accuracy. Also the theoretical calculations are carried
out today not only for states being well separated in energy
from one another but also for resonance states in the regime
of overlapping. Here the single individual states can no
longer be identified, which results in problems of their
interpretation. Contradictions between experimental results
and conventional Hermitian quantum physics appeared in
different small quantum systems. For example, Heiblum et al.
[3] found experimentally a crossover from the mesoscopic to
a universal phase for electron transmission in quantum dots.
These results could not be explained in conventional quantum
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physics in spite of much effort [4]. Recently Koehler et al. [5]
observed that neutron resonance data exclude random matrix
theory. Deviations between experimental data and random
matrix theory in nuclear physics studies were observed also
earlier, e.g., Ref. [6]. These and other experimental results
show that the Schrödinger equation originally introduced with
a Hermitian Hamiltonian operator for the description of well
isolated resonances has to be extended. Above all, the lifetimes
of the resonance states have to be calculated also in the regime
of overlapping resonances and the justification of statistical
assumptions has to be proven for small quantum systems.

The lifetimes of the resonance states can be calculated
when the system is explicitly considered to be open and the
calculations are performed quantum mechanically for both the
system and the environment of scattering wave functions into
which the system is embedded. Using the Feshbach projection
operator technique [7], first the energy-independent many-
body problem of the system (with the Hermitian Hamiltonian
HB) is solved in the standard manner. These solutions provide
the energies EB

i and wave functions �B
i of the discrete

states with inclusion of the so-called internal interaction. In
a second step, the energy-dependent scattering wave functions
ξE
c of the environment are calculated and, further, the (energy-

dependent) coupling matrix elements

γ 0
kc =

√
2π

〈
�B

k

∣∣V ∣∣ξE
c

〉
(1)

between the discrete states of the system and the environment
are evaluated (see Ref. [8], Sec. 2.1). The corresponding
Schrödinger equation contains an energy-dependent (nonlin-
ear) source term describing the coupling between system and
environment. The Hamiltonian H0 of this equation is non-
Hermitian and provides the lifetimes of the states, but without
any additional interaction of the states via the environment.
The Schrödinger equation with H0 and source term can be
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rewritten into a Schrödinger equation without source term
but with a non-Hermitian Hamiltonian H that contains the
interaction of the states via the environment (the so-called
external interaction) in the nondiagonal matrix elements [9].
The Hamiltonian H reads

H = HB + VBCG
(+)
C VCB, (2)

where VBC and VCB stand for the coupling between system and
environment and G

(+)
C is the Green’s function in the subspace

of scattering states. The external interaction of the states via the
continuum is complex, generally. The principal value integral
is

Re
〈
�B

i

∣∣H∣∣�B
j

〉 − EB
i δij = 1

2π

C∑
c=1

P
∫ ε′

c

εc

dE′ γ 0
icγ

0
jc

E − E′

(3)

and the residuum reads

Im
〈
�B

i

∣∣H∣∣�B
j

〉 = −1

2

C∑
c=1

γ 0
icγ

0
jc . (4)

The interaction of the states of the system via the environment
is involved in the eigenvalues Ei and eigenfunctions �i of
the Hamiltonian H. It is therefore relatively easy, in this
formalism, to study the influence of the environment onto the
states of the system. That means, the non-Hermitian quantum
physics is—in contrast to the widely spread meaning—not
a further approximation introduced in the theory. It is an
expression of the fact that the system considered is really
open and its properties are influenced by the coupling to
the environment. This influence is unimportant at low level
density where it can be described by perturbation theory.
It becomes, however, decisive in the regime of overlapping
resonances.

Meanwhile, many calculations for open quantum systems
are performed with high accuracy. Without using any perturba-
tion theory or statistical assumptions, the Schrödinger equation
with the non-Hermitian Hamiltonian operator H is solved
and the eigenvalues Ei = Ei − i

2	i and eigenfunctions �i are
obtained. That means, not only the energies Ei of the states
of the system are evaluated but also their lifetimes τi ∝ 1/	i .
The control of the eigenvalues by a parameter allows us to
draw conclusions on the dynamics of open quantum systems.

The limits of the applicability of the standard quantum
theory with Hermitian Hamiltonian operator can be seen best
at high-level density, where the individual resonance states
overlap and interact with one another via the continuum of
scattering wave functions. Here, the dynamics of the system
is determined by singular points, the so-called exceptional
points. They cause level repulsion in energy as well as a
bifurcation of the widths (inverse proportional to the lifetimes)
of the states. Results are obtained theoretically as well as
experimentally, which are counterintuitive at first glance: due
to width bifurcation, coherent short-lived states are formed
together with states that are almost decoupled from the
continuum of scattering states [8,10,11]. An example is the
above-mentioned crossover from the mesoscopic to a universal
phase in the transmission in quantum dots [3] and its qualitative
explanation on the basis of a Schrödinger equation with

non-Hermitian Hamiltonian operator [12]. This phenomenon
is observed in different systems and is called usually dynamical
phase transition [13]. The short-lived states are analogous to
the coherent superradiant states considered by Dicke [14] as
shown by means of a toy model [15]. Moreover, it could
be shown in an experiment on nonlocally coupled pairs of
quantum point contacts that discrete states undergo a robust
interaction that is achieved by coupling them to each other
through the continuum [16]. Most of these results are of high
value for fundamental questions of quantum mechanics as well
as for applications.

It is the aim of the present paper to show some generic
(mostly numerical) results for open quantum systems in order
to receive a deeper understanding for the dynamical phase
transitions occurring in the regime of overlapping resonances.
A toy model is used in order to receive conclusions on the
role played by exceptional points and avoided level crossings
at high-level density in open quantum systems. Of special
interest are the effects arising from the imaginary part (4) of
the coupling term via the environment. Furthermore, we study
the role of the so-called observer states at high-level density,
i.e., of states that do not take an active part in the redistribution
process.

A remark on the model used in our calculations has to be
added here. The basis of the model is the Feshbach projection
operator method sketched by Eqs. (1)–(4). It shows, on the
one hand, that the coupling coefficients between system and
environment are complex according to (3) and (4). On the
other hand, the Hamiltonian (2) is time independent. This
has the advantage that we avoid any time dependence in the
description of the dynamics of an open quantum system that
is not directly related to the lifetimes of the states. We are
able therefore to study the dynamics around exceptional points
where a dynamical phase transition may occur and time loses
its original meaning [11]. While time is related clearly to the
lifetimes of the states below the dynamical phase transition,
there is a completely other understanding of time beyond this
transition. This point seems to be supported by the results
obtained for cycling a non-Hermitian degeneracy [17]. In these
studies, a time-dependent approach is used, and unexpected
nonadiabatic couplings appear when an exceptional point is
cycled.

The calculations are performed with respectively two,
four, and ten resonance states coupled mostly to one open
decay channel (corresponding to the common continuum
of scattering wave functions) under the condition that they
avoid crossing or even cross in a certain parameter range.
The coupling of N resonance states to K < N channels
corresponds to the general situation of open quantum systems.
The formalism used in the calculations is the same as that
discussed in our earlier paper [18]. The results show very
clearly that the imaginary part of the coupling term between
system and environment causes width bifurcation and, finally,
the formation of different time scales in the regime of
overlapping resonances. Due to width bifurcation, the system
splits into two parts that exist at different times. The wave
functions of the short-lived aligned states are mixed coherently
in relation to the open decay channel while those of the
long-lived trapped states are mixed incoherently such that the
states are almost decoupled from the open decay channel.
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The results confirm the characteristic features of the dy-
namical phase transitions appearing in open quantum systems
at high-level density in spite of the fact that some states are
observer states. In the case of coupling the system to one
channel, the number of states of the system is reduced during
the dynamical phase transition due to ejecting the aligned
short-lived state and, furthermore, the wave functions of the
states before and beyond the dynamical phase transition are
completely different from one another. While the states of
the original system (without interaction via the continuum)
have individual spectroscopic features, those of the system
consisting of the long-lived states beyond the dynamical phase
transition show chaotic features. These results prove once more
that the experimental results [3] on the crossover from the
mesoscopic to a universal phase for electron transmission
in quantum dots can be explained by means of the non-
Hermiticity of the Hamiltonian. Additionally it should be
mentioned here that the aligned state corresponds to the Dicke
superradiant state and the trapped states to the subradiant states
which are considered in optics, e.g., Ref. [19].

In Sec. II, we sketch the formalism used in the present
calculations. For N = 2 states with equal decay widths,
the analytical and numerical solutions of the problem show
clearly the effect of width bifurcation. Numerical results for
eigenvalues and eigenfunctions obtained for N = 2, 4, and
10 states are provided in Secs. III to VI. The results are
discussed in Sec. VII while conclusions on the relation between
exceptional points and width bifurcation are drawn in the last
Sec. VIII.

II. FORMALISM

We consider an N × N matrix

H =

⎛
⎜⎜⎝

ε1 + ω11 ω12 . . . ω1N

ω21 ε2 + ω22 . . . ω2N

...
...

. . .
...

ωN1 ωN2 . . . εN + ωNN

⎞
⎟⎟⎠ (5)

the diagonal elements of which are the N complex eigenvalues
εi + ωii ≡ ei − i/2γi of a non-Hermitian operator. The ωii

are the so-called self energies of the states arising from their
coupling to the environment of scattering wave functions into
which the system is embedded. In atomic physics, these values
are known as Lamb shift. Our calculations are performed with
coupling matrix elements ωii the values of which do not depend
on the parameter considered. In such a case, the ωii can be
considered to be included in the diagonal matrix elements,
which read εi ≡ εi + ωii . The ei and γi denote the energies
and widths, respectively, of the N states (including their self
energies) without account of the interaction of the different
states via the environment.

The internal interaction of the two states i and k �= i (ap-
pearing in the closed system) as well as their external interac-
tion (via the environment) are contained in the ωik . The internal
interaction can be caused only by some part of Re(ωik) while
the external interaction contains complex ωik , see Eqs. (3)
and (4). The most interesting part of the external interaction is
therefore Im(ωik). It becomes important at high-level density
where the corresponding resonance states overlap.

When the number N of states is equal to the number
K of common channels (i.e., equal to the number K of
different common continua of scattering wave functions) all
the coupling matrix elements ωik are different from zero and
the matrix (5) is full. In the case with only one open decay
channel K = 1, all ωik different from ωik=K and ωi=Kk are
zero. An example of N = 4 states coupled to only the fourth
channel is the following matrix:

H =

⎛
⎜⎝

ε1 0 0 ω14

0 ε2 0 ω24

0 0 ε3 ω34

ω41 ω42 ω43 ε4

⎞
⎟⎠ (6)

with εi = εi for i �= 4 and ε4 = ε4 + ω44.
The eigenvalues of H will be denoted by Ei ≡ Ei − i/2	i

where Ei and 	i stand for the energy and width, respectively,
of the eigenstate i. The eigenfunctions of the non-Hermitian
H are biorthogonal (see Secs. 2.2 and 2.3 of Ref. [8]),

〈�∗
i |�j 〉 = δij . (7)

It follows

〈�i |�i〉 = Re(〈�i |�i〉); Ai ≡ 〈�i |�i〉 � 1 (8)

and

〈�i |�j �=i〉 = iIm(〈�i |�j �=i〉) = −〈�j �=i |�i〉
(9)∣∣Bj

i

∣∣ ≡ |〈�i |�j �=i | � 0.

At an exceptional point, Ai → ∞ and |Bj

i | → ∞. The Ei

and �i contain global features that are caused by many-body
forces induced by the coupling ωik of the states i and k �= i

via the environment, see Eqs. (3), (4) and the corresponding
discussion in Refs. [11,20].

In the case N = 2, the two eigenvalues of H are

Ei,j ≡ Ei,j − i

2
	i,j = ε1 + ε2

2
± Z;

(10)

Z ≡ 1

2

√
(ε1 − ε2)2 + 4ω2.

According to this expression, two interacting discrete states
(with γk = 0) avoid always crossing since ω and ε1 − ε2 are
real in this case. Resonance states with nonvanishing widths
	i repel each other in energy according to the value of Re(Z)
while the widths bifurcate according to the value of Im(Z).
The two states cross when Z = 0. This crossing point is an
exceptional point according to the definition of Kato [21].

At the exceptional point Z = 0, the eigenfunctions of (5)
of the two crossing states are linearly dependent from one
another,

�cr
1 → ±i�cr

2 ; �cr
2 → ∓i�cr

1 (11)

according to analytical as well as numerical and experimental
studies, see Appendix of Ref. [11] and Sec. 2.5 of Ref. [8].
That means the wave function �1 of the state 1 jumps, at the
exceptional point, via the wave function �1 ± i �2 of a chiral
state to ± i �2 [22]. From (11) follows:

(i) When two levels are distant from one another,
their eigenfunctions are (almost) orthogonal, 〈�∗

k |�k〉 ≈
〈�k|�k〉 = Ak ≈ 1.
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FIG. 1. (Color online) Energies Ei and widths 	i/2 (full lines) of N = 2 states beyond [(a), (b)], at [(c), (d)] and below [(e)–(h)] the
exceptional point. The parameters of the subfigures are γ1/2 = 1.2 [(a), (b)]; γ1/2 = 1.0 [(c), (d)]; γ1/2 = 0.9 [(e), (f)]; γ1/2 = 0.7 [(g), (h)].
Further parameters: e1 = 1 − a/2; e2 = a; γ2/2 = 1.1γ1/2; ω = (1 + i)0.05. The dashed lines show ei(a).

(ii) When two levels cross at the exceptional point, their
eigenfunctions are linearly dependent according to (11) and
〈�k|�k〉 ≡ Ak → ∞.
These two relations show that the phases of the two eigenfunc-
tions relative to one another change when the crossing point is
approached. This can be expressed quantitatively by defining
the phase rigidity rk of the eigenfunctions �k ,

rk ≡ 〈�∗
k |�k〉

〈�k|�k〉 = A−1
k . (12)

It holds 1 � rk � 0. The nonrigidity rk of the phases of the
eigenfunctions of H follows also from the fact that 〈�∗

k |�k〉 is
a complex number (in difference to the norm 〈�k|�k〉 which
is a real number) such that the normalization condition (7) can
be fulfilled only by the additional postulation Im〈�∗

k |�k〉 = 0
(which corresponds to a rotation).

When rk < 1, an analytical expression for the eigenfunc-
tions as a function of a certain control parameter can, generally,
not be obtained. An exception is the special case γ1 = γ2 for
which Z = 1

2

√
(e1 − e2)2 + 4ω2. In this case, the condition

Z = 0 can not be fulfilled if ω = x is real due to

(e1 − e2)2 + 4 x2 > 0 . (13)

The exceptional point can be found only by analytical
continuation into the continuum [8,9] and the two states avoid
crossing. This is analogous to the avoided level crossings of
discrete states.

The condition Z = 0 can be fulfilled however if ω = i x is
imaginary,

(e1 − e2)2 − 4 x2 = 0 → e1 − e2 = ± 2 x , (14)

and two exceptional points appear. It holds further

(e1 − e2)2 > 4 x2 → Z ∈ � (15)

(e1 − e2)2 < 4 x2 → Z ∈ � (16)

independent of the parameter dependence ei(a). In the first
case, the eigenvalues Ei = Ei − i/2 	i differ from the original
values εi = ei − i/2γi by a contribution to the energies and
in the second case by a contribution to the widths. The width
bifurcation starts at one of the exceptional points and becomes
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maximum in the middle between the two exceptional points.
This happens at the crossing point e1 = e2 where �	/2 ≡
|	1/2 − 	2/2| = 4 x.

Some years ago, the case N = 2 with ei = ei(a), fixed real
ω ≡ ω12 = ω21, and different fixed values of γi , including
γi = 0, was studied as a function of the parameter a in the
neighborhood of avoided and true crossings of the two levels
[9]. The results for the N = 2 case [9] show further that the
wave functions of the two states �1 and �2 are mixed in a
finite range of the parameter a around the critical value acr at
which the two states avoid crossing. This holds true not only
for resonance states but also for discrete states.

The eigenfunctions �i of H can be represented in the
set of basic wave functions φi of the unperturbed matrix
(corresponding to the case with vanishing coupling matrix
elements ωij ),

�i =
N∑

j=1

bijφj . (17)

Also the bij are normalized according to the biorthogonality
relations of the wave functions {�i}.

In our calculations, the mixing coefficients bij of the wave
functions of the two states due to their avoided crossing are not
calculated. We simulate the fact that the two wave functions
are mixed in a finite parameter range around the critical value
of their avoid crossing [9] by assuming a Gaussian distribution

ωi �=j = ωe−(ei−ej )2
(18)

for the coupling coefficients. The results reproduce very well
those discussed in Ref. [9] for two levels and real coupling ω.

Of special interest is the situation at high-level density
where the ranges of avoided crossings, defined by (18), of
different levels overlap and ri < 1 holds for the phase rigidity
of the levels. Some generic results obtained with two, four,
and ten resonance states will be presented in the following
sections.

III. EIGENVALUES AND EIGENFUNCTIONS FOR N = 2
CROSSING LEVELS

We start our calculations with the two-level case, which is
studied mostly in literature. We choose the matrix (5) with ei =
ei(a), different fixed values of γi and fixed ω. The functional
dependence of the energies over the parameter a is as simple
as possible. It is similar as in Ref. [9]. However, the ω are real
in Ref. [9] while they are mostly complex in the present paper.
According to Eqs. (10)–(16), the exceptional points appear at
different values of the parameter a when the ratio Re(ω) to
Im(ω) is varied.

In Fig. 1 we show the numerical results for the avoided
level crossing phenomenon as a function of the parameter a

beyond, at and below the exceptional point. In all cases, the
value of ω is fixed to 0.05(1 + i) while the γ1/2 are different
in the different subfigures (with γ2/γ1 = 1.1 in all cases). The
exceptional point appears at γ cr

1 /2 = 1, see Figs. 1(c) and 1(d).
When γ1/2 > γ cr

1 /2 [Figs. 1(a) and 1(b)], the eigenvalue
trajectories cross in energy while the widths 	1 and 	2 are
always different from one another. The situation is another one
when γ1/2 < γ cr

1 /2. Here, the eigenvalue trajectories avoid
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FIG. 2. (Color online) The mixing coefficients |bij |2 of N = 2
states beyond [(a)], at [(b)] and below [(c), (d)] the exceptional point.
The parameters are the same as in Fig. 1.

crossing in energy while the trajectories 	1 and 	2 cross at
certain values of a [Figs. 1(e)–1(h)].

The comparison of Fig. 1 with complex ω = 0.05(1 + i)
and Fig. 2 in Ref. [9] with real ω = 0.05 shows the influence of
Im(ω). While the 	i(a) vary symmetrically around the critical
value acr when ω is real, this is not the case when ω is complex.
In the last case, the difference 	1 − 	2 blows up in the critical
region. Furthermore, the 	i approach their asymptotic values
in a relatively small parameter range of a when ω is real in
contrast to the case with complex ω. These results will be
discussed further in the following sections.

In Fig. 2, we show the mixing coefficients |bij |2 of the
eigenfunctions as a function of the parameter a corresponding
to the eigenvalue figures shown in Fig. 1. The mixing
coefficient is complex, ω = 0.05(1 + i). This figure can be
compared with Fig. 5 in Ref. [9] calculated exactly with real
ω = 0.05. In both cases, the difference between the two curves
|bij |2 is always 1 when γ1/2 > γ cr

1 /2. This result corresponds
to the fact that the two states will not be exchanged when
γ1/2 > γ cr

1 /2. The energy trajectories of the eigenstates cross
freely and the widths of the two states are always different
from one another, see Figs. 1(a) and 1(b).
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FIG. 3. (Color online) Energies Ei and widths 	i/2 (full lines) of N = 2 states [(a), (b), (g), (h)] and N = 4 states [(c)–(f) and (i), (j)]
coupled to K = 1 channel. The parameters of the subfigures are γi/2 = 0.5 [(a)–(d)]; γi/2 = 0.494,0.498,0.502,0.506 [(e), (f)]; γ1/2 =
0.45,γ2/2 = 0.55 [(g), (h)]; γ1/2 = 0.35; γ2/2 = 0.45; γ3/2 = 0.55; γ4/2 = 0.65 [(i), (j)]. Further parameters: N = 2 : e1 = 1 − a/2; e2 =
a; N = 4 : e1 = 1 − a/2; e2 = 1.05 − a/2; e3 = 1.1 − a/2; e4 = a; ω = 0.05i. The dashed lines show ei(a).

At the exceptional point (where γ1/2 = γ cr
1 /2), |bij |2 → ∞

in both cases. When γ1/2 < γ cr
1 /2, the two curves |bij |2

coincide at a certain value of a. This happens for real (see
[9]) as well as for complex (Fig. 2) ω, but is symmetri-
cally only for real ω. At these points, the two states are
exchanged.

In both cases γ1/2 < γ cr
1 /2 and γ1/2 > γ cr

1 /2, the asymp-
totic values 1 and 0 are reached in a smaller parameter range
when ω is real than in the case with complex ω. Within this

parameter range the two eigenfunctions are mixed. The range
of mixing shrinks to one point when the two states really
cross (at the exceptional point). It is especially large when two
discrete states (with γi = 0) avoid crossing, as can be seen
from Fig. 5 in Ref. [9] (where the calculations are performed
exactly with real ω for all bij ).

The parameter range in which two states are mixed due to
the existence of an exceptional point in the neighborhood plays
an important role in realistic systems. It will be discussed in
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FIG. 4. (Color online) The same as Fig. 3 but ω = (1 + i)0.05 [(a), (b), (e), (f)]; ω = 0.05 [(c), (d), (g), (h)]; N = 4; γi = 0.5 [(a)–(d)];
γi = 0.35; 0.45; 0.55; 0.65 [(e)–(h)].

the following sections with more than one avoided crossing
for both real and complex ω.

IV. EIGENVALUES FOR N = 4 CROSSING LEVELS

Let us first compare the calculations with N = 2 and N = 4
states and imaginary coupling ω = 0.05i between discrete
states and environment of scattering states (Fig. 3). In the
calculations, the eigenvalue trajectories Ei(a) and 	i(a) are
traced as a function of the parameter a, which is varied in
such a manner that one state crosses in energy one and three,
respectively, other states. The results show two exceptional
points in both cases appearing at the two different parameter
values acr

1 and acr
2 , see Figs. 3(a) and 3(b) for two states and

Figs. 3(c)–3(f) for four states. In between these two values,
the widths bifurcate: the differences �	/2 ≡ |	1/2 − 	2/2|
blow up. The two-level case is described analytically by
Eqs. (10)–(16). The width bifurcation is completely repro-
duced in the numerical results.

The parameter range |acr
1 − acr

2 | is larger in the case with
four states than in the other one due to the larger region in

which avoided level crossings take place. Furthermore, the
difference �	/2 is larger in the case of four states than in the
case of two states. In the case that all states have equal widths
γi/2, the widths 	i/2 of only two states bifurcate also in the
case with four states. The widths of the two other states remain
unchanged [Figs. 3(c) and 3(d)]. This result holds also when
the different γi/2 differ slightly from one another [Figs. 3(e)
and 3(f)]. In this latter case, the two states avoid crossing at
the two critical values acr

1 and acr
2 and the width bifurcation is

almost the same as in the case with equal widths γi .
The situation changes completely when the widths γi

differ strongly from one another. When |γi/2 − γi±1/2| >

|εi − εi±1|, the states do not avoid crossing either in the case
with two states or in the case with four states [Figs. 3(g)–3(j)].
The eigenvalue trajectories cross freely in energy and the
widths do (almost) not bifurcate. The dynamics of the system
is therefore completely different from that determined by the
results shown in Figs. 3(a)–3(f).

In Fig. 4, we show the eigenvalues Ei and 	i/2 for the
case with four levels and one channel with complex and
real coupling coefficients [ω = 0.05(1 + i) and ω = 0.05,
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FIG. 5. (Color online) The same as Fig. 3 but N = 4 and K = 4; ω = (1 + i)0.05 [(a), (b)]; ω = 0.05i [(c), (d)]; ω = 0.05 [(e), (f)];
γi/2 = 0.5.

respectively]. Width bifurcation can be seen when ω is
complex and the widths γi are equal [Figs. 4(a) and 4(b)], while
the 	i = γi are independent of a when ω is real [Figs. 4(c)
and 4(d)]. The results with different γi differ from those
obtained with imaginary coupling ω = 0.05i [Figs. 3(g)–3(j)]:
the widths of two states cross at parameter values at which their
energies avoid crossing [Figs. 4(e)–4(h)].

In Fig. 5, we show the results of calculations with an
equal number of states and channels, N = 4 and K = 4.
Although usually K < N in realistic systems, the results allow
us to receive a deeper understanding for the spectroscopic
redistribution processes taking place in the critical region.
The calculations are performed with the same parametric
dependence of the energies as in the foregoing calculations
with N = 4 and K = 1. Further assumptions: γi = 0.5 and
ω = 0.05(1 + i),0.05i, and 0.05, respectively.

The results show width bifurcation when ω is complex or
imaginary [Figs. 5(a)–5(d)], which is however smaller than
in the corresponding cases with K = 1 [Figs. 4(a), 4(b), 3(c),
and 3(d), respectively]. Instead, the widths 	i of the states are
changed asymptotically due to the coupling to the different
channels. When ω is real [Figs. 5(e) and 5(f)], the widths 	i/2
are independent of a and are equal to γi/2 = 0.05 (i = 1 to 4).

V. EIGENFUNCTIONS FOR N = 4 CROSSING LEVELS

The coefficients bij defined in (17) determine the mixing of
the eigenfunctions �i in relation to the basic wave functions
φj . The mixing is nonvanishing in the neighborhood of the
critical points of avoided level crossings as has been shown
in exact numerical calculations for two crossing states and

real coupling coefficients ωij [9]. In the calculations of the
present paper, the mixing of the wave functions is simulated
by assuming a Gaussian distribution for the ωij , Eq. (18). It
reproduces very well the exact results obtained in Ref. [9].

In the following, we consider the mixing coefficients bij

for all wave functions �i the eigenvalue trajectories of which
are studied in Figs. 3–5 as a function of the parameter a. In
Fig. 6, the coefficients |bij |2 are shown for two and four states
with imaginary coupling ω = 0.05i (see the corresponding
eigenvalue trajectories in Fig. 3). When the widths γi of
all states are equal [Figs. 6(a) and 6(b)], |bij |2 → ∞ at the
two exceptional points acr

1 and acr
2 . In the parameter range

acr
1 < a < acr

2 , the wave functions are mixed while bii → 1
and bij → 0 for i �= j beyond the two values acr

1,2. The states
are completely (1 : 1) mixed in the range acr

1 < a < acr
2 in the

two-level case [Fig. 6(a)]. The picture is more complicated in
the four-level case [Fig. 6(b)]. Here, all states are involved in
the redistribution taking place in the critical parameter range
acr

1 < a < acr
2 . The exchange of the two states the widths of

which remain unchanged according to Fig. 3(d) can be seen
from the energy eigenvalue trajectories, Fig. 3(c), as well from
the mixing coefficients, Fig. 6(b).

The figures are similar when the widths γi of the states differ
slightly from one another. Instead of exceptional points, there
are avoided level crossings at acr

1 and acr
2 , see Fig. 6(c) for the

four-level case. The mixing coefficients show a dependence on
a, which is similar to that obtained for equal widths [Fig. 6(b)].

When the widths γi of the states i differ stronger from one
another than in Fig. 6(c), the eigenfunctions remain almost
unmixed for all parameter values a [Figs. 6(d) and 6(e)]. This
result corresponds to the almost constant width trajectories 	i
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FIG. 6. (Color online) The mixing coefficients |bij |2 of N = 2
and N = 4 states the eigenvalues of which are shown in Fig. 3;
K = 1 channel; ω = 0.05i.

as a function of a [Figs. 3(h) and 3(j)]. An exchange of states
does not take place [Figs. 3(g) and 3(i)]. These results show
the great influence of the exceptional points onto the dynamics
of the system considered.

The calculations in Figs. 3 and 6 are performed with
imaginary coupling ω = 0.05i. For comparison, we show in
Fig. 7 the mixing coefficients |bij |2 when ω is complex and
real, respectively, for the four-level case (corresponding to the
eigenvalue trajectories in Fig. 4). When all γi are equal to one
another and ω is complex, the mixing coefficients |bij |2 point
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FIG. 7. (Color online) The mixing coefficients |bij |2 of N = 4
states the eigenvalues of which are shown in Fig. 4; K = 1 channel;
ω = (1 + i)0.05 [(a), (c)]; ω = 0.05 [(b), (d)].

to the participation of all states in the redistribution process
in the critical parameter range [Fig. 7(a)]. This corresponds
fully to the corresponding eigenvalue trajectories that show
level exchange as well as width bifurcation [Figs. 4(a)
and 4(b)]. When the coupling is real, however, the wave
functions of only two states are mixed while the wave functions
of the other two states remain almost unchanged in the critical
region [Fig. 7(b)].

The mixing of the eigenfunctions is completely different
from that discussed above when the widths γi differ more
strongly from one another. A mixing of the wave functions
appears only when the energy trajectories Ei(a) avoid crossing
and the width trajectories 	i(a) cross, compare Figs. 4(e)–4(h)
with the corresponding Figs. 7(c) and 7(d). A width bifurcation
does not take place.

The mixing coefficients |bij |2 for the case with N = 4 states
coupled to K = 4 channels are shown in Fig. 8 (parameters
the same as in Fig. 5). The differences between the cases with
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FIG. 8. (Color online) The mixing coefficients |bij |2 of N = 4
states the eigenvalues of which are shown in Fig. 5; K = 4 channels;
ω = (1 + i)0.05 [(a)]; ω = 0.05i [(b)]; ω = 0.05 [(c)].

coupling to four channels to those with coupling to only one
channel can be seen by comparing Fig. 8(a) with Fig. 7(a),
Fig. 8(b) with Fig. 6(b) and Fig. 8(c) with Fig. 7(b). The
mixing of the wave functions by coupling the system to four
channels is more complicated than that by coupling to only one
channel. This statement holds true also when ω is imaginary.
Furthermore, an additional mixing is caused by the avoided
level crossing at small a in the four-channel case when ω is
complex.

VI. EIGENVALUES FOR N = 10 CROSSING LEVELS

We continue our studies with the matrix (6) by choosing
N = 10 states coupled to one channel. The eigenvalue trajec-
tories Ei(a) and 	i(a) are shown in Figs. 9 and 10. In these
cases, one of the states crosses in energy the remaining nine
states one by one. The nine states have the same parametric
energy dependence of a and are shifted equidistantly relative
to one another.

In Figs. 9(a) and 9(b) we show the results obtained with
ω = 0.07i and γi = 0.5 for all states. The results are similar
to those for the four-level case [Figs. 3(c) and 3(d)]. Two
exceptional points appear as well as width bifurcation: the
width of one of the states is much larger while that of another
one is much smaller than the widths of all the other states in
the whole critical parameter range between the two exceptional
points.

In Figs. 9(c)–9(f), the widths γi differ from one another. We
compare the results obtained with an imaginary and with a real
coupling constant, ω = 0.07i and 0.07, respectively. When ω

is real [Figs. 9(e) and 9(f)], the energy trajectories Ei(a) are
very regular: avoided level crossings appear one by one with
all nine states. An exceptional point can be found only by
analytical continuation into the continuum (see Ref. [8]). The
width trajectories 	i(a) are less regular: they cross at several
parameter values a. According to the results obtained for a
smaller number of states in Secs. III to V, the widths do not
bifurcate when ω is real.

When ω is imaginary, the energy trajectories Ei(a) are
also regular [Fig. 9(c)]. Figure 9(d) shows nicely how widths
continue to bifurcate such that the broad state remains broad
and the narrow state remains narrow for all a in the critical
region. Mostly, the widths of two states are different from one
another when the energy trajectories cross. The states can,
nevertheless, be exchanged as can be seen from Fig. 9(c).

In Fig. 10, we show results obtained with the imaginary
coupling constant ω = 0.05i [being smaller than in Figs. 9(c)
and 9(d)] as well as those obtained with the larger values
ω = 0.08i,0.10i,0.15i [Figs. 10(a) and 10(b) and Figs. 10(c)–
10(h), respectively]. We see width bifurcation similar as in
Fig. 3(d) for N = 4 states and in Fig. 9(b) for ten states with
equal widths γi . In any case, width bifurcation appears in the
whole critical parameter range between the two exceptional
points. The width bifurcation occurring in the case of ten
levels is stronger than that with a smaller number of levels
(compare Sec. IV). The nine states crossed by the state 10 are
exchanged in the critical parameter region as can be seen from
the corresponding Figs. 10(a), 10(c), 10(e), and 10(g).

The results shown in Figs. 9 and 10 follow from calculations
with a toy model being symmetrical in relation to the crossing
states. In the critical parameter range, the states are exchanged
in all cases but eight of them do not contribute actively to
the width bifurcation when ω is imaginary. This result follows
from the high symmetry of the exceptional points in relation
to the crossing states, i.e., from the linear dependence of the
energy of the crossing state on the parameter a, e10(a) = a.
The eight states play the role of observers similarly as in a
realistic model with three states [23].

In order to exclude the high symmetry of the exceptional
points in relation to nearby states we show in Fig. 11 the results
of another version of the toy model. Instead of e10(a) = a in
Figs. 9 and 10, we use e10 = 0.15/(0.15 + a) in Fig. 11. The
width 	i of one of the states becomes large in the critical
parameter range when ω is imaginary or complex [Figs. 11(b)
and 11(d), respectively], while the widths of all the other states
are much smaller. This result reflects the situation observed in
many realistic cases (see, e.g., the review [8] and also [24]). A
separation of a short-lived state from the other ones does not
appear when ω is real [Fig. 11(f)].

VII. DISCUSSION

In Secs. III to VI, we showed results obtained numerically
for the eigenvalues Ei = Ei − i/2	i and eigenfunctions �i by
using the matrix (5) [or (6)] with two, four, and ten levels,
respectively. Only the energies ei of the states are varied as a
function of a certain parameter a. The widths γi are assumed
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FIG. 9. (Color online) Energies Ei and widths 	i/2 (full lines) of N = 10 states coupled to K = 1 channel. The parameters of the subfigures
are γi/2 = 0.5 [(a), (b)]; γi/2 = 0.50; 0.51; 0.52; 0.53; 0.54; 0.55; 0.56; 0.57; 0.58; 0.59 [(c)–(f)]; ω = 0.07i [(a)–(d)]; 0.07 [(e), (f)]. Further
parameters: ei = 1 − a/2; 1.1 − a/2; 1.2 − a/2; 1.3 − a/2; 0.9 − a/2; 0.8 − a/2; 0.7 − a/2; 0.6 − a/2; 0.5 − a/2; a. The dashed lines show
ei(a).

to be constant, the interaction ωij between the levels i and j

is either zero or simulated by the Gaussian distribution (18)
where ω is the same for all states (and also independent of a),
and the self-energy terms are considered to be included into the
diagonal matrix elements. Most interesting is the one-channel
case for different N , e.g., the matrix (6) for N = 4.

In our calculations, the ωij are complex. They stand for
the interaction of the states via the environment (continuum of
scattering wave functions): Re(ωij ) arises from the principal
value integral (3) and Im(ωij ) is the residuum (4). Equa-
tions (13)–(16) show analytically the main difference between
Re(ωij ) and Im(ωij ) in the two-level case when the widths
of the two states are equal, γ1 = γ2. According to (13), an
exceptional point can be found only by analytical continuation
into the continuum when ωij is real. Thus, the two states avoid
crossing as it is very well known for discrete as well as for
narrow resonance states [9]. In contrast, Im(ωij ) causes two
exceptional points according to Eq. (14). Most interesting is
the width bifurcation arising in between the two exceptional
points according to (16).

The analytical results (13)–(16) for the eigenvalues Ei of
N = 2 states are well reproduced in our numerical calcula-
tions, Figs. 3(a) and 3(b). Also the eigenfunctions �i show
the two exceptional points: |bij |2 → ∞ in approaching them,
Fig. 6(a). In between the two exceptional points, the wave
functions of the two states are strongly mixed. The mixing is
1 : 1 in the middle between the two singular points. Beyond

the critical region between the two exceptional points, the
|bij |2 approach 1 when i = j and 0 when i �= j . Here, the two
states may be exchanged, at most. Figures 3(a), 3(b), and 6(a)
represent the basic process of width bifurcation according to
the analytical expressions (15) and (16).

In Secs. IV, V, and VI of the present paper, numerical results
for four and ten states are shown under similar conditions, i.e.,
with equal or nearly equal γi for all states: Figs. 3(c)–3(f) and
Figs. 6(b) and 6(c) for the eigenvalues and eigenfunctions,
respectively, of four states, and Figs. 9(a) and 9(b) for the
eigenvalues of ten states. The development of width bifurcation
as a function of increasing imaginary coupling vector ω can be
seen in Fig. 10 for N = 10 states when the single widths γi are
different from one another. The uniform width bifurcation in
Fig. 9(b) appears at a smaller value of Im(ω) than in Fig. 10(h)
due to the different values of the single γi in the last case.
In both cases, N − 2 states are observer states, which do not
take an active part in the width bifurcation. This unexpected
result is possibly caused by the symmetries around the EPs.
Generally, the width bifurcation is stronger when the number
of states is larger.

The influence of Re(ωij ) on the eigenvalue trajectories and
eigenfunctions is also shown for N = 4 and 10 [Figs. 4(c)
and 4(d) for the eigenvalues of four states, Fig. 7(b) for the
eigenfunctions of four states, and Figs. 9(e) and 9(f) for the
eigenvalues of ten states]. Under the influence of Re(ωij ),
the states avoid crossing in energy and the widths do not
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FIG. 10. (Color online) The same as Fig. 9 but ω = 0.05i [(a), (b)]; ω = 0.08i [(c), (d)]; ω = 0.10i [(e), (f)]; ω = 0.15i [(g), (h)].

bifurcate. When the calculation is performed with complex
coupling vector [Re(ωij �= 0) and Im(ωij �= 0)], the widths
bifurcate with some shift of the position of the maximum
relative to that of the minimum [Figs. 4(a) and 4(b)] and a
larger parameter range of mixed wave functions [Fig. 7(a)].

According to the results presented in Secs. IV to VI the
eigenvalue trajectories are strongly influenced by the values of
the external (fixed) parameters when the resonances overlap
(with ri < 1 for the overlapping states i), and exceptional
points determine the dynamics of the system. However, the
eigenvalue trajectories are almost independent of one another
when the degree of resonance overlapping is small. Examples
are Figs. 3(g)–3(j) and 4(e)–4(h) for the eigenvalues of, respec-
tively, two and four resonance states and the corresponding
figures 6(d), 6(e), 7(c), and 7(d) for the eigenfunctions of these
states. These results show the strong influence of external
parameters onto the dynamics of the system at high-level
density, which is known from the study of realistic cases.
An example is the enhanced transmission through microwave
cavities when the formation of whispering gallery modes is
supported by the manner the leads are attached to the cavity
[25].

Width bifurcation is directly related to the alignment of one
of the N resonance states of the open quantum system to a
decay channel (K = 1) with the consequence that it becomes
short-lived while other states become trapped (long-lived), i.e.,
more or less decoupled from the environment. Mathematically,
the alignment of a resonance state is possible since the
eigenfunctions of a non-Hermitian operator are biorthogonal
and their phases (relative to those of the eigenfunctions of
the other states) are not rigid in approaching an exceptional
point, see Eq. (12). Width bifurcation appears therefore in our
calculations when K = 1 and N = 4 or 10. This corresponds to
realistic situations in which usually K < N . Width bifurcation
does, however, not appear when N = 4 states are coupled
to K = 4 channels (Fig. 5) although the wave functions are
strongly mixed in the critical parameter region also in this case
(Fig. 8).

An artifact of our model calculations is the assumption of
equidistant energies ei of all but one state, which are crossed by
one state the energy of which depends linearly on the parameter
a. Thus, the critical points are symmetrically in relation to the
two neighboring states, and N − 2 states do not contribute
actively to the width bifurcation taking place in the whole
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FIG. 11. (Color online) The same as Figs. 9(c)–9(f) but e10 = 0.15/(0.15 + a); ω = 0.07i [(a), (b)]; ω = (1 + i)0.07 [(c), (d)]; and ω = 0.07
[(e), (f)].

system. They are observer states. In Fig. 11, we show results
obtained when the symmetry is somewhat disturbed (as it is
usually the case in realistic systems). In such a case, the width
of one state separates from those of all the other states. That
means, all nine states remain trapped (decoupled) in the whole
critical parameter range. This result corresponds to results
obtained theoretically as well as experimentally in different
realistic systems (see Sec. 4 in the review [8]).

It should be added here, that asymptotically (beyond the
critical parameter region) the states can be exchanged at
most. This is the case, indeed, in all our calculations. All
redistribution processes caused by the exceptional points take
place only in the critical parameter region. This holds true for
real as well as for imaginary coupling coefficients ωij and can
be seen also in the mixing coefficients bij , which approach 1
or 0 when i = j and i �= j , respectively, beyond the critical
parameter region. The two cases with real and imaginary ω

differ, however, by the length of the critical region.

VIII. CONCLUSION

The results of the present paper show that exceptional points
cause width bifurcation because the coupling of the states via
the environment (continuum of scattering wave functions) is
complex. A well-known example are the bound states in the
continuum appearing at a finite value of the coupling strength
between system and environment when the interplay between
internal and external interaction is taken into account, see
Sec. 4.4 of the review [8]. Of particular interest, however,

is the width bifurcation appearing at high-level density, which
is studied in the present paper. Here, many exceptional points
are near to one another. Under this condition, width bifurcation
causes, step by step, a splitting of the system into two parts
one of which exists in the short-time scale while the other
one appears in the long-time scale. The two parts can not be
observed together. The long-lived states occur as fluctuations
in the short-time scale while the short-lived states perform a
smooth background in the long-time scale.

This phenomenon is known in literature from theoretical
as well as experimental studies on different realistic small
quantum systems and systems equivalent to them. Examples
are given in the review [8] and in Refs. [18,26,27]. Here also the
results obtained by applying the Feshbach projection operator
formalism [which is basic to the study of the present paper
according to Eqs. (1)–(4)] to well-defined realistic physical
systems are cited. In many-body open quantum systems, this
phenomenon is called mostly dynamical phase transition. It
is known also in optics where it is called superradiant phase
transition according to Dicke [14]. In PT-symmetric systems,
the phase transition is called mostly PT-symmetry breaking
[28]. Observer states are seldom (if at all) observed in realistic
systems.

Common to all these studies is that the dynamical phase
transition is very robust when the necessary conditions are
fulfilled, i.e., when the level density is high. This phenomeno-
logical result obtained from studies on different systems is
explained, in the present paper, by means of the generic
dynamical features of open quantum systems that are caused
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by singular (exceptional) points. Although the existence of
exceptional points is decisive (as shown in the present paper),
the dynamical phase transition does not appear at the parameter
value, which gives the position of the exceptional point itself.
Instead, the phase transition occurs in the neighborhood of one
(or several) exceptional points. Such a result is known from
different experimental studies on concrete realistic systems. It
is discussed in, e.g., Ref. [29]. The results of the present paper
show that the critical parameter range is determined by the
distance between (at least) two exceptional points.

The dynamical phase transition appearing in small quantum
systems at high-level density, causes a new understanding of
time as discussed in Ref. [11]. Time that is characteristic of
the system is inverse proportional to the widths 	i and related
therefore directly to the non-Hermitian part of the Hamiltonian
operator. The widths do not increase limitless as shown in the
present paper. Instead, the system is dynamically stabilized:
the lifetimes of the states of the system are increased and
the system as a whole is stabilized by ejecting the short-lived
state from the system at the dynamical phase transition. Thus,
the time characteristic of the system is bounded from below
in a similar manner as the energy. Beyond the dynamical
phase transition, all states have lost their original spectroscopic
features and the number of states is reduced.

This fact is very well known in nuclear physics (although
very seldom interpreted in this manner). The properties of
compound nuclei are described well by the Unified theory of
nuclear reactions developed by Feshbach [7], which contains
both the short-lived direct reaction part and the long-lived
compound nuclear reaction part. However, Feshbach intro-
duces statistical assumptions in order to describe the long-lived
compound nuclear states. This is in contrast to the calculations
in the present paper where the long-lived states are described
without any statistical assumptions. Instead the long-lived
states are shown by us to arise from width bifurcation causing
a dynamical stabilization of the system at high-level density, a
phenomenon that is caused by exceptional points.

Many of these results seem to be counterintuitive. They
allow us, however, to explain some unexpected experimental
results. For example, the crossover from the mesoscopic to a
universal phase for transmission in quantum dots observed
experimentally [3] can be explained qualitatively by the
formation of the short-lived resonance state at the dynamical
phase transition. The results of the present paper support
this interpretation [12] of the experimental results. Another

example is the experimental observation [6] of nonstatistical
effects in nuclear reactions on middle-heavy nuclei. The data
show directly the formation of different time scales in the
system at high-level density. Other examples are discussed in
Refs. [8,11,29].

The long-lived states beyond the dynamical phase transition
are strongly mixed and show chaotic features. The random
matrix theory is surely applicable only after averaging over
different decay channels (as usually done), i.e., it is not
applicable to the description of small systems coupled to
one channel (and, respectively, to two channels in the case
of transmission through the system). A theoretical analysis of
the spectra (without any statistical assumptions) by restricting
to the results obtained from one decay channel according
to the recent experimental data on compound nuclei [5] is
not performed up to now. On the basis of the results of
the present paper, it can be stated today only the following.
The mixing of the long-lived states (beyond the dynamical
phase transition) is caused by complex many-body forces
via the continuum of scattering wave functions (simulated
by the ωij in our calculations) and not by two-body forces.
This may provide an explanation of the fact that compound
nucleus spectra (after averaging over different channels and
beyond decay thresholds) may be described by a Gaussian
orthogonal ensemble (containing many-body forces), but not
by a two-body random ensemble. This point should be studied
in future in more detail.

In order to prove the role of exceptional points in an
open many-level quantum system it is highly interesting
to study experimentally time symmetry breaking caused by
the influence of a nearby state onto an exceptional point.
Theoretical studies with a symmetrical influence (as in most
calculations of the present paper) can surely not describe the
properties of realistic systems with broken time symmetry.
Symmetry breaking influences not only width bifurcation (as
shown in Fig. 11) but will prove, above all, the irreversible
processes caused by exceptional points in open quantum
systems. These processes are decisive, among others, for the
dynamical stabilization of quantum systems and the formation
of quantum chaos.

Finally we remark that the sensitive dependence of the
dynamics of an open quantum system on the value of external
parameters (as shown in the present paper) can be used in order
to construct small systems with desired properties. This point
is important for applications.
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