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Transport in topologically disordered one-particle, tight-binding models
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We aim at quantitatively determining transport parameters like conductivity, mean free path, etc., for simple
models of spatially completely disordered quantum systems, comparable to the systems which are sometimes
referred to as Lifshitz models. While some low-energy eigenstates in such models always show Anderson
localization, we focus on models for which most states of the full spectrum are delocalized, i.e., on the metallic
regime. For the latter we determine transport parameters in the limit of high temperatures and low fillings
using linear response theory. The Einstein relation (proportionality of conductivity and diffusion coefficient) is
addressed numerically and analytically and found to hold. Furthermore, we find the transport behavior for some
models to be in accord with a Boltzmann equation, i.e., rather long mean free paths, exponentially decaying
currents, while this does not apply to other models even though they are also almost completely delocalized.
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I. INTRODUCTION

A large part of electronic transport theory on disordered sys-
tems is based on spatially ordered, periodic crystal structures
to which disordered impurities, distortions, on-site potentials,
etc., are added. As long as the effect of these disordered
addends is weak, transport analysis may be performed by
mapping the electronic dynamics onto a Boltzmann equa-
tion in which the Bloch states of the periodic part of the
model correspond to free particles. This concept has been
rigorously derived in Ref. [1] and quantitatively applied in,
e.g., Refs. [2–5]. Whenever the influence of the disordered
part becomes large the execution of this approach becomes
challenging [2]. Quantitative results on transport in strongly
disordered 3D, one-particle quantum systems appear to be
rare, some results on the Anderson model have been reported in
Refs. [6–8]. In the paper at hand transport theory is approached
from the opposite side: We consider models which do not
feature any spatially ordered structure whatsoever, and this
model class is sometimes referred to as “Lifshitz models.” We
do not focus on weak random potentials but start from tight-
binding models, the sites of which are spatially distributed
completely at random. This is incorporated into the quantum
models by means of distance-dependent hopping terms in the
tight-binding model. We find that reliable results on transport
properties of such extended, 3D, disordered models in the
high-temperature limit may be obtained using standard linear
response theory and numerically exact diagonalization of finite
samples comprising about 17 000 sites.

The investigation at hand addresses transport in substan-
tially disordered systems but within the delocalized energy
regime (i.e., no thermally activated hopping transport within
the localized regime), thus, the models cannot be viewed as
models for, say, transport in real amorphous silicon [9]. The
discussed type of transport may occur in strongly doped but
weakly compensated semiconductors or amorphous metals.
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However, rather than modeling realistic systems in great
detail, we focus on more general features of the transport
dynamics. While the accepted picture appears to be that
transport phenomena within the delocalized regime in dis-
ordered systems may generally be described using a Drude or
Boltzmann approach [10], we find that this is not necessarily
the case. Close to the Anderson transition there appears to be
a regime in which the electrons are already delocalized but
their transpoprt dynamics seems to be incompatible with a
Boltzmann equation.

The paper at hand is organized as follows: After introducing
our models in Sec. II we identify delocalized regimes in those
in Sec. III. This analysis is not meant to be an exhaustive
and detailed investigation of localization in Lifshitz models,
it only serves to identify the regime in which quantitative
transport investigations may reasonably be performed. In Sec.
IV the conductivity at high temperatures and low fillings for
a variety of models is numerically computed on the basis
of linear response theory. Diffusion coefficient and Einstein
relation are addressed, both analytically and numerically, in
Sec. V. Some features of the above findings on transport
behavior indicate that the models exhibit two different types
of transport behavior even in the delocalized regimes: “Boltz-
mann transport” and “non-Boltzmann transport.” This finding
is worked out in some detail in Sec. VI through consideration
of a mean free path. We close with a summary and conclusion
in Sec. VII.

II. TOPOLOGICALLY DISORDERED TIGHT-BINDING
MODELS

The models we investigate are three-dimensional, one-
particle tight-binding models. The sites at which the particle
may be found, however, are not located periodically in space;
rather, are they distributed completely at random. Such models
have been thoroughly investigated for spectral properties, etc.,
by Lifshitz [11]. However, while the focus there is on the
density of states and the transition from the localized to the
metallic regime, we focus on transport within the metallic
regime. The finite samples of these models on which our
investigations are based are generated as follows: A cube
of volume L3 = N in real space is defined. Then a set
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of N position vectors �xj are drawn at random by drawing
each coordinate of each vector independently from a uniform
distribution on the interval [0,L]. This guarantees a uniform
site distribution with unit density. Now a tight-binding model
with hopping or orbital overlap terms is defined as

Ĥ =
∑
jk

Hjkâ
†
j âk, (1)

where â
†
i ,âi denotes the annihilation and creation operators.

The function Hjk describes the dependence of the overlap
terms on the positions of the respective sites. We consider
isotropic overlap, thus, Hjk essentially depends on the distance
between site j and site k. Generally we assume Hjk to be
decreasing with increasing site distances; however, the overlap
terms will not be limited to nearest neighbors. Since we impose
periodic boundary conditions (eventually in order to keep
finite-size effects as small as possible) the distance sjk is a
somewhat complex function. It may be defined as

sjk :=
√

d2
jk(x) + d2

jk(y) + d2
jk(z), (2)

where the d’ are essentially the Cartesian components of (�xj −
�xk). Due to periodic boundary conditions, they are now defined
as

djk(α) =
{

|αj − αk|, |αj − αk| < L
2

L − |αj − αk|, |αj − αk| > L
2

, (3)

where α is one of the Cartesian coordinates, i.e., α = x,y,z.
Thus, the distance sjk is essentially the shortest distance
between the sites j,k under periodic closure of the sample.
With this definition of the distance we now specify three model
types as follows.

Model type I: The overlap terms as entering the Hamiltonian
in (1) are taken to decrease exponentially with the distance, i.e.,

H I
jk := exp

(−3sjk

l̃

)
, (4)

where l̃ is a parameter that equals the mean overlap length, i.e.,
this and all following overlap terms are constructed such that

1

N

∑
jk

sjk

∣∣H I,II,III
jk

∣∣ = l̃. (5)

This specific model type has been chosen since its Anderson
transition with respect to l̃ has been discussed in the literature
and, thus, the corresponding value l̃ ≈ 0.6 is fairly well
known, cf. Ref. [12] and references therein. (Note that the
definition of the parameter that controls the overlap length in
Ref. [12] differs slightly from the one at hand.) However, as
will become clear below, it is particularly difficult to obtain
quantitative results on transport behavior for this specific
model type. Thus, we introduce another model type for which
results are much less affected by finite-size effects.

Model type II: Here we define the overlap terms as
decreasing as a Gaussian with the distance, i.e.,

H II
jk := exp

(−4s2
jk

π l̃2

)
(6)

again the function is constructed in such a way that (5) holds.
This model is interesting since it shows, as will become
clear below, a transition from transport behavior comparable
to Brownian motion (non-Boltzmann transport) to transport
dynamics as occurring in a crystal with some impurities
(Boltzmann transport) with increasing l̃. It turns out that this
transition only occurs if the phases of the overlap terms are
nonrandom. In order to demonstrate this we investigate a third
type.

Model type III: Here we also define the absolute values of
the overlap terms as decreasing as a Gaussian with the distance;
however, we allow for random phases

H III
jk := exp

(−4s2
jk

π l̃2
+ iφjk

)
, (7)

where the φjk , for say, j > k are real random numbers drawn
independently from the interval [0,2π ]. Of course, to guarantee
hermiticity of the Hamiltonian the φkj have then to be chosen
as φkj = −φjk . This leaves the absolute values unchanged
such that (5) still holds. In some sense this model is even more
random than model type I and model type II and, as it turns
out, shows non-Boltzmann transport only.

All above models but especially model type III bare
a similarity with the “banded random matrix models” as
discussed in, e.g., Ref. [13], in which the overlap terms that
connect sites below a certain distance are simply chosen at
random, all other overlap terms are set to zero. In Ref. [13]
it is reported that those models exhibit diffusive behavior
in 3D on a relevant time scale if the characteristic overlap
length is sufficiently long. Although the models at hand differ
somewhat, our results are in principle in accord with the
findings in Ref. [13].

The above models are all isotropic, i.e., the hopping
amplitudes depend on the distance of the respective sites
only. This, however is no crucial prerequisite for all the
below investigations. Anisotropic disordered systems like,
e.g., discussed in Ref. [14] may be analyzed in the same
way.

III. DETECTION OF DELOCALIZED REGIMES AS A
BASIS FOR TRANSPORT INVESTIGATIONS

The main focus of the paper at hand is the quantitative
analysis of macroscopic transport properties of the above-
defined models (cf. Sec. II). However, as we are dealing
with disordered models Anderson localization may occur
which affects the transport properties severely. Localized
states are basically energy eigenstates that feature spatial
probability distributions with finite spreads, even if the model
is infinitely large. For a given 3D model at a given energy
the eigenstates are either localized or extended. Usually the
delocalized states are in the center of the spectrum (or the
bands) while localization occurs at the edges [8,15,16]. If some
model parameter, e.g., the magnitude of disordered on-site
potentials, hopping lengths, etc., is tuned in some direction
the localized part of the spectrum may increase such that at
some point all states are localized (Anderson transition). If
the parameter is tuned to the opposite extreme it is expected
that (in 3D) in the limit practically all states at all energies
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become delocalized [8]. At an energy regime at which states
are localized all macroscopic transport coefficients such as
diffusion constant, conductivity, etc., vanish, i.e., the system
behaves as an isolator on the large scale (this refers to the
isolated system, i.e., no phonon-assisted, thermally activated
transport like discussed, e.g., in Ref. [9] is considered here).
In the work at hand we are interested in the transport behavior
of the delocalized regime only. In order to make sure that the
changes in transport behavior with model parameters which
we investigate below are not simply due to the onset of
localization we first aim at finding models and parameter
regimes which are almost completely delocalized. To this
end we have to consider the spectrum and the delocalized
part of it. The precise determination of the mobility edge
(precise energy which seperates localized from delocalized
regimes) is a formidable task of its own. In the context of
the Anderson model it has been approached by sophisticated
techniques such as transfer matrix methods, Thouless scaling,
fractal analysis, etc. [16,17]. For our purposes it suffices to
have less precise information on the mobility edge since
we only intend to find out whether the biggest part of the
spectrum is delocalized. Thus, we employ a rather simple
criterion to determine the approximate position of the mobility
edge. This criterion is based on the inverse participation
number

I (E) :=
N∑

i=1

|ψ(E,i)|4. (8)

Here ψ(E,i) is the amplitude at site i of an energy eigenstate
with energy E. Localization analysis based on the inverse
participation number is well established. It has been used even
for rather detailed investigations in the Anderson model [17],
as well as for topologically disordered systems [18]. Here we
suggest a very simple “delocalization indicating criterion”: we
guess that states at an energy E are surely delocalized if I (E) <

90/N for a finite but large-enough model of size N . This guess
appears to be in reasonable accord with various more carefully
derived results on the mobility edge from the literature. It
has furthermore the advantage of being numerically cheap
since it turns out that averaging over about five random
models described by the same model parameters suffices
to identify Edeloc. from I (Edeloc.) = 90/N with reasonable
accuracy. We find (as expected) that this equation has two
solutions; thus, the regime between those two energies is
delocalized.

We illustrate our “delocalization criterion” in Figs. 1, 2,
and 3, which refer to the model types I, II and III, respectively.
The figures show a “scaled inverse participation number,”
i.e., NI (E) as a function of E for various N together with
the density of states (DOS), given in arbitrary units. (If not
mentioned otherwise all data presented in this paper are
averaged over five random implementations of the addressed
model as defined in Sec. II. However, this averaging appears
not to be crucial, typically the data for various implementations
of the same model looks very similar. Wherever the data are
presented as a histogram of course a further averaging over an
appropriate bin size is performed.)

Figures 1(a), 2(a), and 3(a) correspond to mean overlap
lengths l̃ which are only very slightly above the Anderson
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FIG. 1. Scaled inverse participation number NI (E) and density
of states (DOS) for model type I. (a) Corresponds to mean overlap
length l̃ = 0.6 which appears to be at the Anderson transition; (b)
corresponds to mean overlap length l̃ = 4; an extended delocalized
regime appears to exist.

transition. Accordingly, the regime in which the NI (E)
coincide is very narrow and appears to yield NI (E) ≈ 90. The
value for Fig. 1(a) is in very good agreement with results on the
Anderson transition for the same model reported in Ref. [12]
and references therein. Figures 1(b), 2(b), and 3(b) correspond
to mean overlap lengths l̃ substantially above the Anderson
transition. Correspondingly, there are extended regimes to
which NI (E) � 90 applies. Furthermore, for large-enough N

the scaled inverse participation numbers to which NI (E) � 90
applies appear to become independent of N which indicates
that states within this regime are indeed delocalized. For
some models and some energies we additionally computed
the mobility edge from the more costly method described
in Ref. [17]. It turns out that the deviations between the
so-computed mobility edge and our Edeloc. are on the order of
5%. As final demostration of the validity of our delocalization
criterion, we compare the energies at which NI (E) = 90
for the 3D Anderson models with results on the mobility
edge from the literature [19,20]. (Note that this is only to
“calibrate” our criterion, i.e., determine the factor “90.” We will
not analyze the Anderson model quantitatively for transport;
such an investigation may be found in Ref. [21].) The results
are shown in Fig. 4. Obviously there is reasonable agreement
between result from our criterion and data from the literature.
The agreement appears to become better in the regime we are
interested in, i.e., disorders W where most of the eigenstates
are delocalized.
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FIG. 2. Scaled inverse participation number NI (E) and density
of states (DOS) for model type II. (a) Corresponds to mean overlap
length l̃ = 0.7 which appears to be at the Anderson transition; (b)
corresponds to mean overlap length l̃ = 1; an extended delocalized
regime appears to exist.

Our method is not appropriate to determine the Anderson
transition or the mobility edges with great precision because
NI (Ec) in the critical region is not a constant but depends on
the sample size (fractal dimension). It, however, appears well
suited to quickly identify models for which the vast majority
of all energy eigenstates is delocalized which is the purpose
of the investigation at hand. It may be worth noting here that
frequently, e.g., in the context of the Anderson model, the
mobility edge lies in an energy regime with a relatively low
density of states. This, however, appears to hold for the present
models only for type III. For model types I and II the mobility
edge appears to lie at or close to the maximum density of
states, cf. Figs. 1(b), 2(b), and 3(b). After those preliminary
considerations we now simply calculate the percentage of
all energy eigenstates for which NI (E) � 90, according to
the previous considerations we expect this to be close to or
a little smaller then the percentage of all eigenstates that
are delocalized. This is done for all three model types and
various mean overlap lengths. The result is displayed in Fig. 5.
Obviously, the Anderson transition for all three model types
occurs, very roughly, around l̃ ≈ 0.6. However, whereas for
model types II and III almost all states are delocalized for
l̃ � 1.3 [Fig. 5(b)] a substantial fraction of states remains
localized up to l̃ ≈ 6 for model-type I [Fig. 5(a)]. Since it
is a reasonable assumption that, using numerical diagonal-
ization, reliable transport constants may only be obtained for
sample sizes that are large compared to the mean overlap
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FIG. 3. Scaled inverse participation number NI (E) and density
of states (DOS) for model type III. (a) Corresponds to mean overlap
length l̃ = 0.6 which appears to be at the Anderson transition; (b)
corresponds to mean overlap length l̃ = 1; an extended delocalized
regime appears to exist.

length, we do not pursue the analysis of model type I any
further for we are numerically limited to sample sizes of
L = 26.
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FIG. 4. Results on the mobility edge in the 3D Anderson model;
W quantifies the degree of disorder. Compared are results from the
“90/N” criterion for different sample sizes to results from more
refined methods from the literature [19,20]. The results from our
90/N criterion appear to converge reasonably against the results
from Ref. [20]. Error bars for the 90/N criterion indicate variations
arising from different random implementations of the Anderson
model featuring the same degree of disorder.
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FIG. 5. Percentage of delocalized energy eigenstates for various
mean overlap lengths l̃. Panel (a) addresses model type I. The vertical
solid line at l̃ = 0.6 indicates the Anderson transition as found in
Ref. [12]. Although the data appear not to be fully converged for
some l̃ it is obvious that about 30% of the spectrum remain localized
up to l̃ = 6. Panel (b) addresses model types II and III. Although
the data appear not to be fully converged for some l̃ close to the
Anderson transition, it is obvious that less than 10% (and decreasing)
of the spectrum are localized for l̃ > 1.3.

IV. CONDUCTIVITY AT LOW FILLINGS AND
HIGH TEMPERATURES

First, we investigate the conductivity of model types II and
III for various hopping lengths. We employ linear response
theory, i.e., the Kubo formula. In the limit of high temperatures
and low fillings (routinely described within the framework of
the grand-canonical ensemble) the dc conductivity is given as

σdc = σ (t → ∞), σ (t) = f

T

∫ t

0

1

N
Tr {Ĵ (t ′)Ĵ (0)}dt ′

(9)

[22,23], where f is the filling factor (mean number of particles
per site at equilibrium), N denotes the number of sites in
the sample (since we work at unit spatial site density N also
equals the volume), trace and current operators refer to the
one-particle sector only, and, furthermore, J (t) denotes the
current operator in the Heisenberg picture. T is the temperature
and we set kB = 1, h̄ = 1, and, furthermore, we set the charges
of the particles to unity, i.e., q = 1. Now, of course, an
appropriate current operator has to be defined. In the context of
periodic systems this is often done by considerations based on

the continuity equation for the particle density [24–27]. Here
we choose a definition of the current which is based on the
“velocity” in, say, x direction, i.e.,

v̂ = i[Ĥ ,x̂]. (10)

Here x̂ is a x-position operator and it is defined as

x̂ =
N∑

i=1

xin̂i , n̂i := â
†
i âi , (11)

where xi is the x coordinate of the position of site i. Thus, the
operator v̂ may also be written as

v̂ = i
∑
ij

(xj − xi)Hij â
†
i âj . (12)

The interpretation of such an operator as velocity or current
is somewhat in conflict with periodic boundary conditions
(which we impose for technical reasons). A (slow) transition
of probability from, say, the right edge of the sample (x = L)
to the left edge of the sample (x = 0) would give rise to very
high negative velocities. But within the concept of periodic
boundary conditions such a transition should correspond to
low positive velocities. Thus, in order to obtain a suitable
current operator, we modify the above velocity operator (12)
such that it features the same structure for transitions arising
from the periodic closure as it already exhibits for transitions
within the sample,

Ĵ =
∑
ij

Jij â
†
i âj

Jij =
{

i[xj − xi]Hij |xj − xi | < L
2

sgn(xj − xi)[i[L − |xj − xi |]Hij ] |xj − xi | > L
2

.

(13)

Equipped with this definition for the current we may now
simply calculate the current autocorrelation function as ap-
pearing in (9). We do so using standard numerically exact
diagonalization routines. Within reasonable computing time
we are able to treat samples up to a size of L = 26. It turns out
that this appears to be sufficient to render finite-size effects for
a range of models negligible. In order to be able to compare
the key features of the dynamics of the current autocorrelation
functions for various model types and sizes to each other
we compute a kind of “normalized” current autocorrelation
functions, j ′(t) := Tr{Ĵ (t)Ĵ (0)}/Tr{Ĵ 2(0)}.

Figures 6(a) and 6(b) show j ′(t) for model types II and
III for different sample sizes. Obviously the j ′(t) coincide
for the larger sample sizes for the relevant times, i.e., for
times at which j ′(t) is substantially different from zero. From
this finding we conclude that in this case finite-size effects
are indeed negligible. However, whether or not L = 26 is
sufficient to get rid of finite-size effects depends on the model
type and the mean overlap length. Typically, finite-size effects
are less severe for shorter mean overlap lengths. Figure 7(a)
shows j ′(t) for model type II (L = 26) for two mean overlap
lengths. l̃ = 1.3 is the shortest mean overlap length for which
most likely the largest part of the spectrum is still delocalized
[cf. Fig. 5(b)], and l̃ = 2.2 is the longest mean overlap length
for which we obtain results that are reliably unaffected by
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FIG. 6. Normalized current autocorrelation function j ′(t) for
increasing sample sizes L. Note that due to the logarithmic scale
the initial dynamics is most relevant. Panel (a) addresses model-type
II, with mean overlap length l̃ = 2.0. The data appear to be reasonably
free of finite-size effects for L � 24. The decay appears to be
essentially exponential. Panel (b) addresses model type III, with mean
overlap length l̃ = 4.0. The data appears to be reasonably free of
finite-size effects for L � 17. The decay appears to be essentially
Gaussian

finite-size effects. Figure 7(b) shows j ′(t) for model type
III for an intermediate mean overlap length. For model type
II the relaxation dynamics appear to undergo a transition
from a Gaussian decay to an exponential decay as the mean
overlap lengths become larger, cf. Fig. 7(a). For model type
III the relaxation dynamics are more or less Gaussian at all
mean overlap lengths, cf. Fig. 7(b). The exponential decay of
the current for model type II at long mean overlap lengths
suggests that the respective dynamics may be interpreted as
the dynamics of almost free (lattice) particles which are only
weakly scattered [23]. Within the framework of such and inter-
pretation the (disordered) eigenstates of the current operator
Ĵ take the role of the Bloch states in a periodic crystal. Since
such a behavior may be described on a phenomenological
level by a Boltzmann equation we call this type of dynamics
“Boltzmann transport.” For all cases in which the current
decays nonexponentially (e.g., Gaussian) the dynamics cannot
be described by a standard Boltzmann equation, this occurs
although this cases correspond to the metallic (delocalized)
regime as well. Thus, we call this type of dynamics “non-
Boltzmann transport.” We elaborate on this issue in more detail
ins Sec. VI. To conclude the considerations on conductivity
we plot σdcf/T for model types II and III over mean overlap
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FIG. 7. Normalized current autocorrelation function j ′(t) for
the longest and shortest reasonable mean overlap lengths l̃ (see
text), sample size L = 26. Panel (a) addresses model type II, with
mean overlap length l̃ = 1.2 and l̃ = 2.5. The decay appears to be
dominantly Gaussian for the short and dominantly exponential for
the long mean overlap lengths. Panel (b) addresses model type III,
with mean overlap lengths l̃ = 2.0 and l̃ = 5.0. The decay appears to
be essentially Gaussian for both mean overlap lengths.

length (on a double logarithmic scale); see Fig. 8. The plot
clearly suggests a power-law scaling of the conductivity mean
overlap length. The corresponding fits yield, for the respective
conductivities,

σ II
dc = f

T
0.17 l̃4.83, σ III

dc = f

T
0.19 l̃3.54. (14)

This scaling is considered to be valid only in a certain regime.
On one side, the regime is limited by l̃ � 1.3, since below
that value substantial parts of the spectrum become localized,
which is, of course, expected to change transport behavior
drastically. On the other side, this scaling is not necessarily
believed to hold arbitrarily far from the critical point. Our
numerics, however, indicate that it holds within the regime
displayed in the figures. This is our first main quantitative
result. While the conductivities of the two model types appear
to coincide at l̃ ≈ 1.3 the conductivity increases much faster
with increasing mean overlap lengths in model type II. This
supports the concept of model type II exhibiting Boltzmann-
transport for longer mean overlap lengths, while model type
III always shows non-Boltzmann transport.
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FIG. 8. Scaled conductivity Tf −1σdc (or diffusion constant D, see
text) for model types II and III as a function of mean overlap length
l̃, with sample size L = 26. For both model types the conductivity
appears to scale as a power law with l̃; the dashed (− − −, model
type II) and dotted (. . ., model type II) lines are the respective fits,
cf. (14). Whereas at l̃ ≈ 1.3 the conductivities more or less coincide
the conductivity for model type II appears to increase much faster. The
vertical error bars correspond to different random implementations
of the same model.

V. DIFFUSION CONSTANT AND EINSTEIN RELATION

Apart from the conductivity the diffusion coefficient is
another important transport quantity. According to the Einstein
relation, conductivity and the diffusion constant should be
proportional to each other. However, the validity of the Einstein
relation and the limits of its applicability have been much
debated subjects and continue to be so in the context of
quantum systems [28] (and references therein). Recently it
has been reported that the Einstein relation holds for periodic,
interacting, 1D quantum systems at high temperatures. It is
claimed to hold even for finite times, thus taking the form [28]

D(t) = T

ε2
σ (t), (15)

where D(t) is the (time-dependent) diffusion constant and
ε2 is the uncertainty (variance) of the transported quantity
per site at the respective equilibrium. In the following we
investigate whether this relation also holds for the disordered,
noninteracting, 3D quantum systems at hand. In our case the
transported quantity is the particle density. In the limit of high
temperatures and low fillings the equilibrium fluctuations scale
as ε2 = f [22]. Thus, if one hypothetically accepts the validity
of (15) also for the system at at hand, one gets from inserting
(9)

D(t) =
∫ t

0

1

N
Tr{Ĵ (t ′)Ĵ (0)}dt ′. (16)

In the following we demonstrate that almost the same relation
between the diffusion constant and the current autocorrelation
function may also be obtained from another consideration
which applies to the disordered systems at hand. If a diffusion
equation holds, the derivative with respect to time of the spatial
variance of the diffusing quantity equals twice the diffusion
constant [28]. We may analyze the dynamics of this variance
on quantum mechanical grounds for the models hat hand. If
initially the particle is completely concentrated at site i and we

assume that the spatial expectation value does not move (which
is an assumption since the model is disordered, but since
the disorder is isotropic the assumption appears reasonable
and furthermore may be justified by numerical checking) the
variance δ2xi(t) reads

δ2xi(t) =
∑

j

(xj − xi)
2Tr{n̂j (t)n̂i}. (17)

Averaging this over all sites yields

	2x(t) = 1

N

∑
ij

(xj − xi)
2Tr{n̂j (t)n̂i}. (18)

Taking the second derivative with respect to time yields

d2

dt2
	2x(t) = − 1

N

∑
ij

(xj − xi)
2Tr{[Ĥ ,[Ĥ ,n̂j (t)]]n̂i}. (19)

Due to the invariance of the trace under cyclic permutation of
the traced operators this may be rewritten as

d2

dt2
	2x(t) = 1

N

∑
ij

(xj − xi)
2Tr{[Ĥ ,n̂j (t)][Ĥ ,n̂i]}. (20)

Since the total particle number
∑

i n̂i(t) is conserved, the
respective commutators vanish and the remainder reads

d2

dt2
	2x(t) = −2

N

∑
ij

Tr{[Ĥ ,xj n̂j (t)][Ĥ ,xi n̂i]}. (21)

This, however, is essentially the velocity autocorrelation
function, cf. (10) and (11), such that

d2

dt2
	2x(t) = 2

N
Tr{v̂(t)v̂(0)}. (22)

Given that, as explained above, d
dt

	2x(t) = 2D(t) we get

D(t) =
∫ t

0

1

N
Tr{v̂(t ′)v̂(0)}dt ′. (23)

Which is, up to the difference between v̂ and Ĵ , the same
relation one also gets from boldly applying an Einstein relation
that has been derived in a different context, cf. (16). The
difference between v̂ and Ĵ is not completely trivial since
the periodic boundary conditions change the topology of the
system. Nevertheless, (16) and (23) encourage a numerical
check of the validity of the Einstein relation for the systems at
hand in the respective sense. This numerical check proceeds
as follows: We implement an initial state of the form

ρ(0) = 1

Z
exp

[
−

(
x̂ − L

2

)2

2

]
,

(24)

Z = Tr

{
exp

[
−

(
x̂ − L

2

)2

2

]}
,

i.e., a state in which the probability is more or less concentrated
in a thin slab of a thickness on the order of 1, perpendicular to
the x axis in the middle of the cubic sample. We calculate the
increase of the variance of this state and take a derivative with
respect to time,

D1(t) = 1

2

d

dt
Tr{x̂2(t)ρ(0)}. (25)
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FIG. 9. Comparison of two methods to calculate (time-
dependent) diffusion coefficients: D1(t) from (25) and D2(t) from
(26). The data address model type II with (a) mean overlap length
l̃ = 1.5 and (b) mean overlap length l̃ = 2.0 for the indicated sample
sizes. Obviously, finite-size effects are more pronounced for D1(t);
however, it appears to converge against D2(t) for large sample sizes.
This coincidence implies the validity of an Einstein relation.

This corresponds to the diffusion constant one obtains from
monitoring the spatial expansion of the probability distribu-
tion. We compare this to the integrated current autocorrelation
function, which is what (16) and (23) imply:

D2(t) =
∫ t

0

1

N
Tr{Ĵ (t ′)Ĵ (0)}dt ′. (26)

The results are displayed in Figs. 9 and 10 for model types II
and III. Although finite-size effects are much more pronounced
if the diffusion constant is calculated by means of (25), there
is, for the initial, valid time period a very good agreement in
the sense of (15). Thus, we conclude that the Einstein relation
is valid for the systems at hand and Fig. 8 may be viewed
as not only describing the conductivity but also the diffusion
constant at high temperatures.

VI. DIFFERENT TYPES OF TRANSPORT BEHAVIOR:
BOLTZMANN AND NON-BOLTZMANN TRANSPORT

As already indicated in Sec. IV, it appears reasonable to
interpret the described transport behavior in terms of two
different transport types, although both correspond to the
metallic regime: Non-Boltzmann transport which is (in a
sense described below) comparable to the dynamics of an
overdamped Brownian particle or the thermally activated
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FIG. 10. Comparison of two methods to calculate (time-
dependent) diffusion coefficients: D1(t) from (25) and D2(t) from
(26). The data address model type III with (a) mean overlap length
l̃ = 3.0 and (b) mean overlap length l̃ = 4.0 for the indicated sample
sizes. Obviously, finite-size effects are more pronounced for D1(t);
however, it appears to converge against D2(t) for large sample sizes.
This coincidence implies the validity of an Einstein relation

hopping transport which may occur in the localized regime of
amorphous and/or doped semiconductors [9] and Boltzmann
transport which resembles the dynamics of a particle in a
periodic lattice featuring some impurities or a system of
quasifree, weakly interacting particles. These transport types
have also been found in other one-particle quantum systems,
e.g., non-Boltzmann transport in modular quantum systems
[29,30] and both transport-types in the 3D Anderson model
[6,17]. In order to elaborate on this point somewhat further
we define a “mean free path” for the models at hand from
the following consideration: If the particle was completely
ballistic (infinite mean free path) the current autocorrelation
function would never decay and the time-dependent diffusion
coefficients in the sense of (16) would always increase linearly.
The time-dependent diffusion coefficients of the models at
hand increase linearly at the beginning, cf. Figs. 9 and 10,
but reach a final plateau after that initial period. We define,
somewhat arbitrarily, the ballistic period as the period before
the diffusion coefficient has reached 90% of its eventual value.
Now we call the mean free path the square root of the increase
of the spatial variance of an initial state of type (24) during
this ballistic period. So the mean free path is roughly the initial
increase of width of an initially narrow probability distribution
up to the point where the fully diffusive dynamics begins. The
so-defined mean free paths λ are displayed in Fig. 11. The
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FIG. 11. Mean free paths λ (for definition see text) for model
types II and III as a function of mean overlap length l̃, sample size
L = 26. For both model types the mean free paths appear to scale
as power laws with l̃; the dashed (− − −, model type II) and dotted
(. . ., model type III) lines are the respective fits, cf. (27). While for
model type III the mean free path is always lower than the mean
overlap length λIII < l̃ the mean free path of model type II becomes
larger than the mean overlap length l̃ at about l̃ ≈ 1.8. This indicates
that model type II undergoes a transition from non-Boltzmann to
Boltzmann transport, while model type III does not. The vertical
error bars correspond to different random implementations of the
same model. These variations appear to increase for small l̃.

mean free path appears to scale as a power law with the mean
overlap length for both model types II and III. The respective
fits yield

λII = 0.44 l̃2.68, λIII = 0.45 l̃0.99. (27)

As already mentioned below (14) this scaling is considered to
be valid only in a certain regime. On one side the regime is
limited by l̃ � 1.3, since below that value substantial parts of
the spectrum become localized, which is of course expected to
change transport behavior drastically. On the other side, this
scaling is not necessarily believed to hold arbitrarily far from
the critical point. Our numerics, however, indicate that it holds
within the regime displayed in the figures.

This is our second main quantitative result. While the
mean free paths of the two model-types are very similar for
l̃ ≈ 1.3 [cf. Fig. 5(b)], the mean free path increases much
faster with increasing hopping lengths in model type II. This
finding supports the classification of the two different types
of transport: While for model type III the mean free path λ

remains below and scales as the mean overlap length for all l̃,
it appears that λ becomes larger than l̃ for mean overlap lengths
above, say, l̃ ≈ 1.8 for model type II. Thus, transport in model
type III may always be classified as non-Boltzmann transport,
whereas the transport behavior of model type II appears
to undergo a transition from non-Boltzmann to Boltzmann

transport at about l̃ ≈ 1.8. This point of view is, furthermore,
supported by the fact that the current autocorrelation function
decays in Gaussian fashion at all l̃ for model type III, whereas it
undergoes a transition from Gaussian to exponential decay for
model type II at l̃ ≈ 1.8, cf. Fig. 7(a). Note that this Boltzmann
transport occurs, although model II is also topologically
completely disordered, i.e., features no site order whatsoever.

VII. SUMMARY AND CONCLUSION

We investigated the transport behavior of quantum systems
which may be described as three-dimensional, topologically
completely disordered, one-particle, tight-binding models on
the basis of the Schroedinger equation. These models are
intended as very simplified descriptions of (hypothetical)
solids in which the atomic nuclei are distributed completely
at random in space without any short- or long-range order.
The hopping or orbital overlap terms of the tight-binding
Hamiltonian are simply taken to be decreasing functions of
the distances between the nuclei. By means of a simple
method based on the inverse participation number, we identify
(rather roughly) the localized regimes. While the Anderson
transition appears to occur approximately at a mean overlap
length of l̃ ≈ 0.6 (with respect to the mean site distance)
for all considered models, some models exhibit delocalized
eigenstates at more or less all energies already at mean overlap
lengths of l̃ > 1.3 in others 30% of the spectrum remain
localized up to mean overlap lengths of l̃ > 6. For quantitative
transport investigations we focused on models which are
almost entirely delocalized. The conductivity at low fillings
and high temperatures has been determined by evaluating
the Kubo formula using numerically exact diagonalization
for finite samples. It turns out that valid quantitative results
with negligible finite size effects may be obtained for a
range of models at sample sizes of about 17 000 sites. The
conductivities are found to depend as power laws on the mean
overlap lengths sufficiently above the Anderson transition. In
addition to the conductivity also the diffusion coefficient is
addressed. Theoretical considerations which suggest that an
Einstein relation should hold, i.e., that the diffusion coefficient
may expected to be proportional to the conductivity are
presented. Those considerations are numerically confirmed by
monitoring the expansion of an initially narrow wave package.
Eventually a mean free path is defined and numerically
determined. It is found that for a range of models the mean
free path substantially exceeds the mean overlap length. This
suggests that these models may be thought of as systems in
which particles travel almost ballistically over distances much
larger than the typical site distance and undergo only weak
scattering, like in the case of a periodic crystal containing
some impurities. This holds although the systems feature no
spatial order whatsoever.
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