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Branching and annihilating random walks: Exact results at low branching rate
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We present some exact results on the behavior of branching and annihilating random walks, both in the
directed percolation and parity conserving universality classes. Contrary to usual perturbation theory, we perform
an expansion in the branching rate around the nontrivial pure annihilation (PA) model, whose correlation and
response function we compute exactly. With this, the nonuniversal threshold value for having a phase transition
in the simplest system belonging to the directed percolation universality class is found to coincide with previous
nonperturbative renormalization group (RG) approximate results. We also show that the parity conserving
universality class has an unexpected RG fixed point structure, with a PA fixed point which is unstable in all
dimensions of physical interest.
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I. INTRODUCTION

The study of critical behavior in out of equilibrium systems
has been a very active topic in statistical mechanics during
the last decades [1–3]. As in equilibrium, fluctuations and
correlations become large in systems close to a continuous
phase transition, leading to divergences in quantities such
as correlation time and length, and to emergent phenomena
classifiable (as in equilibrium) in different universality classes.

Renormalization group (RG) methods have been employed
since their development to the study of critical dynamics [1].
These are well suited for the task, given that the diverging
correlation length in second order phase transitions signals the
emergence of scale free behavior, whereas the RG approach
focusses on how systems change under scale transformations.

In this work we study systems which attain a nonthermal
(nonequilibrium) steady state at long times, having a stationary
probability distribution which is not constrained by a detailed
balance condition. These out of equilibrium systems usually
exhibit a much richer variety of phenomena than their
counterparts at or close to equilibrium. In particular, usual RG
techniques have to be adapted, given that one does not know
the explicit probability distribution, in the way one knows the
Boltzmann-Gibbs distribution when in equilibrium.

Perturbative RG has been used in the study of second order
out of equilibrium phase transitions, although not with the
same level of success as in the study of equilibrium phase
transitions. This is due in part to the absence of high-order
perturbative results, as opposed to equilibrium problems, but
also to deeper physical issues. For example, for most of these
systems, upper critical dimensions happen to be generally far
from the dimensions of physical interest, complicating the
usual ε expansion. Moreover, these models generally lack a
lower critical dimension or (generally speaking) an exactly
solvable low d model. Finally, out of equilibrium systems
also tend to be more prone to show genuinely nonperturbative
behavior, such as large couplings [4–6].
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Here we study some properties of phase transitions oc-
curring in what are known as branching and annihilating
random walks (BARWs) [3,7–10], that is, systems composed
of particles of a single species A, which diffuse in a d-
dimensional space, and which can suffer both annihilation and
branching (i.e., offspring creation) processes, with different
rates. From these competing processes typically emerges, at
long times, a stationary state which can either be in an active or
an absorbing phase, with the absorbing phase corresponding
to a no-particles, no-fluctuations state. The existence of this
absorbing state implies in particular the absence of detailed
balance (and even ergodicity) in these systems. The transition
between both phases, which can take place depending on the
microscopic rates, is typically of a continuous type. BARWs
are not only of direct physical interest, but also present a
relatively simple class of out of equilibrium systems, and have
been shown to be very useful for the study of the role of
fluctuations in out of equilibrium statistical physics [3].

Due to universality, it is in general enough to consider the
simplest possible reactions, such as for example

2A
λ−→ ∅, A

σ−→ 2A (1)

or

2A
λ−→ ∅, A

σ−→ 3A (2)

(where A → 2A does not exist in the second case) as these
reactions are the most relevant in the RG sense. At the mean
field level (that is, for the classical rate equations) no phase
transition is found. That is, fluctuations are here responsible for
the very existence of a phase transition. This is in stark contrast
with most other known phase transitions, where mean field
results predict in general the presence or absence of a phase
transition, even when they are unable to yield accurate phase
diagrams or critical exponents. In the case of BARW, the mean
field result shows the need for taking into account statistical
fluctuations, a task for which one expects RG methods to be
particularly effective. Notice that in the definition of BARWs
we exclude explicitly the reaction A → ∅. If such reaction
is present, the phase diagram is qualitatively well described
at a mean field level. Notice also that in this work we will
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not be dealing with the pair contact processes with diffusion
(PCPD) universality class [11,12], which can be seen, in
terms of BARWs, as systems whose reactions involve always
necessarily at least two particles.

BARWs can be classified into subclasses [3,8], and in this
work we will concentrate on the simplest two, which depend
on the presence or absence of a symmetry conserving the
parity of the number of particles. If no such symmetry exists,
as is the case of the system defined by (1), it has been shown
that the BARW system belongs to the directed percolation
(DP) universality class [13], whenever a second order phase
transition takes place. When only reactions preserving the
parity of the number of particles [e.g., the system (2)]
are present, an additional symmetry appears, changing the
universal properties of the system. If a phase transition takes
place in this case, it is known to be in the parity conserving (PC)
universality class [3] (also more properly known as generalized
voter universality class [12]). From now on we will refer to
these systems as BARW-DP and BARW-PC respectively.

There exist various known results about BARWs, and even
some exact results for low-order vertices [14] or for special
BARW systems which do not present phase transitions [15].
Within perturbative RG, a phase transition for the simplest
BARW-DP system [the one consisting of the reactions (1)]
is found for space dimensions d � 2 only [8]. This improves
the mean field result, but still contradicts Monte Carlo and
nonperturbative renormalization group (NPRG) results, which
observe a phase transition for any d [16,17]. This difficulty of
the perturbative approach may have to do with the fact that for
d > 2 the transition occurs for values of the annihilation rate λ

which are large, and thus out of reach of a perturbative analysis
performed around the reactionless Gaussian fixed point.

As for BARW-PC, the perturbative studies of [8] showed
the existence of a new universality class different from DP,
and of a new fixed point for d smaller than a new critical
dimension dc � 4/3. This behavior had already been predicted
as a consequence of the additional symmetry [7], although
some early studies [18] were not conclusive with respect
to this new universality class. In the NPRG context there
have also been studies of BARW-PC [19], which seem to
confirm the existence of a new fixed point for d < dc � 4/3.
Within both methods the appearance of this new fixed point is
associated with a change of stability of renormalization group
fixed point corresponding to pure annihilation (PA, a theory
without branching reactions): for d > dc, the branching σ is a
relevant perturbation and only an active phase exists, whereas
for d < dc, σ is irrelevant and an absorbing phase with the
properties of PA at long distances is expected for small σ .

In this work (i) we obtain exact and closed equations for
all response functions of the PA model and (ii) we show how
to perform an expansion in σ around this model. Since our
approach is valid for any value of the annihilation rate λ, we
obtain exact results at small σ .

For BARW-DP we show that an active to absorbing phase
transition exists in all dimensions d and we compute the
nonuniversal threshold values λth(d) above which it occurs
for two specific microscopic realizations of the system. For
BARW-PC we show, in disagreement with both the two-loop
perturbative and local potential approximation (LPA) results,
that the stability of the PA fixed point does not change

between one and two dimensions. This contradicts the existing
scenarios explaining the existence of a phase transition in
d = 1. We propose an alternative scenario that reconciles all
existing results. It is based on the appearance in a dimension
d ∈ ]1,2] of two fixed points that split apart as d is decreased.
The fixed point with the smallest fixed point value for the
branching rate should be fully attractive, while the other one
should have a repulsive direction associated with the active
to absorbing phase transition belonging to the PC universality
class. Some of these results have been recently presented in an
abridged form in [20].

The paper is organized as follows. In Sec. II we give a
quick overview of the application of field theory to the study
of out of equilibrium statistical systems. The interested reader
is nonetheless strongly advised to read more general reviews of
these methods [3,9,21]. In Sec. III we show a method to find all
generalized response functions in the steady state of the simple
reaction diffusion system corresponding to PA. In Secs. IV and
V we propose an expansion around this solution, in order to
analyze BARWs in both universality classes, and to answer
some specific questions concerning their phase diagrams. We
have decided, in order to make the proofs simple, to use along
the main part of the article derivations based on resummations
of perturbative series. For completeness, however, we give
nonperturbative proofs (beyond an all-loop order analysis) of
our results in the Appendices, as well as presenting some other
technical details.

II. FIELD THEORY FOR BARW

There are many known methods in the literature for the
mapping of out of equilibrium problems onto field theories
[21–23]. In the case of reaction-diffusion processes, a field
theory can be constructed in a standard way by using the
Doi-Peliti formalism [23], the idea of which is to re-express
the master equation for the occupation probabilities in a
lattice system using creation and annihilation operators in an
abstract Fock space, followed by a coherent-state path integral
representation, and (optionally) the use of a continuum limit
for the lattice. As a result of this procedure, one obtains a
functional integral (the so-called generating functional)

Z[J,Ĵ ] =
∫

DφDφ̂ exp

(
−S[φ,φ̂] +

∫
x

Jφ + Ĵ φ̂

)
(3)

with an appropriate action S[φ,φ̂], which captures exactly the
microscopic reactions. Here we have introduced the notation,
to be used throughout:

x = (x,t) and p = (p,ν), (4)

where the last convention will be used in Fourier space. We
also introduce some notation for the integrals:∫

x

=
∫

ddx dt,

∫
p

=
∫

ddp

(2π )d
dω

2π
. (5)

The time-dependent statistical correlation and response
functions can then be computed from Z , by functional
derivation with respect to the sources J and Ĵ . In this context,
the expected value of the field φ(x) is associated with the local
density of A particles, and the response field φ̂(x) allows for
the computation of response functions.
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For general processes of the type A
σm−→ (m + 1)A and

kA
λk−→ ∅, with diffusion constant D, this procedure yields

(ignoring initial conditions, which play no role in the long
time stationary state, see for example [9])

S[φ,φ̂] =
∫

x

(φ̂(x) (∂t − D∇2)φ(x) − λk[1 − φ̂(x)k]φ(x)k

+ σm [1 − φ̂(x)m]φ̂(x)φ(x)). (6)

Diffusion is responsible for the kinetic part (corresponding to
Brownian motion). Reactions give rise to interaction terms in
the potential-like part of the action. A perturbative expansion
can be set around the exactly solvable Gaussian part of the
action in the usual way [24]. One can perform a perturbative
expansion [8] to approximate the correlation and response
functions of the theory at any desired order in λk , σm and
ε = dc − d, with dc the upper critical dimension, above which
mean field results are expected to give a good description
of the universal properties of the system. As stated in the
introduction, for the purposes of the present work we will
concentrate on reactions involving a minimal number of
particles. These are enough to characterize the universal
properties of these systems, and, for nonuniversal properties,
they can be seen as the simplest examples.

The connected correlation and response functions of a
theory will be written

G(n,m)(x1, . . . ,xn,x̂1, . . . ,x̂m)

= 〈φ(x1) · · · φ(xn)φ̂(x̂1) · · · φ̂(x̂m)〉c (7)

which are generated by taking derivatives of the logarithm of
the generating functional lnZ[J,Ĵ ]. These can be obtained in a
perturbative series using connected Feynman diagrams. In this
work we will mostly work with the vertex functions 
(n,m),
the amputated 1PI functions of the theory, which include
all the information coming from fluctuations in the system.
The generating functional 
[〈φ〉,〈φ̂〉] for the 
(n,m) vertices is
given by the Legendre transform of the connected generating
functional lnZ[J,Ĵ ].

It is often convenient to perform a shift in the fields, of the
form [8]

φ̂(x) = 1 + φ̄(x), (8)

which allows for some simplifications in the functional form
of the interaction potential, and is needed to make the nexus
between BARW-DP and directed percolation. This shift is not
convenient in the BARW-PC case however, where it obscures
the presence of the related parity conserving symmetry.

In the case of out of equilibrium models, special care must
be taken with respect to the causal structure of the theory. In this
regard, actions such as (6), given by the Doi-Peliti formalism,
implicitly require the use of the Itô prescription, in which all
quantities are evaluated with the convention that the Heaviside
function �(t) is zero for t = 0 [25,26]. In perturbation theory
it is relatively easy to implement the so-called Itô prescription,
as it amounts to force closed propagator loops to be zero
[8,21]. Nonperturbative equivalent results are given in [4] and
in Appendix D.

Diagrammatically, each φ̄φ propagator can be represented
as a line with an arrow going from φ̄ to φ, and each such

propagator carries a Heaviside function of time, expressing
causality. We use in the following the diagrammatic convention
of drawing only φ̄-φ propagators (that is, the function G(p) =
[
(1,1)(−p)]−1) but we include, if allowed in a given model,
insertions of 
(2,0) or 
(0,2) as vertices.

III. PURE ANNIHILATION

In this section we study the simplest case of a reaction-
diffusion system, PA, in which the only reaction in the system
is annihilation by pairs of diffusing particles A + A → ∅, with
a probability rate λ. Later we will use the exact solution for
this particular system as the starting point of a perturbative
expansion, in order to study more general BARW at small
branching rates. It is easy to prove [9,14] that this system
belongs to the same universality class as pure coagulation, in
which the only reaction is A + A → A. In the following we
will use the PA model but the pure coagulation case can be
analyzed in a similar way.

After implementing the Doi-Peliti procedure and perform-
ing a shift in the response fields, Eq. (8), the bare action SPA

can be written [8,9]

SPA[φ̄,φ] =
∫

x

(φ̄(∂t − D∇2)φ + λφ̄(φ̄ + 2)φ2). (9)

As said before, we only analyze the steady state where
all correlation functions are zero, since the system always
approaches the empty state in the long time limit. However,
even in this state, the response functions are nontrivial, and
are governed in the infrared (IR) (that is, for momenta and
frequencies smaller than the scale set by λ) by a nontrivial
fixed point of the RG equations, for d < 2. In the following
we speak of “correlation functions” in a generalized sense,
including response functions.

As it stands, this theory shows a certain resemblance with
the standard φ4 scalar field theory. However, symmetry and
causality properties allow for a greatly simplified analysis. We
first show that for the PA model all 
(n,m) functions can be
obtained from the 
(n,n), vertices with the same number of
incoming and outgoing legs. This is quite clear perturbatively,
but we give in the following a nonperturbative proof based
on a Ward identity for a rescaling transformation. Secondly,
we deduce a general identity yielding a closed equation for
any 
(n,m). It is easy to verify that the 
(1,1), 
(2,1), and 
(2,2)

vertices thus obtained coincide with the results of [8,14,27,28].
We show in Appendix A how to compute 
(3,3) from our
method.

A. Rescaling Ward identity

Let us start by studying a generalization of PA with action
S̃PA, where couplings for the cubic and quartic terms are
independent,

S̃PA[φ̄,φ] =
∫

x

(φ̄(∂t − D∇2)φ + λ3φ̄φ2 + λ4(φ̄φ)2). (10)

Let us consider the Ward identity [24] associated with the
infinitesimal field transformation

φ(x) → (1 + ε)φ(x), φ̄(x) → (1 − ε)φ̄(x). (11)
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When λ3 = 0 this is a symmetry of the action, but the cubic
term breaks it explicitly. We can nevertheless obtain a Ward
identity associated with this transformation by performing (11)
as a change of variables in the expression for Z[J,J̄ ], given in
Eq. (3):

0 = ε

∫
x

〈Jφ − J̄ φ̄ + λ3φ
2φ̄〉J,J̄ . (12)

Here the mean value 〈· · · 〉J,J̄ is computed in the presence of
the sources J and J̄ . The term proportional to λ3 can be written
as a derivative with respect to λ3 of the generating functional
of connected correlation functions. By Legendre transforming
Eq. (12), one deduces the Ward identity

−λ3
∂


∂λ3
+

∫
x

(
φ

δ


δφ
− φ̄

δ


δφ̄

)
= 0. (13)

This equation can be derived with respect to φ and φ̄ fields
and evaluated at zero field, yielding

(n − m)
(n,m) = λ3
∂
(n,m)

∂λ3
(14)

where 
(n,m) is a function of (x1, . . . ,xn,x̄1, . . . ,x̄m).
Since, perturbatively, 
(n,m) can only involve positive

powers of λ3, this equation shows that 
(n,m) ∼ O(λn−m
3 )

when n � m, and that for PA 
(n,m) contains exactly (n − m)
third-order bare vertices. We conclude that all 
(n,n) vertices
can be computed directly from the action with λ3 = 0 and that


(n,m)(x1, . . . ,xn,x̄1, . . . ,x̄m) = 0, if n < m, (15)

which simplifies the study of this system.
Given these results one can conclude that for any correlation

function, the perturbative expansion in λ3 is, being in fact a
polynomial, exact at a finite order. In order to calculate the
connected correlation function G(n,m) (with n > m), one can
expand the functional integral at order λn−m

3 :

G(n,m)(x1, . . . ,xn,x̄1, . . . ,x̄m)

= λn−m
3

〈
φ(x1) · · · φ(xn)φ̄(x̄1) · · · φ̄(x̄m)

×
( ∫

x

φ̄φ2

)n−m〉
c

∣∣∣∣
J=J̄=0,λ3=0

(16)

(using the unique decomposition of G(n,m) in terms of 1PI
vertices [24]) reducing its calculation to the knowledge of
correlation functions of the λ3 = 0 model (which only contains

(n,n) vertices). This shows that the building blocks of the
PA model are the vertex functions with an equal number of
incoming and outgoing legs that can be calculated at λ3 = 0.

B. An identity for the �(n,m) vertices

We now present an identity allowing us to obtain a closed
equation for any 
(n,m). It can be most conveniently written
at the diagrammatic level: any diagram contributing to 
(n,m)

which includes at least one loop has the structure shown in
Fig. 1 (that is, any 1PI perturbative diagram begins with a
four-legs bare vertex). The black blob denotes a subdiagram
that is constrained by the condition that the full diagram must
be 1PI. In particular, it means that this subdiagram must
be connected (and with amputated external legs). Now, any

n
legs

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

m
legs

=

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪

m
legs

FIG. 1. Generic form of a diagram contributing to 
(n,m) and
that involves at least one loop in PA. Left hand side: diagrammatic
representation of a generic 
(n,m) vertex. Right hand side: general
structure for such vertices in PA; the black blob is a connected and
amputated Green function that has to comply with some requisites
(see text).

connected diagram with n incoming and m outgoing legs
has a unique tree decomposition in terms of 1PI subdiagrams
having at most these numbers of legs. By summing all possible
diagrams and permutations compatible with the 1PI structure
of the full diagram, we obtain a closed equation that relates
any 
(n,m) with vertices 
(s,l) with a lower number of legs. A
nonperturbative proof (not based on an all-order analysis) of
this general property is given in Appendix C, by using NPRG
techniques (to which we give an introduction in Appendix B).

Notice that, as explained in the previous section, 
(n,n)

vertices can be calculated at λ3 = 0. Now, for λ3 = 0 the
U (1) transformation (11) is a symmetry of the action, and the
fields φ and φ̄ play a symmetric role. Accordingly, this same
construction can be performed singularizing two outgoing legs
in the case of 
(n,n) vertices.

In order to be concrete, let us analyze the identity given in
Fig. 1 for the simplest vertices. For 
(1,1) this gives a well-
known nonrenormalization property: there is no correction to

(1,1) in PA. This is due to the fact that no diagram such
as the one presented in Fig. 1 can be drawn with a single
incoming leg. This no-field-renormalization condition implies
that the critical exponents η and z have their mean field values,
η = 0 and z = 2. Concerning 
(2,2), the result is less trivial.
Given that there are only two incoming legs and that in a
theory without cubic vertices all connected diagrams with four
external legs are 1PI, one arrives at the closed equation (see
Fig. 2) which reads


(2,2)(p1,p2,p̄1,p̄2)

= 4λ4 − 2λ4

∫
q

G(q)G(p1 + p2 − q)

×
(2,2)(q,p1 + p2 − q,p̄1,p̄2) (17)

whose solution is of the form (see Appendix E for a proof)


(2,2)(p1,p2,p̄1,p̄2) = 4l4(p1 + p2). (18)

By substituting (17) in (18) we find

l4(p) = λ4

1 + 2λ4
∫
q
G(q)G(p − q)

. (19)

+=

FIG. 2. Closed equation for 
(2,2) in PA.

052132-4



BRANCHING AND ANNIHILATING RANDOM WALKS: . . . PHYSICAL REVIEW E 87, 052132 (2013)

+=

FIG. 3. Diagrammatic identity for 
(2,1) in PA.

For 
(2,1) the identity in Fig. 1 becomes that of Fig. 3, which
can be written as


(2,1)(p1,p2,p̄) = 2λ3 − 2λ4

∫
q

G(q)G(p1 + p2 − q)

×
(2,1)(p1 + p2 − q,q,p̄). (20)

We can show (see Appendix E) that this implies that

(2,1)(p1,p2,p̄) depends only on p̄. We thus define


(2,1)(p1,p2,p̄) = 2l3(p̄). (21)

By substituting Eq. (21) into Eq. (20) we find

l3(p̄) = λ3

1 + 2λ4
∫
q
G(q)G(p̄ − q)

. (22)

Dividing 
(2,1) by 
(2,2) one observes that their quotient is
equal to λ3/(2λ4), so that the relation between three and four
point vertices is not renormalized. Of course, for the actual PA
model one must take λ3 = 2λ4 = 2λ, and conversely l(p) =
l4(p). In the rest of the paper, we only consider this case unless
otherwise stated.

In Appendix E it is shown, by using NPRG equations, that
these expressions are in fact nonperturbative (they are valid
beyond an all-order perturbative analysis). These expressions
have already been obtained before for the vertices with two
incoming legs [8,14,27], as a sum over bubbles. The interesting
point is that the present analysis applies to any 
(n,m) vertex
in PA. As an example, in Appendix A the equation for

(3,3) is obtained. Unfortunately, for n > 2 the corresponding
equations must be solved numerically.

Now that we have a method to calculate all correlation
functions in PA, we can study BARWs by means of a
perturbative expansion in the branching rate σ . We stress
that a perturbative expansion on a coupling constant around
a non-Gaussian model, such as PA, is a priori difficult to
perform.

To end this section, notice that all the results above are
independent of the space dimension d. This allows us to make
predictions independently of the upper critical dimension dc

of the BARW systems studied below.

IV. BARW-DP

In this section we consider the simplest BARW-DP model,
where the only reactions are A → 2A and 2A → ∅. More
general cases in the DP universality class can be considered as
well using the same methods. The microscopic action for this
model reads, after the shift in the response fields [see Eq. (6)],

SDP =
∫

x

(φ̄(∂t − D∇2)φ + λφ̄(φ̄ + 2)φ2 − σ φ̄(φ̄ + 1)φ).

(23)

We now show how to perform a systematic expansion in σ

while keeping a finite λ. This expansion is particularly well

suited for properties of the model that take place at small σ ,
but at values of λ that can be out of reach of a perturbative
expansion around the Gaussian theory. As mentioned in
the Introduction, the transition between the active and the
absorbing phases in this model takes place, for d > 2, at values
of λ larger than a threshold λth, which makes the calculation
of the phase diagram impossible within the usual perturbative
analysis in these dimensions. As this threshold corresponds to
σ arbitrarily small, the value or λth is computable in an exact
way at the leading order of the expansion in σ that we detail
in the following. We stress, however, that the calculation of
this quantity is just a specific example of an application of the
expansion in σ , which may be used for more general purposes.

In order to analyze BARW-DP it is useful to consider, as in
PA, a generalization of SDP with independent couplings. We
then consider the action

S̃DP =
∫

x

(φ̄(∂t − D∇2)φ + λ3φ̄φ2

+ λ4(φ̄φ)2 − σ2φ̄φ − σ3φ̄
2φ). (24)

As in the case of PA, one can deduce a Ward identity for
the rescaling transformations (11), which in this case reads

−λ3
∂


∂λ3
+ σ3

∂


∂σ3
+

∫
x

(
φ

δ


δφ
− φ̄

δ


δφ̄

)
= 0 (25)

that leads us to

(n − m)
(n,m) = λ3
∂
(n,m)

∂λ3
− σ3

∂
(n,m)

∂σ3
, (26)

where 
(n,m) is a function of (x1, . . . ,xn,x̄1, . . . ,x̄m). The
solution of (26) implies the following relation for 
(n,m):


(n,m)(σ2,σ3,λ3,λ4) = σm−n
3 γ (n,m)(σ2,σ3λ3,λ4) (27)

for m > n, with γ (n,m) a regular function of its arguments (in
particular for σ3 = 0). This is nothing but the well known result
of perturbation theory, which states, putting aside a rescaling
of vertices, that cubic couplings appear only via their product.
At leading order in σ3, Eq. (27) shows that


(n,m) ∼ O
(
σm−n

3

)
, for n < m, (28)

and that the calculation at leading order can be done at λ3 = 0.
In order to perform the σ3 expansion one can consider the

generating functional (3) and expand the exponential term

Z =
∫

DφDφ̄ exp

(
−S̃DP

∣∣∣∣
σ3=0

+
∫

x

Jφ + J̄ φ̄

)

×
∞∑

k=0

1

k!

(
σ3

∫
x

φ̄2φ

)k

. (29)

In this way, the calculation to any order in σ3 of any
correlation function is reduced to the calculation of higher
order correlation functions in a modified PA that includes a
masslike σ2 term. It is worth mentioning that the methods
presented in the previous section work as well in the model
including a σ2 term. When and if this σ2 term is not necessary
to make the theory IR safe it is possible to expand in σ2 as well
as σ3 and this is what we are going to do in practice.

As a final comment with respect to the σ expansion, it
is important to notice that it generates a convergent series,
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something not very common when dealing with perturbative
expansions in field theories. This property follows from
Lebesgue’s dominated convergence theorem [29], given that
we have under nonperturbative control the PA model (as shown
in Appendices C–E).

This convergence property can be most easily seen by
working with a zero dimensional toy model,

Z =
∫

dx e−λx4+σx3
. (30)

Defining

fn(x) =
n∑
i

e−λx4 1

n!
σnx3n (31)

we see that the integrands

0 � |fn(x)| � Ae−λ′x4/2 (32)

for some large enough constant A and appropriate λ′ > λ.
From the dominated convergence theorem we know that
the sequence of integrals of functions fn(x) converge to
the integral of the function f (x) = limn→∞ fn(x). A similar
reasoning applies in the case of the (d + 1)-dimensional
model, at least for the model defined on a lattice and in a
finite volume.

A. Threshold of the active-to-absorbing transition
for BARW-DP

Let us consider as a specific example the calculation of
the threshold λth for the existence of an active-to-absorbing
phase transition in BARW-DP. Notice that this threshold
value is nonuniversal, as would be a critical temperature
in an equilibrium model. The question of whether a phase
transition in this system is continuous or discontinuous cannot
be addressed within the σ expansion, because the dependency
on an external background field should be taken into account,
and in this work we are considering PA at vanishing external
field. However, a phase transition of the continuous type is
a priori known to exist in these systems, following Monte
Carlo results [16]. Enforcing this, a second order phase
transition has been rigorously proven to take place in a related
BARW system, known as the contact process [30].

In order to check for the presence of such a continuous phase
transition in BARW-DP, it is enough to study the behavior of
� = 
(1,1)(p = 0) as a function of the annihilation rate λ.
In fact, we can detect this phase transition by looking for the
zeros of �, which correspond to a divergence in the correlation
length [31].

Given that λth corresponds to the transition value of λ

when σ → 0+, an analysis at leading order in σ allows for
an exact calculation of λth. Following the lines of the previous
discussion, an equation for 
(1,1)(p) at order O(σ ) can be
represented in the diagrammatic form of Fig. 4, that can be

+= PA

FIG. 4. Closed equation for 
(1,1) at first order in σ in BARW-DP.

+= PA

FIG. 5. Closed equation for 
(1,2) at first order in σ in BARW-DP.

written


(1,1)(p)

= −σ + σ

∫
q

G(q)G(p − q)
(2,1)(q,p − q,−p) + O(σ 2)

= −σ + 4σ l(p)
∫

q

G(q)G(p − q) + O(σ 2). (33)

In the last line of (33) we have evaluated the propagator G(p)
and the vertex 
(2,1)(q,p − q,−p) at order zero in σ , and
consequently replaced this last function by 4l(p) [see Eq. (19);
remember that we consider l(p) = l4(p)].

As a side note, observe that we could have just as well
written an equivalent equation for 
(1,2) (see Fig. 5), which
reads at order σ


(1,2)(p1,p̄1,p̄2) = −2σ + 2σ

∫
q

G(q)G(p1 − q)

×
(2,2)(p1 − q,q,p̄1,p̄2) + O(σ 2)

= −2σ + 8σ

∫
q

G(q)G(p1 − q)l(p1)

+O(σ 2). (34)

As before, the 
(2,2)(q,p1 − q,p̄1,p̄2) vertex can be taken
at order σ 0, that is, it can be taken to be equal to 4l(p1).
Expressions (33) and (34) imply that


(1,2)(p1,p̄2,p̄3) = 2
(1,1)(p1) + O(σ 2), (35)

which states that at first order in σ , the bare relation between
the (1,1) and (1,2) vertices is maintained.

Returning to our problem, we can look for a second order
phase transition by studying the behavior of �. One needs the
nonuniversal value l(p = 0) that can be obtained by evaluating
Eq. (19) at p = 0:

l(p = 0) = λ

1 + 2λI (d)
, (36)

where

I (d) =
∫

q

G(q)G(−q). (37)

By substituting the expression for l(p = 0) and evaluating (33)
at p = 0 one arrives at

� = −σ + 4σ
λI (d)

1 + 2λI (d)
+ O(σ 2), (38)

which for � = 0 implies a threshold value

λth = 1

2I (d)
. (39)

To evaluate λth, we need to take into account that the properties
of a phase diagram are not universal and depend on the specific
form of the theory at small distances. This is as in equilibrium
statistical mechanics, where critical temperatures depend on
the specific form of the lattice. We will consider two particular
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TABLE I. Values of the threshold coupling λth for various
dimensions d . Comparison of present exact results with Monte
Carlo [16].

d 3 4 5 6

λth/Dad−2 (this work) 3.96 6.45 8.65 10.7
λth/Dad−2 (Monte Carlo) [16] 3.99 6.48 8.6 10.8

microscopic forms for the model. The first one corresponds to
the model defined on a hypercubic lattice with lattice spacing
a. The second corresponds to a “continuum: version where a
UV cutoff is imposed at a finite (but large) scale �.

For the hypercubic lattice, the propagator reads

G(q) = 1

iω + 2D
a2

∑d
i=1[1 − cos(aqi)]

, (40)

and the integral in (39) becomes

I (d) =
∫

dω

2π

∫
−π/a<qi�π/a

ddq

(2π )d
G(q)G(−q)

= 1

2

∫
−π/a<qi�π/a

ddq

(2π )d
1

2D
a2

∑d
i=1[1 − cos(aqi)]

= a2−d

4D

∫
−π<qi�π

ddq

(2π )d
1∑d

i=1[1 − cos(qi)]
, (41)

where the integral over ω has been performed by using the
residues’ theorem. The remaining integral must be calculated
numerically. In Table I, the value of the resulting threshold
coupling is given. Previous results from Monte Carlo simula-
tions and approximated NPRG equations [16,32] are in good
agreement with these exact ones. This same general structure
of the phase diagram has also been shown to exist in other
models in the DP universality class [33].

An interesting property observed in [16] is that λth seems
to grow linearly with d. In [34], a single-site approximation
scheme that is argued to become exact in the large d limit
in a hypercubic lattice was analyzed, and this linear behavior
was obtained. In order to analyze such a behavior here, it is
necessary to find the large-d limit for the integral I (d). For
this purpose it is useful to rewrite it in the following form:

I (d)Dad−2 = 1

4d

∫
−π<qi�π

ddq

(2π )d
1

1 − [ ∑d
i=1 cos(qi)

]/
d

.

(42)

To solve it, one can imagine the various cos(qi) as random
variables with zero mean. By the strong law of large numbers,
their mean [

∑d
i=1 cos(qi)]/d tends to zero, except in a zero

measure set. We are then tempted to substitute the limit inside
the integrand and obtain

I (d)Dad−2 d→∞∼ 1

4d
. (43)

This step is nontrivial from a rigorous mathematical point of
view, but turns out to be correct by using elaborate methods of
real analysis [35]. As a consequence,

λth/Da2−d d→∞∼ 2d (44)

in agreement with previous results [34].

It is interesting to observe that expression (39) only depends
on quantities that are calculated exactly in the local potential
approximation (LPA) of the NPRG, which is the lowest order
of the derivative expansion. Only vertices at zero momenta
are used and their exact equation turns out to be the same as
the one that comes from the LPA (see Appendix B). This a
posteriori explains the success of the LPA in reconstructing
the phase diagram of this model [16].

However, as mentioned before, the phase diagram is a
nonuniversal property that depends on the precise definition
of the model in the ultraviolet. In particular, the value of the
integral I (d) is different if calculated in a discrete lattice or
in the continuum with a given ultraviolet regularization. In
the previous study done within the NPRG [16], a continuum
version of the model was implemented, but the initial bare
condition was imposed at a finite (but large) value of the
microscopic scale �, which serves as a UV cutoff. In order to
be able to compare our continuum nonuniversal results with
those obtained in [16] we will choose an UV regularization
compatible with the NPRG procedure, as described in Ap-
pendix B.

In the continuum regularized case, the integral to be
calculated in order to make a direct comparison with the NPRG
(see Appendix E) is (with the tilde indicating this second
regularization)

Ĩ (d) = 1

(4π )d/2
(d/2)D

∫ �

0
dq qd−1

(
1

q2
− 1

�2

)

= �d−2

(4π )d/2
(d/2)D

2

d(d − 2)
. (45)

This yields for this particular regularization

λ̃th = �2−d (4π )d/2
(d/2) Dd(d − 2)

4
. (46)

Given that this integral is calculated in a closed form by using
exclusively quantities evaluated at momentum p = 0, we can
check (see Appendix E) that it coincides exactly with the LPA
equation for this same quantity. Indeed, our result recovers the
numerical LPA solution of the NPRG of [16] within a nine
digit accuracy.

We can also compare the results coming from both lattice
and continuum regularizations, as has been done in [16,36].
As is explained there, one cannot do such comparison without
fixing the relation between � and the lattice spacing a. In [16],
this relation was fixed by multiplying the continuum results by
exp[c(2 − d)] and fitting the constant number c, finding a very
reasonable agreement up to d = 7. However, we observe in the
present results that the agreement is lost in higher dimensions
where the continuum version leads to

λ̃th�
d−2/D

d→∞∼ (2πd/e)d/2√πd5/2

4
. (47)

This indicates that the agreement between both results is only
valid for a limited range of dimensions. In order to relate the
results in a larger range of dimensions, one must consider a
d-dependent relation between � and a or, as done here, take
into account the precise ultraviolet regularization considered.

Finally, it is convenient to point out that for d � 2 an IR
divergence of the integral in (39) takes place. This makes
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λth = 0 in those dimensions, in agreement with the results
of [8]. For this reason, for d � 2 it is not useful to expand
the model at small σ for a finite λ in order to study the phase
transition. Moreover, this also shows that in those dimensions
the transition is dominated by IR effects, and correspondingly
most of the dependence on the microscopic behavior of the
model is absent.

V. BARW-PC

Let us now consider BARW-PC, corresponding to the parity
conserving/generalized voter universality class. In this case,
it is convenient not to shift the response field in order to
make explicit the φ → −φ, φ̂ → −φ̂ symmetry associated
with conservation of the parity of the number of particles.
The microscopic action for the BARW-PC model reads [see
Eq. (6)]

SPC[φ,φ̂] =
∫

x

(φ̂(∂t − D∇2)φ + λ(φ̂2 − 1)φ2

+ σ (1 − φ̂2)φφ̂), (48)

where the last term corresponds to the branching reaction A →
3A with rate σ .

The case σ = 0 corresponds to pure annihilation, now
written in terms of the nonshifted φ̂ field. This version of pure
annihilation can again be solved following the same ideas as
previously. Here, as opposed to the shifted case, we have the
additional constraint that 
(n,m) = 0 if (n + m) is odd.

Let us now show that in this version of PA


(n,m) ∼ O(λ(n−m)/2), for n � m, (49)

and zero otherwise. We again define a generalized action S̃PC

with independent λ2 and λ4 couplings as in Eq. (10),

S̃PC[φ,φ̂] =
∫

x

(φ̂(∂t − D∇2)φ − λ2φ
2

+ λ4φ̂
2φ2 + σ2φ̂φ − σ4φ̂

3φ). (50)

First we set σ2 and σ3 equal to zero, in order to be in PA, and
exploit the Ward identity for the infinitesimal transformation,

φ(x) → (1 + ε)φ(x), φ̂(x) → (1 − ε)φ̂(x). (51)

The argument is completely analogous to the one shown in
Sec. III, yielding

(n − m)
(n,m) = 2λ2
∂
(n,m)

∂λ2
(52)

[with, as before, 
(n,m) a function of (x1, . . . ,xn,x̄1, . . . ,x̄m)]
from which Eq. (49) follows.

It is easy to check that the equation for 
(2,2) remains the
same as in the shifted case, Eq. (17), and we thus define the
function l(p) again by means of Eq. (19). The vertex 
(2,0)

can be studied by following similar lines, and is found to be
related to l(p), by 
(2,0)(p) = −2l(p). Also as before, 
(1,1) is
easily proven not to be renormalized in this version of PA.

Since we are interested in studying the σ expansion around
PA, it is useful to establish the equivalent of Eq. (28) regarding
the order in σ of the 
(n,m). We again work with generalized
couplings σ2 and σ4, using the modified action (50) and we

arrive, by using the rescaling Ward identity deduced from (51)
[an identity similar to Eq. (25)], at the relationship


(n,m)(σ2,σ4,λ2,λ4) = σ
(m−n)/2
4 γ (n,m)(σ2,σ4λ2,λ4) (53)

for m > n, with γ (n,m) a regular function of its arguments (in
particular for σ4 = 0). This implies that 
(n,m) ∼ O(σ (m−n)/2)
if m > n. The details of the calculations leading to this property
are completely analogous to those of Sec. IV in BARW-DP.

A. Stability of the PA fixed point

One striking feature of the PC model is the existence of an
active-to-absorbing phase transition in d = 1. This is believed
to be related to a change of stability of the PA fixed point
in a dimension dc between 1 and 2. Perturbatively, and also
within the LPA, this change of stability occurs in the following
way (see a schematic representation of this scenario in Fig. 6
[8,19]). On one hand, in d = 2, the Gaussian and PA fixed
points merge so that, for dimensions close to 2, the relevance
of the branching reaction A

σ−→ 3A can be proven by canonical
power counting arguments. On the other hand, at one- and
two-loop orders an (upper) critical dimension dc > 1 is found
such that for d < dc the coupling σ becomes irrelevant around
the PA fixed point which therefore becomes fully attractive.
This change of stability occurs because a new fixed point, FPC ,
crosses the PA fixed point at dc and in this dimension they both
change their stability. Below dc, this new fixed point is in the
physically relevant quadrant λ � 0, σ � 0, has one unstable
direction, and is thus associated with the phase transition.
The PA fixed point is then fully attractive for d < dc and
describes the absorbing phase. Notice that the value of dc

changes significantly between one loop—where dc = 4/3—
and two loops where dc � 1.1 (dc = 4/3 within the LPA).

Some of these facts seem to be confirmed by other methods.
In d = 1 Monte Carlo simulations of this model show indeed a
new universality class [37,38], and an exactly solvable model
expected to be in the same universality class as BARW-PC
shows a negative scaling dimension for σ : dσ = −1 [39]. This

FIG. 6. Sketch of the relevance of the σ perturbation in BARW-
PC around the PA fixed point, as expected from [8,19]. The arrows
show the direction of the RG flow for the coupling σ . Above dc, σ is
relevant, whereas it is irrelevant below dc. The dashed line represents
the location of the fixed point F PC that crosses the PA fixed point at
dc and that is associated with a phase transition below dc.
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+= PA

FIG. 7. Closed equation for 
(1,1) in BARW-PC, at first order in σ .

result (dσ = −1) is identical to the prediction at order ε [8].
At two-loop order, though, this value for dσ changes and gets
smaller in magnitude, dσ � −0.137 at d = 1 [8]. As will be
argued in the following, this significative difference between
MC and two-loop results can be seen as a first indication that
the results of [39] are not entirely valid for this system.

We now reanalyze the stability of the PA fixed point in the
presence of the PC creation reaction, A

σ−→ 3A, that we can
determine exactly since our analysis is exact at small σ . The
relevance of this coupling can be obtained from the flow of
either 
(1,1) or 
(1,3), since both these functions are of order
σ . However, the RG flow of 
(1,1) depends on the somewhat
difficult to study 
(3,1) vertex of PA (see Fig. 7), and we prefer
to study 
(1,3).

At first order in σ , any diagram for 
(1,3) will be of the form
shown in Fig. 8. As can be seen in this figure, it involves the
bare σ vertex as well as the PA 
(2,2) and 
(3,3) 1PI vertices.
As it stands, though, we would have to solve the independent
equation for 
(3,3) in order to make progress (an analysis of
which can be found in Appendix A, where it is shown that its
equation requires numerical methods to be solved). Moreover,
this expression is not well suited for the analysis of universal
properties, because it is expressed in terms of the bare vertex
and not in terms of the full 
(1,3) vertex. Fortunately, the fact
that we only deal with PA vertices allows us to find an easier
relationship for 
(1,3), using the already known property which
allows us to find closed forms for PA vertices. Notice that 
(2,2)

and 
(3,3) have always two possible closed decompositions,
being a vertex of the form 
(n,n) (see discussion in Sec. III).
Specifically, we can rewrite the equation for 
(1,3) in the form
shown diagrammatically in Fig. 9, which can be written


(1,3)(p,p̃1,p̃2,p̃3)

= −6σ − 2λ

∫
q

G(q)G(p̃1 + p̃2 − q)

×
(1,3)(p,q,p̃1 + p̃2 − q,p̃3) − 2λ

∫
q

G(q)G(p̃1 + p̃3 − q)

×
(1,3)(p,q,p̃1 + p̃3 − q,p̃2) − 2λ

∫
q

G(q)G(p̃2 + p̃3 − q)

×
(1,3)(p,q,p̃2 + p̃3 − q,p̃1). (54)

The highly symmetric form of this equation suggests the
following ansatz for the functional form of 
(1,3) (which can

+=

+ +perm.

PA

PA

FIG. 8. Closed equation for 
(1,3) in BARW-PC at first order in σ .

+= +perm.

FIG. 9. Another possible closed equation for 
(1,3) in BARW-PC,
at first order in σ .

be easily checked using the equality p = p̃1 + p̃2 + p̃3),


(1,3)(p,p̃1,p̃2,p̃3) = −2σ (p,p̃1) − 2σ (p,p̃2) − 2σ (p,p̃3).

(55)

In terms of σ (p,p̃) the equation becomes

σ (p,p̃) = σ − 2λ

∫
q

G(q)G(p − p̃ − q)

× (σ (p,q) + σ (p,p − p̃ − q) + σ (p,p̃)). (56)

Using the known expression for l(p), Eq. (19), we obtain

σ (p,p̃) = σ

λ
l(p − p̃) − 2l(p − p̃)

∫
q

G(q)G(p − p̃ − q)

×(σ (p,q) + σ (p,p − p̃ − q)). (57)

For the calculation of dc, it is enough to analyze the p = 0
behavior (we are interested in the IR fixed point structure of
the theory). Defining

σ (p̃) = σ (p = 0,−p̃) (58)

(notice that we have chosen a minus sign in the definition),
and after a change of variables inside the integral, we get

σ (p̃) = σ

λ
l(p̃) − 4l(p̃)

∫
q

G(q)G(p̃ − q)σ (q). (59)

From now on we will omit the tilde in p̃ for notational
simplicity. The quantity we are mostly interested in is dσ ,
the scaling dimension of σ in the IR limit,

σ (p) ∼ |p|dσ for ν, |p|2  λ2/(2−d). (60)

Naive power counting yields dσ = 2, which would imply
that the branching perturbation σ is relevant for all d, but
fluctuations of course change this value of dσ , and could even
make it negative, which would imply the irrelevance of the σ

perturbation.
In order to solve Eq. (59) it is useful to define the quantity

σ̂ (p) = σ (p)

l(p)
(61)

whose behavior in the IR is expected to be of the form σ̂ (p) ∼
|p|d−dσ [recall that l(p) ∼ |p|2−d in that regime]. The equation
for σ̂ reads

σ̂ (p) = σ

λ
− 4

∫
q

G(q)G(p − q)σ̂ (q)l(q). (62)

Using this exact expression and expanding in ε = 2 − d we
recover the one-loop result dc = 4/3, as well as the two-loop
result dc � 1.1 [8]. These results follow from a perturbative
series in σ and λ, and from a simultaneous expansion in
ε = 2 − d. The details of these calculations can be found in
Appendix F.

In order to get an exact result for dσ it is convenient to get rid
of the bare reaction rates, as we are interested in the universal
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FEDERICO BENITEZ AND NICOLÁS WSCHEBOR PHYSICAL REVIEW E 87, 052132 (2013)

IR scaling behavior. Let us start by doing so in the case of l(p),
which will be useful in what follows. The IR limit is taken
by making λ → ∞ (more precisely, by considering ν,|p|2 
λ2/(2−d), the typical momentum scale set by the bare annihila-
tion rate). This can be done safely for d < 2, and is a subtle
limit when one studies directly d = 2 in order to perform the
ε expansion, as will be further commented on in Appendix F.
By exploiting expression (19) we obtain the IR behavior

[lIR(p)]−1 = 2
∫

q

G(q)G(p − q) = 2
∫

ddq

(2π )d

∫
dω

2π

× 1

q2 + iω

1

(p − q)2 + i(ν − ω)
(63)

and thus

lIR(p) = (4π )d/2

21−d/2
(1 − d/2)

(
p2

2
+ iν

)1−d/2

. (64)

Now we can return to σ̂ . As we are only interested in its
scaling behavior, it proves convenient to subtract to (62) its
value at zero σ̂ (p = 0), which is zero in the IR for d < 2,
given that we expect dσ < d. This is seen to be true in the ε

expansion around d = 2, and must be true near the sought-for
dc, where dσ should be zero. Our results will later confirm
dσ < d. We thus have

σ̂ (p) = −4
∫

q

σ̂ (q)l(q)G(q)(G(p − q) − G(−q)). (65)

This is a complicated equation, and to be able to solve it, we
must take into account the scaling invariance we expect from
its solution. We exploit scale invariance in order to define the
scaling function σ̃ (ν̃),

σ̂ (p,ν) = |p|d−dσ σ̃ (ν̃), ν̃ = ν

|p|2 . (66)

Observe that we are performing a perturbation around the PA
fixed point, whose anomalous dimensions are zero (that is,
η = 0, z = 2, as already mentioned). Accordingly, the natural
scaling variable is ν̃ = ν/|p|2.

We can now write an equation for σ̃ (ν̃), using the form (64)
for l(p) and choosing as variables ω̃ = ω/q2, q̃ = |q|/|p| and
u = cos ̂(p,q),

σ̃ (ν̃) = −4

(
(4π )d/2

21−d/2
(1 − d/2)

)(
2π (d−1)/2

(2π )d+1

(

d−1
2

)
)

×
∫ ∞

0
dq̃ q̃d−dσ +1

∫ 1

−1
du (1 − u2)(d−3)/2

×
∫ ∞

−∞
dω̃ σ̃ (ω̃)

(
1

2
+ iω̃

)1−d/2 1

1 + iω̃

×
(

1

1 + iν̃ + q̃2(1 + iω̃) − 2q̃u
− 1

q̃2(1 + iω̃)

)
.

(67)

This equation is still too complicated to be solved analytically,
and requires a numerical solution. A convenient way to do
that is to make an expansion in u, which turns out to be
rapidly convergent. We then proceed as follows: at each order
in the expansion in u we adjust dσ at a given value of d, by
numerically iterating this equation in order to reach a fixed

-10 -5 0 5 10
ν∼

1

1.2

1.4

1.6

1.8

2

Re[σ∼]

d=1.05
d=1.5
d=1.95

FIG. 10. ν̃-dependence of the real part of the scaling function
σ̃ (ν̃) for several values of d .

functional form for σ̃ (ν̃) in a lattice of Nν points with a
resolution δν. We have checked the convergence in u and in
the numerical parameters δν and Nν , used for the computation
of integrals. This procedure gives always a converged scaling
function σ̃ (ν̃), which confirms a posteriori the scaling form
ansatz (66). In Fig. 10, we show the explicit ν̃ dependence
of the function σ̃ (ν̃) for some values of d. As can be seen,
it is a nontrivial function of its argument, which may explain
the qualitative difference between our results and previous
approximate results. Observe that LPA and one-loop analysis
are based on a constant coupling σ (without dependence on
frequency and momentum). As expected, this dependence
becomes weaker as d approaches 2.

This procedure allows us to find the value of dσ as a
function of d, the results of which are plotted, together with
previous perturbative results, in Fig. 11. There one can see that
even if dσ gets smaller when d decreases, it remains always
positive. This is an unexpected result, which deserves a careful
discussion. First of all, it is important to observe that this
result does not rule out the existence of a new fixed point FPC

for small d, governing the properties of the PC universality
class. A new fixed point can indeed appear, but for a nonzero
value of the branching rate σ ∗, as seen for example in the
sketched flow shown in Fig. 12. This possible scenario would
mean, in particular, that the low branching phase of the model

1 1.2 1.4 1.6 1.8 2
d

-1

-0.5

0

0.5

1

1.5

2

dσ

1-loop
2-loops
this work

FIG. 11. Results for dσ , showing there is no change in the RG
relevance for the branching rate σ .
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FIG. 12. Sketch of the relevance of the σ perturbation in BARW-
PC, compatible with the results in this work and with simulations.

would have a behavior different from PA, governed by a new
absorbing fixed point, with as-yet unknown scaling properties.

A fixed point governing the absorbing phase is needed
in order to reproduce the well established power-law-like
behavior in the absorbing phase, as seen by Monte Carlo
simulations. Notice that this power-law behavior would be
in this case obtained without any parameter fine-tuning,
corresponding to what is usually known as a quasi-long-range
order phase, as observed before for example in equilibrium
statistical mechanics in [40]. The validity of such a scenario
can be studied either by using Monte Carlo methods or by
going to higher orders in the σ expansion, or perhaps by means
of the NPRG at orders higher than the LPA.

As mentioned before, there exists an exact result in d = 1
[39] which seems to indicate that in this universality class
σ is in fact irrelevant with respect to the PA fixed point in
that dimension. We can explain this difference observing that
the model used in [39] is defined with λ = ∞, and indeed
presents no phase transition at all for whatever value of σ .
Now, the IR limit corresponds to ν,|p|2  λ2/(2−d), but this
does not allow us to take σ = 0 when compared to λ. Looking
at Eq. (62), λ = ∞ implies σ̂ ≡ 0, so that the relevant direction
corresponding to σ is no longer accessible by studying σ

as a perturbation. This is true for all d. Indeed, the results
of [9] are also compatible with this scenario: in fact they show
an irrelevant σ for all d when λ = ∞. For example, at the
one-loop level (approximation valid close to d = 2) we have
(see Appendix F)

σ̂ (p) ∼ σ

λ3
l2(p) (68)

so that we see explicitly that λ → ∞ yields σ̂ ≡ 0, and σ̂

is no longer associated with the relevant branching direction.
This is in evident contradiction with the fact that there is an
unstable direction in that dimension. Thus, we think that the
exact calculation in [39] does not apply to BARW-PC, the
system in which we are interested.

Also, there exists a result in [41] in which branching
and annihilating systems of particles performing Lévy flight
dynamics are studied. In it, the authors show that a change
in the value σ of the Lévy flight exponent can be made to
correspond to a change in the dimension d of the corresponding
standard BARW system. This is used to recover dc = 4/3 for

BARW-PC. The analysis, however, is made by means of a
one-loop perturbative expansion in λ and σ , which explains
the coincidence with the results of [8]. A re-analysis of Lévy
flight dynamics can be envisaged within the approach proposed
in this work.

In respect to Monte Carlo studies of the low branching
regime of this system, they have until now, as far as we know,
also been mostly made in the limit λ → ∞ [37,38] mentioned
before. They are compatible with the standard scenario, but
within the criticisms previously pointed out.

Let us emphasize that Fig. 12 only shows one of the possible
scenarios allowing for the compatibility of all what is known
about the PC transition. This scenario is not a result of this
work, but only what we consider the simplest possibility. Other
explanations may well exist, and we do not pretend that Fig. 12
is the final word about this issue.

VI. SUMMARY AND DISCUSSION

In this work we have applied field theoretical methods to
answer some nontrivial questions about a class of reaction-
diffusion systems. We have proceeded by exploiting the special
case of pure annihilation, a system which does not present a
phase transition but which nonetheless possesses a nontrivial
fixed point in the RG sense. In order to do so, we took
advantage of its simple structure, as well as the symmetries
and causal properties of the system (which in fact allowed
us to go beyond perturbation theory). We have then applied
an expansion in the branching rate around pure annihilation,
giving us access to the small branching regime of BARW, both
with and without an additional parity conserving symmetry.

We have chosen to concentrate, as a first order example,
on some important properties of these systems, usually very
difficult to control but that become possible to solve within
the present method. In the case of the system of reactions
2A → ∅, A → 2A, which belongs to the DP universality class,
we have given an explicit proof of the existence of a phase
transition in all space dimensions, already seen in previous
numerical solutions of approximated versions of the NPRG
flow equations, and in Monte Carlo simulations. We have
moreover calculated exactly the nonuniversal threshold value
for the annihilation rate in order to find this phase transition in
two sample systems. This result is beyond the possibilities of
usual perturbation theory.

In BARW-PC, where the parity of the number of particles
is conserved, we have concentrated on the value dc of the
upper critical dimension, that was previously believed to be
somewhere between d = 1 and d = 2. Previous one-loop and
LPA results indicated dc � 4/3. By truncating our equations
at the one-loop order we were able to recover this approximate
result, as well as the two-loop result of [9]. Surprisingly, we
have found that the appearance of the PC fixed point associated
with dc must occur at a nonzero value of the branching
rate, which would be compatible with a scenario where there
exist not one but two new fixed points for d < dc. Further
investigation of this issue should be performed, either by a
higher order expansion in σ or by lattice simulations, or by the
use of the NPRG method at orders higher than the LPA. Work
in some of these directions is already underway.
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Let us emphasize that the σ expansion here introduced
represents an expansion around a nontrivial (non-Gaussian)
model, which in particular implies, as explained in the text,
that the first order results obtained in this work represent the
first term in a convergent series.

The σ expansion has allowed us to obtain results not
accessible with the usual perturbative expansion, while still
being (for the most part) analytical. This kind of idea could
in principle be generalized to other field theoretical systems,
and future applications can be thought of within the study
of out of equilibrium systems. In what concerns BARWs, a
second order expansion in σ would in principle allow for the
approximate calculation of critical exponents. Extensions to
other out of equilibrium systems can also be envisaged, for
example in the study of PCPD, or of the Cole-Hopf version of
the KPZ equation [27], which has a structure very reminiscent
of pure annihilation.
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APPENDIX A: STUDY OF THE �(3,3) VERTEX IN PA

In this Appendix we will study the 
(3,3) vertex in PA
with the methods introduced in Sec. III. Unfortunately, as we
will see, this will not be enough to find a complete analytical
solution for the vertex. Such a solution would need a numerical
implementation, beyond the scope of the present work.

As explained in the main text, every diagram for 
(3,3)

is of the form shown in Fig. 1. If we analyze the possible
1PI contributions we end up with the two diagrams shown in
Fig. 13. Using the known form for l(p) and the corresponding
symmetry factors, the equation corresponding to this diagram
reads


(3,3)(p1,p2,p3,p̃1,p̃2,p̃3) = 64λ

( ∫
q

G(q)G(p1 + p2 − q)[l(p̃2 + p̃3)G(p3 + q − p̃1)l(q + p3)

+ l(p̃1 + p̃3)G(p3 + q − p̃2)l(q + p3) + l(p̃1 + p̃2)G(p3 + q − p̃3)l(q + p3)]

+
∫

q

G(q)G(p1 + p3 − q)l(p2 + q)[G(p2 + q − p̃1)l(p̃2 + p̃3)

+G(p2 + q − p̃2)l(p̃1 + p̃3) + G(p2 + q − p̃3)l(p̃1 + p̃2)]

+
∫

q

G(q)G(p2 + p3 − q)l(p1 + q)[G(p1 + q − p̃1)l(p̃2 + p̃3) + G(p1 + q − p̃2)l(p̃1 + p̃3)

+G(p1 + q − p̃3)l(p̃1 + p̃2)]

)
− 2λ

∫
q

G(q)(G(p1 + p2 − q)
(3,3)(q,p1 + p2 − q,p3,p̃1,p̃2,p̃3)

+G(p1 + p3 − q)
(3,3)(q,p1 + p3 − q,p2,p̃1,p̃2,p̃3) + G(p2 + p3 − q)
(3,3)

× (q,p2 + p3 − q,p1,p̃1,p̃2,p̃3)). (A1)

This equation shows a very symmetric structure, which sug-
gests the ansatz (easily proven to be correct using momentum
conservation)


(3,3)(p1,p2,p3,p̃1,p̃2,p̃3)

= f (p1 + p2,p3,p̃1 + p̃2,p̃3) + permutations, (A2)

where in fact the last dependence (in p̃3 in the equation) is
redundant due to momentum conservation. The corresponding
equation for f is

f (pa,pb,p̃a,p̃b)

= 64λ l(p̃a)
∫

q

G(q)G(pa − q)G(pb + q − p̃b)l(pb + q)

− 2λ

∫
q

G(q)G(pa − q)[f (pa,pb,p̃a,p̃b)

+ f (q + pb,pa − q,p̃a,p̃b) + f (pa + pb − q,q,p̃a,p̃b)]

(A3)

and, using the explicit form for l(p), this can be rewritten as

f (pa,pb,p̃a,p̃b)

= 64l(pa)l(p̃a)
∫

q

G(q − pb)G(q − p̃b)G(pa + pb + q)l(q)

− 4l(pa)
∫

q

G(q)G(pa − q)f (pa + pb − q,q,p̃a,p̃b),

(A4)

where a change of variables has also been performed inside
the integrals.

+= +perm.

FIG. 13. Closed equation for 
(3,3) in PA.
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In order to get rid of the incoming and outgoing dressed
l(p) vertices we can define

χ (pa,pb,p̃a,p̃b) = f (pa,pb,p̃a,p̃b)

l(pa)l̃(pa)
(A5)

whose equation reads

χ (pa,pb,p̃a,p̃b)

= 64
∫

q

G(q − pb)G(q − p̃b)G(pa + pb + q)l(q)

− 4
∫

q

G(q)G(pa − q)l(pa + pb − q)

×χ (pa + pb − q,q,p̃a,p̃b). (A6)

This expression can be further simplified, but in the long
run a numerical study of it is unavoidable in order to solve
it. Notice also that this expression is not explicitly symmetric
with respect to the change p → p̃. It is easy though to find
such a symmetric expression, by combining this expression
with the one obtained by using the equation stemming from
the diagrammatic ansatz with the λ bare vertex in the outgoing
legs of the diagram. This symmetric equation does not turn out
to be simpler to solve than (A6).

APPENDIX B: NONPERTURBATIVE RENORMALIZATION
GROUP STUDY OF BARW

The nonperturbative renormalization group [42–47] is a
general framework for the study of strongly correlated systems,
mainly for field theoretical problems. It is basically the modern
version of Wilson’s initial ideas on the RG. One of the
main interests for using the the NPRG is that it enables
us to devise new approximation schemes, useful to tackle
problems where more classical tools are of little or no use.
In particular, the NPRG stands out as a natural ground for
the study of strongly coupled systems, and the last years
have seen an increasing number of applications of NPRG
methods to diverse kinds of problems in many areas of (in
general strongly correlated) physics [42,48–50], including out
of equilibrium systems [4–6,16,19,51]. In this regard, the
NPRG is particularly well suited for the study of critical
scale-free regimes, where renormalization group methods are
known to give a simple description of the critical behavior,
and where strong correlations are generally present. Detailed
introductions to the NPRG can be found in Refs. [31,42], and
also in particular when applied to out of equilibrium problems
in [4,36,49].

The NPRG formalism relies on the construction of a
sequence of scale-dependent effective models for the model
under study, interpolating between the short scale physics at
the assumed microscopic scale � and the full long distance
physics when the running scale goes to zero, by averaging
over fluctuations at each value of this sliding momentum
scale k. Instead of working at the level of an effective
Hamiltonian, as in the original Wilsonian approach, the NPRG
is developed in terms of the flow of effective average actions

k , which are scale dependent modifications of the 1PI
generating functional 
, in such a way that 
k only takes
into account fluctuations with characteristic momenta |q| � k.

At the scale k = �, no fluctuation is taken into account and

� coincides with the microscopic action S, whereas full
system information is recovered in the limit 
k→0 = 
. The
procedure for constructing the effective average action 
k

consists on the addition of a scale dependent masslike term
which partly freezes out the slow modes. This is achieved by
adding a regulator term to the original microscopic action of
the form [42]

�Sk[φ,φ̄] =
∫

x

(φ(x),φ̄(x)) · R̂k(∇2,∂t ) · (φ(x),φ̄(x)). (B1)

In expression (B1), R̂k is the (model dependent) regula-
tor matrix, with matrix elements ∼Rk , a cutoff function
which behaves as Rk(q2,ω) ∼ k2 (in Fourier space) for
small momenta |q| � k, in order to generate a decoupling
of the “slow” modes, and Rk vanishing for large mo-
menta |q| � k, so that the rapid modes remain almost unal-
tered. The scale-dependent generating functionals Zk[J,J̄ ] =∫
DφDφ̄ exp(−S − �Sk + ∫

x
J φ + ∫

x
J̄ φ̄) are then used to

obtain the effective average action 
k , through the Legendre
transform of lnZk[J,J̄ ].

At the core of the method there is an exact functional
differential equation, the Wetterich equation [47], which
governs the RG flow of 
k as a function of the scale k. This
equation can be cast in a way that makes explicit its one-loop,
1PI structure:

∂k
k = 1

2
∂̃kTr

∫
dd q

(2π )d
dω

2π
ln

(

̂

(2)
k + R̂k

)
, (B2)

where ∂̃k is the derivative with respect to k applied only to the
explicit dependence on k of the regulator profile Rk , and 
̂

(2)
k is

the matrix of second derivatives of 
k with respect to the fields.
One observes that the right hand side of Eq. (B2) is similar to
the one-loop expression for the 
 functional, but with vertices
and propagators extracted from 
k + �Sk instead of S. We
make extensive use of this one-loop structure in the following.

Equation (B2) cannot in general be solved exactly, and
one usually has to perform some approximation in order
to extract physical information from it. The most broadly
used method is the so-called derivative expansion [44,46],
which imposes a particular ansatz for the functional form
of 
k in the small momentum regime (in fact, for critical
systems it can be argued that it is valid only in the limit of
momenta |q| � k [52,53]). The DE, as well as other possible
approximations used in the literature [42,52,53], does not
rely on any small coupling parameter, so that the approach
remains nonperturbative in essence. It is of course also possible
to perform usual perturbative calculations within the NPRG
formalism.

Here we assume the existence of a suitable regulator
function, and in particular one that does not break the
symmetries of the field theory. There is still a great degree
of arbitrariness in the selection of such a regulator.

As stated in the main text, causal properties, and in
particular the so-called Itô prescription [25,26], are much
less trivial to study in the NPRG formalism when compared
with the usual perturbative approach [4]. One can show that
the earliest time in the time dependence of a vertex must
correspond to a φ field, and conversely the last time must
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correspond to a φ̄ field. This implies that the two-point function



(1,1)
k remains causal for all k. The proof of this causal property

will be shown in Appendix D.
In the particular case of PA, it will be shown in

Appendices C and D that this property is generalized to three
first-in-time φ legs and three last-in-time φ̄ legs for any 


(n,n)
k .

This implies in particular that the four-point function 

(2,2)
k and

the six-point function 

(3,3)
k are completely causal, in the sense

that all its incoming legs must correspond to times smaller than
those associated with any of its outgoing legs. As we shall see
below, this property greatly simplifies the study of vertices
with a low number of legs.

APPENDIX C: NONPERTURBATIVE PROOF OF THE
FORM OF THE CLOSED EQUATION FOR �(n,m) IN PA

In this Appendix we will use the NPRG as discussed
in Appendix B in order to show the general diagrammatic
property used in the main text (see Fig. 1), which relates 
(n,m)

with λ and vertices of at most (n,m) legs. This relation has
been presented in the main text at all orders in a perturbative
expansion in λ, but here we sketch a nonperturbative proof
for it.

First, observe that we can write the property we want to
show in terms of a specific form for 
k , the average effective
action for the theory at any scale k,


k = SPA +
∫

x

φ2(x)
∫

x ′,x ′′
Gk(x ′ − x)Gk(x ′′ − x)

× 
̃k[x ′,x ′′,φ,φ̄] (C1)

with

δ
̃k[x ′,x ′′,φ,φ̄]

δφ(x)
= 0, if t < max(t ′,t ′′),

(C2)
δ
̃k[x ′,x ′′,φ,φ̄]

δφ̄(x)
= 0, if t < max(t ′,t ′′);

indeed, this form ensures that any 

(n,m)
k vertex will consist on

a series of bare terms given by the action SPA, together with
renormalized terms which always begin (temporally speaking)
by a bare (2,2) vertex.

The property we want to show is obviously true at the
bare level, with 
̃� = 0. Now we proceed in an iterative way,
assuming that the property we want to prove is true at a RG
scale k0, and checking that it continues to be valid for a scale
k0 − δk.

By hypothesis then, we take that at k = k0 all vertices



(n,m)
k0

can be decomposed as a diagram containing a λ4

bare vertex (with two simultaneous incoming φ legs) and a

̃

(n,m)
k0

, this last function being constrained by the condition
that the full diagram must be 1PI. As explained before, the
NPRG equations for any vertex 


(n,m)
k can be represented

diagrammatically by one-loop diagrams, where vertices and
propagators are read from 
k + �Sk . To those diagrams one
must apply the operator ∂̃k in order to obtain ∂k


(n,m)
k . Each

one of these terms will consist on a number of 

(l,s)
k vertices

joined together by an internal loop of propagators. We can
distinguish between internal lines, pertaining to the internal
loop, and external lines.

Consider then a typical diagram contributing to
∂k


(n,m)
k (t1, . . . ,tn,t̃1, . . . ,t̃m), where we emphasize the time

dependence of the vertices. We now define as t0 the smallest
time for any incoming external leg, t0 � tk ∀k. Its correspond-
ing leg is attached to one of the vertices in the loop, and by
hypothesis at k = k0, the two smallest times in this vertex must
correspond to an incoming bare λ4 vertex. We have then two
possibilities to consider:

(1) Both t0 legs are external legs. This means that ∂s

(n,m)
k

can also be decomposed in the form (C2), which implies the
desired property for k = k0 − δk.

(2) Only one t0 leg is an external leg, and the other one is an
internal incoming leg. Thus, given the nonrenormalization of
the propagators, there is another vertex with an outgoing leg
at a time previous to t0. But at k = k0 this vertex should have
at least two incoming legs with a corresponding time previous
to t0. At least one of these incoming legs must be external,
contradicting our assumption.

The desired property is then preserved all along the NPRG
flow, showing that it is a fully nonperturbative result as stated
in the main text.

APPENDIX D: CAUSAL PROPERTIES IN BARW AND
PA WITHIN THE NPRG

In this Appendix we will describe the nonperturbative
causal properties in BARWs and PA. Although these properties
have a simple expression in terms of a perturbative expansion
[8], they are somewhat difficult to prove in the context of the
NPRG [4], which is what we choose to do here, in order to
have nonperturbative versions of the results.

The method used here is completely analogous to that used
in Appendix C in order to prove the diagrammatic property
used in the main text. In fact, this property can be seen as a
causal property of PA. Here we show that it can be slightly
generalized. But before that let us start with a simple causal
property for generic BARWs.

Let us concentrate on theories where at bare level, all
vertices verify that in the time domain



(n,m)
� (t1, . . . ,tn,t̃1, . . . ,t̃m) = 0 (D1)

if one of the times in the set {t1, . . . ,tn} is strictly larger than all
times in the set {t̃1, . . . ,t̃m}. For the two-point functions this is
equivalent to imposing the Itô prescription [4,25] by requiring
that the propagator in time is strictly causal [G(t,t ′ = t) =
0]. For all other correlation functions this can be seen as a
consequence of the locality of the bare theory. These properties
apply for all BARWs, as can be checked by looking at Eq. (6).
We are going to prove now that if these properties take place
at bare level they remain true all along the flow. This implies,
in particular, that all 


(0,n)
k are zero, due to the nonexistence of

any incoming time in that case.
As explained before, the NPRG equations for any ver-

tex 

(n,m)
k can be represented diagramatically by one-loop

diagrams, where vertices and propagators are read from

k + �Sk . To those diagrams one must apply the operator
∂̃k in order to obtain ∂k


(n,m)
k . We represent terms of these

equations before the application of the ∂̃k operator. Each one
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∂̃k

t

t

tk

t

FIG. 14. An example of a diagram contributing to ∂k

(n,m)
k in the

NPRG for a generic theory (see text).

of these terms will consist in a number of 

(s,t)
k vertices joined

together by an internal loop of propagators.
Assuming that the property we want to prove is true at a RG

scale k0, we will check that it continues to be valid for a scale
k0 − δk, which implies the result given that by hypothesis it is
valid at the bare level. Consider then a typical diagram con-
tributing to ∂k


(n,m)
k (t1, . . . ,tn,t̃1, . . . ,t̃m) as shown in Fig. 14,

where we have chosen to explicit the time dependence in each
vertex. Suppose now that ∂k


(n,m)
k (t1, . . . ,tn,t̃1, . . . ,t̃m) has a

nonzero contribution with a given tk strictly larger than all t̃k′ .
Let us consider the largest such time tk . Its corresponding
leg is attached to one of the vertices in the loop, and by
hypothesis, at k = k0, the largest time in this vertex must
correspond to an outgoing leg. However, this leg cannot be
an external leg, because we have assumed that tk is the largest
external time. Accordingly, this time (which we will call t ′; see
Fig. 14) must be in an outgoing internal line. This line arrives
to another vertex at a time t ′′ > t ′ > tk that consequently is
strictly larger than any external time, and that is associated to
an incoming internal line. Again, by hypothesis, there must
be an outgoing leg with a time t ′′′ � t ′′ but this leg cannot
be an external leg (because t ′′ > tk). Consequently t ′′′ must
correspond to the other internal line that must consequently be
outgoing. Following the internal (one loop) line and repeating
the reasoning for each vertex, one returns to the initial vertex
at a time strictly larger than the supposedly largest time. This
is absurd, proving the desired property.

Now, in the particular case of PA this can be further
generalized. In fact, in PA we will have that for any 


(n,m)
k

the first three times in the vertex must correspond to incoming
φ legs (when possible, that is, when n > 2). This follows
in a similar way: the property is trivial in PA at the bare
level, and we will assume by hypothesis that it is true at
the scale k0. Again, consider a typical diagram contributing
to ∂k


(n,m)
k (t1, . . . ,tn,t̃1, . . . ,t̃m). By the property shown in

Appendix C, we know that the two smallest external times
t1 and t2 correspond to two incoming legs in the same vertex
in the 1PI loop.

Let us first assume that the third time t3 is also attached to
this same vertex. By hypothesis, at k0, it must correspond to
an incoming leg. If it is an external leg the result follows. If
it is an internal loop leg, then it must be an outgoing leg from
another vertex in the loop. But again by hypothesis at k0, there
must be an external incoming leg in this other vertex with a

∂̃k

FIG. 15. Tadpole diagram which would contribute to ∂k

(1,1)
k

forbidden by Itô.

corresponding time smaller than t3, which is absurd (unless
n < 3, which would correspond to a particular case).

The other possibility is that the third smallest time t3 is
attached to another vertex. If this time corresponds to an
outgoing leg, we will have that in order for this vertex not
to have an incoming external leg (which would by hypothesis
correspond to a time smaller than t3) then this must be a 


(2,2)
k

vertex with both its incoming lines being internal loop lines.
But then the same argument as before applies, and we can find
a smaller time in yet another adjacent vertex. This completes
the proof.

APPENDIX E: NPRG EQUATIONS FOR THE
SIMPLEST VERTICES

The first consequence to be taken from the causality results
in the previous appendix is the nonrenormalization of the
two-point function 


(1,1)
k . As can be easily seen, the tadpole

diagram (that in this case includes 

(2,2)
k ; see Fig. 15) is zero

due to these causal properties: in order to exist, one of its
outgoing legs must be associated with a time t̃0 smaller than
one of the incoming legs, which is impossible in PA. The
remaining possible diagram would include a 


(1,2)
k vertex and is

accordingly zero. Notice also that the other two-point functions



(0,2)
k and 


(2,0)
k remain equal to zero in the shifted version

[Eq. (9)] of PA, in the first case because of property (15) and
in the second case due to causality (see Appendix D).

We now explicitly solve the flow equations for the functions



(2,1)
k and 


(2,2)
k . The flow equation for 


(2,2)
k reads

∂k

(2,2)
k (p1,p2,p3,p4)

=
∫

q

∂kRk(q)G2
k(q)Gk(p1 + p2 − q)

×

(2,2)
k (p1,p2,−q,−p1 − p2 + q)

×

(2,2)
k (q,p1+p2 − q,−p3,−p4), (E1)

which is a closed form equation, given that the other possible
term is a tadpole with a 
(3,3) vertex evaluated at an uncausal
configuration. This equation is not only closed but, moreover,
we can show that it implies that 


(2,2)
k (p1,p2,p3,p4) is a

function of p1 + p2 only. This is trivially the case in the
microscopic initial scale, where 


(2,2)
� (p1,p2,p3,p4) = 4λ.

Now, if this property is true for all k � k0, we can define

lk0 (p1 + p2) = 1
4


(2,2)
k0

(p1,p2,p3,p4) (E2)
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and at this scale the flow equation becomes

∂k

(2,2)
k

∣∣
k=k0

(p1,p2,p3,p4)

= 16l2
k0

(p1 + p2)
∫

q

∂kRk(q)

∣∣∣∣
k=k0

G2
k0

(q)Gk0 (p1 + p2 − q)

(E3)

showing by iteration that 

(2,2)
k (p1,p2,p3,p4) remains a func-

tion of p1 + p2 for any k. We then generalize lk(p1 + p2) as
in (E2) to any scale k. This definition allows one to arrive at
the simpler flow equation

∂klk(p) = 4l2
k (p)

∫
q

∂kRk(q)G2
k(q)Gk(p − q), (E4)

which can be rewritten as

∂k

[
l−1
k (p)

] = 2∂k

∫
q

Gk(q)Gk(p − q) (E5)

with solution

lk(p) = λ

1 + 2λ
∫
q

(Gk(q)Gk(p − q) − G�(q)G�(p − q))
.

(E6)

Here the dependence on the scale k of the propagator Gk enters
only through the regulator function Rk . This is completely
equivalent to the results in the main text for k = 0. The general
NPRG structure is very reminiscent of the case of the O(N )
scalar field theory in the large N limit, where one can also
show [52,54] that the NPRG equations can be solved exactly,
on similar lines.

As for the three-point function, 

(2,1)
k one can start in an

analogous way from its flow equation,

∂k

(2,1)
k (p1,p2,p3)

=
∫

q

∂kRk(q)G2
k(q)Gk(p1 + p2 − q)

×

(2,2)
k (p1,p2,−q,−p1 − p2 − q)

×

(2,1)
k (q,p1 + p2 − q,−p1 − p2). (E7)

Given the knowledge of 

(2,2)
k the equation is again closed.

Moreover, one can now perform the same type of analysis that
has been done for 


(2,2)
k in order to prove that 


(2,1)
k (p1,p2,p3)

is a function of p1 + p2 and define

gk(p1 + p2) = 1
2


(2,1)
k (p1,p2,p3), (E8)

whose equation reads

∂kgk(p) = 4gk(p)λk(p)
∫

q

∂kRk(q)G2
k(q)Gk(p − q). (E9)

Then, by using (E4), one deduces that for all k

∂k

(
gk(p)

lk(p)

)
= ∂kgk(p)

lk(p)
− gk(p)∂kλk(p)

l2
k (p)

= 0. (E10)

As g�(p) = 2l = 2l�(p), one concludes that

gk(p) = 2lk(p) (E11)

with the propagator defined as the regulated bare propagator,
which in the case of a continuum theory would read

Gk(q,ω) = 1

q2 + iω + Rk(q)
. (E12)

All these results are strictly equivalent to those given in
Sec. III of the main text in the limit k → 0.

Within this formalism we can also recover the results given
in Sec. IV of the main text with respect to the threshold of
the active-to-absorbing transition, by following similar lines
as before.

Notice though that this NPRG approach is not sufficient
to construct a σ expansion with closed equations. Indeed, to
be able to do that we should have closed expressions for any
vertex in PA, in order to rewrite vertices in BARW-DP as
an expansion in terms of PA vertices. However, the causal
properties which we used to ignore the tadpole diagrams in
the flow equations for 


(1,1)
k , 


(2,1)
k , and 


(2,2)
k are not general

enough to allow us to close the flow equations for vertices with
a higher number of legs. This is problematic even at first order
in σ in the BARW-PC case, so that we are not able to recover
our results for dσ within the pure NPRG formalism.

APPENDIX F: SCALING DIMENSION dσ AT ONE- AND
TWO-LOOP ORDER

In this Appendix we show how to recover the perturbative
results of [8] for dσ in BARW-PC within our formalism. Let
us begin by recalling from the main text the equation for σ̂ ,
which reads

σ̂ (p) = σ

λ
− 4

∫
q

G(q)G(p − q)σ̂ (q)l(q). (F1)

Using this expression we can recover the one-loop and
two-loop results for dσ (and hence dc). In order to do so it is
convenient to get rid of the bare level dependence on λ and σ

by writing some sort of RG flow equation. The easiest way to
do this is by performing a logarithmic derivative with respect
to ν, which yields

ν∂νσ̂ (p) = −4ν∂ν

∫
q
σ̂ (q)l(q)G(p − q)G(q)

= 4iν
∫
q
σ̂ (q)l(q)G2(p − q)G(q). (F2)

This equation can be compared with the corresponding RG
equation for l(p), obtained by differentiating Eq. (19),

ν∂νl(p) = −2l2(p)ν∂ν

∫
q

G(p − q)G(q). (F3)

At one-loop order the q dependence in σ̂ should be weak.
In the IR one expects this dependence to be dominated by the
external momentum p, given that the momentum integral is
regular for the values of d we are interested in,

ν∂νσ̂ (p) � −4σ̂ (p)l(p)ν∂ν

∫
q

G(p − q)G(q), (F4)

which, together with (F3), yields

ν∂ν

(
σ̂ (p)

l2(p)

)
= 0. (F5)
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Accordingly, and given that

σ̂ (p)

l2(p)
ν→∞−−−→ σ

λ3
, (F6)

we have the result

σ̂ (p) ∼ σ

λ3
l2(p). (F7)

This behaves, when ν,|p|2  λ2/(2−d), as

σ̂ (p) ∼ |p|2(2−d). (F8)

Given the definition of dσ (see Sec. V) we find

dσ = 3d − 4 = 2 − 3ε. (F9)

With this expression we find that dσ changes sign at dc = 4/3
as expected.

Going now to two-loop order it is convenient to use the
logarithmic derivative of σ̂ ,

ν∂ν lnσ̂ (p) = −4i

∫
q

l(q)σ̂ (q)

σ̂ (p)
G2(p − q)G(q). (F10)

We now introduce in the right hand side of this equation the
one-loop result σ̂ (p) ∼ l2(p), to obtain

ν∂ν lnσ̂ (p) = −4i

∫
q

l3(q)

l2(p)
G2(p − q)G(q). (F11)

We also need the scaling form for l(p), as given by (64) in
the main text. At this point it is enough in order to obtain dσ

to restrict to p = 0 (given that σ̂ (p,ν) ∼ ν(d−dσ )/2)

d − dσ = −8iν
(4π )d/22−ε/2



(

ε
2

) ∫
q

( q2

2 + iω
)3ε/2

(iν)ε

×G(q,ω)G2(−q,ν − ω), (F12)

which can be evaluated to yield

dσ = 2 − 3ε + 3ln
(

4
3

)
ε2, (F13)

the known two-loop result [8], which corresponds to
dc =� 1.1.
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[8] J. L. Cardy and U. C. Täuber, Phys. Rev. Lett. 77, 4780 (1996);
J. Stat. Phys. 90, 1 (1998).
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