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Heat conduction induced by non-Gaussian athermal fluctuations
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We study the properties of heat conduction induced by non-Gaussian noises from athermal environments.
We find that new terms should be added to the conventional Fourier law and the fluctuation theorem for the
heat current, where its average and fluctuation are determined not only by the noise intensities but also by the
non-Gaussian nature of the noises. Our results explicitly show the absence of the zeroth law of thermodynamics
in athermal systems.
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I. INTRODUCTION

Recent developments of experimental technologies have
enabled us to investigate the detailed thermodynamic prop-
erties of small systems such as colloidal and biological
systems [1]. If the environments of the systems are in thermal
equilibrium, stochastic thermodynamics with Gaussian noises
has shown to be very powerful to investigate universal relations
in nonequilibrium statistical mechanics of small systems [2–7].
In these systems, for example, the average and the fluctuation
of heat current are characterized by the Fourier law and the heat
fluctuation theorem, respectively [8–24]. On the other hand,
the effects of non-Gaussian noises from athermal environments
have been reported in electrical circuits [25] and biomolecular
systems [26]. The conventional approaches in stochastic
thermodynamics are not applicable to such systems, because
the environments are not in thermal equilibrium. An alternative
approach to this problem has been the formulation in terms of
non-Gaussian noises [27–33]. However, a universal theory of
nonequilibrium statistical mechanics in the presence of non-
Gaussian noises has not been fully understood. For example,
how should the fundamental thermodynamic relations, such as
the Fourier law and the heat fluctuation theorem, be modified
with non-Gaussian noises?

In this paper, we answer this question with a stochastic
model of heat conduction induced by non-Gaussian noises
from athermal environments. We derive generalizations of
the Fourier law and the fluctuation theorem by applying
non-Gaussian stochastic energetics on the basis of a new
stochastic integral introduced in Ref. [34]. The average heat
current between the environments is determined not only by the
difference in the noise intensities (i.e., the temperatures for the
case of equilibrium environments), but also by the difference in
the non-Gaussianity of the noises. In particular, even when the
noise intensities of the environments are the same, the heat can
be conducted purely by the effect of the non-Gaussianity. We
also derive a correction to the heat-fluctuation theorem, which
reveals the fundamental properties of the heat fluctuations
in the presence of the non-Gaussian noises. Moreover, we
investigate the validity of the zeroth law of thermodynamics for
athermal systems, and find that the zeroth law is not universally
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valid but depends on the details of a contact device between
two systems. We numerically verify our statements, which
demonstrate that the direction of the average heat current
depends on the characteristics of the heat conductor, and
that the properties of the heat fluctuation significantly deviate
from those of the conventional fluctuation theorem. Our result
would serve as a theoretical foundation to study the energy
transport and the irreversible phenomena in athermal systems
with non-Gaussian noises.

This paper is organized as follows: In Sec. II, we formulate
the model of a Brownian motor with non-Gaussian noises and
define the heat current. In Sec. III, we show the generalizations
of the Fourier law and the heat fluctuation theorem and discuss
the zeroth law of thermodynamics for athermal systems. In
Sec. IV, we present derivations of our main results. In Sec. V,
we conclude this paper with some remarks. In Appendix A,
we discuss the cumulant functional and the n-points delta
functions. In Appendix B, we review the formulation of the
∗ integral. In Appendix C, we show a detailed analysis for
a weakly quartic potential. In Appendix D, we numerically
show the nonlinear effect in the generalized heat-fluctuation
theorem.

II. MODEL

We consider a non-Gaussian stochastic model of a Brown-
ian motor which consists of two vanes that are attached by
a spring to two environments which can be athermal (see
Fig. 1). The vanes are driven by athermal fluctuations in the
environments, and the spring conducts energy current induced
by the fluctuations. We refer to the energy current as the heat
current. The motion of the vanes is described by the following
Langevin equations:

dx̂

dt
= −∂U (x̂ − ŷ)

∂x̂
+ ξ̂ ,

dŷ

dt
= −∂U (x̂ − ŷ)

∂ŷ
− η̂, (1)

where x̂,ŷ are the angles of the vanes, U (x̂ − ŷ) is the
dimensionless potential energy of the spring, and ξ̂ ,η̂ are
independent non-Gaussian white noises that characterize the
fluctuations from the athermal environments. In the following,
〈Â〉 denotes the ensemble average of a stochastic variable Â,
and the Boltzmann constant is taken to be unity. The cumulants
of the noises are given by

〈ξ̂ (t)〉 = 〈η̂(t)〉 = 0, (2)
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FIG. 1. Schematic of heat conduction between athermal environ-
ments. The noise from the left (right) environment is characterized
by the noise intensity T (T ′) and the higher-order cumulants {Kn}n�3

({K ′
n}n�3).

〈ξ̂ (t1)ξ̂ (t2)〉c = 2T δ(t1 − t2), (3)

〈η̂(t1)η̂(t2)〉c = 2T ′δ(t1 − t2), (4)

〈ξ̂ (t1)ξ̂ (t2) · · · ξ̂ (tn)〉c = Knδn(t1,t2, . . . ,tn), (5)

〈η̂(t1)η̂(t2) · · · η̂(tn)〉c = K ′
nδn(t1,t2, . . . ,tn), (6)

where 〈ξ̂ (t1) · · · ξ̂ (tn)〉c denotes the nth cumulant, and
δn(t1, . . . ,tn) is an n-point delta function with a positive
integer n (see Appendix A for details). We write K2 ≡ 2T

and K ′
2 ≡ 2T ′. On the basis of stochastic energetics [3–6,34],

the heat current is defined by

dQ̂

dt
=

(
−dx̂

dt
+ ξ̂

)
∗ dx̂

dt
, (7)

where ∗ describes a stochastic integral that is defined as a
white-noise limit of a colored noise. As discussed in Ref. [34]
and Appendix B in detail, the ∗ integral for an arbitrary
function f (x̂(s)) is given by

∫ t

0
dsξ̂ (s) ∗ f (x̂(s)) ≡ lim

ε→+0
lim

�t→+0

N−1∑
i=0

�tξ̂ε(ti)f (x̂(ti)),

(8)

where �t ≡ t/N , ti ≡ i�t , and ξ̂ε(ti) is the colored noise with
a correlation time ε > 0 such that limε→0 ξ̂ε(ti) = ξ̂ (ti). For
non-Gaussian noises, the definition of the heat is not consistent
with the Stratonovich integral but with the ∗ integral [34]. We
note that the Stratonovich and ∗ integrals are the same for
Gaussian noises. In the Gaussian case with Kn = K ′

n = 0 for
n � 3, we can show that the motor obeys the conventional
Fourier law and the heat-fluctuation theorem:

J = −κ�T, (9)

lim
t→∞

1

t
ln

P (+q,t)

P (−q,t)
= �βq, (10)

where J = 〈dQ̂/dt〉SS ≡ limt→∞〈dQ̂/dt〉 is the average heat
current in the steady state, κ is the thermal conductivity, �T ≡
T ′ − T , �β ≡ 1/T ′ − 1/T , P (q,t) ≡ P (Q̂(t) = qt), and q is
the time-average heat current.

III. MAIN RESULTS

In this section, we summarize the main results of this paper.
Their derivation will be presented in Sec. IV associated with
the Appendices.

A. Generalized Fourier law

We now discuss the generalized Fourier law for an arbitrary
potential U (x̂ − ŷ) on the basis of the perturbation in terms of
�T , Kn, and K ′

n with n � 3. In the first-order perturbation,
we obtain the generalized Fourier law:

J = −
∞∑

n=2

κn�Kn, (11)

κn = 1

2n!

〈
dnU (ẑ)

dẑn

〉
eq

, (12)

where ẑ ≡ x̂ − ŷ, �Kn ≡ K ′
n − Kn, and

〈f (ẑ)〉eq ≡
∫ ∞

−∞
dzf (z)Peq(z) (13)

for an arbitrary function f (ẑ) with

Peq(z) ≡ e−U (z)/T∫ ∞
−∞ dye−U (y)/T

. (14)

This is the first main result of this paper. The first term on the
right-hand side (rhs) of Eq. (11), i.e., −2κ2�T , corresponds to
the conventional Fourier law, and the other terms describe the
correction terms due to the non-Gaussianity of the noises. This
result implies that the heat is conducted from the environment
with the higher non-Gaussianity to the other environment.
Particularly in the case of T = T ′, the Gaussian term of the
rhs of Eq. (11) vanishes, but non-Gaussian terms drive the
heat current. We note that the effect of the nth cumulant is
induced by the nth differential coefficient of the potential,
which implies that the quartic potential model is minimum
to reveal the non-Gaussian effects. In fact, if the potential is
harmonic, the non-Gaussian effects vanish in Eq. (11).

We have numerically verified Eq. (11) for a quartic
potential U (ẑ) = ẑ2/2 + χẑ4/4 with χ > 0. For simplic-
ity, we assume that ξ̂ (t) is white Gaussian noise and
that η̂(t) is a two-sided Poisson noise with intensity√

2T ′/λ′ and transition rate λ′/2: η̂(t) = ∑
i

√
2T ′/λ′δ(t −

t̂i) + ∑
i(−

√
2T ′/λ′)δ(t − ŝi), where t̂i ,ŝi are times at which

Poisson flights happen. Figure 2 shows our numerical re-
sults with T = 0.300, T ′ = 0.299, and λ′ = 5.0. We plot
the average heat current by changing χ . The direction of the
heat current is changed at χ 
 0.058, which implies that the
direction of the heat current depends on the potential profile of
the heat conductor. We explicitly present the detailed analysis
for weakly quartic case in Appendix C.

B. Generalized heat fluctuation theorem

We next discuss a correction term to the conventional heat
fluctuation theorem on the basis of the perturbation in terms
of Kn and K ′

n with n � 3. Here we do not assume that �T is
also small. For simplicity, we consider the case of a harmonic
potential with U (ẑ) = ẑ2/2. We obtain a correction term to the
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FIG. 2. (Color online) Numerical verification of Eq. (11), where
χ characterizes the nonlinearity of the potential. The dashed line
is obtained theoretically from Eq. (11), the cross points show the
numerical data of our Monte Carlo simulation, and the open circle
indicates the point at which the direction of the heat current is
switched. As χ becomes larger, the heat current becomes smaller. We
assume the ergodicity 〈dQ̂/dt〉SS = limT →∞[1/T

∫ T

0 ds(dQ̂/dt)]
and calculated the long-time average instead of the ensemble average.
The time step is given by 1.0 × 10−4 and the entire time interval for
the average is 1.0 × 109.

heat fluctuation theorem up to the first-order perturbation:

lim
t→∞

1

t
ln

P (+q,t)

P (−q,t)
= �βq +

∞∑
n=2

[K2n�2n(q) + K ′
2n�

′
2n(q)],

(15)

�2n(q) ≡ As

[
1

(4T 2)nn!

(
+q + 2q2 + T �T

2
√

q2 + T T ′

)n]
, (16)

�′
2n(q) ≡ As

[
1

(4T ′2)nn!

(
−q + 2q2 − T ′�T

2
√

q2 + T T ′

)n]
, (17)

where As[f (q)] ≡ f (q) − f (−q) is the antisymmetric part of
an arbitrary function f (q). This is the second main result of this
paper. Although the conventional Fourier law (9) holds for a
harmonic potential, the conventional heat fluctuation theorem
(10) should be modified as Eq. (15) even for the harmonic
potential. This implies that the effect of the non-Gaussianity
appears only in the higher cumulants in this case.

Let us consider a special case where ξ̂ and η̂ are the two-
sided Poisson noises with intensities

√
2T/λ and

√
2T ′/λ′ and

transition rates λ/2 and λ′/2, respectively. In this case, Eq. (15)
reduces to a simpler form:

lim
t→∞

1

t
ln

P (+q,t)

P (−q,t)

= 2�βq + 2λ exp

(
2q2 + T �T

4T λ
√

q2 + T T ′

)
sinh

q

2T λ

− 2λ′ exp

(
2q2 − T ′�T

4T ′λ′√q2 + T T ′

)
sinh

q

2T ′λ′ . (18)

We note that the Gaussian limit is given by λ,λ′ → ∞.
Particularly, let us focus on the case of T = T ′ and λ′ = ∞,

-0.003

 0

0.003

-0.01  0  0.01

        
        
        

Simulation
Eq.(18)
Eq.(10)

FIG. 3. (Color online) Numerical verification of Eq. (18). The red
broken line is obtained from Eq. (18), the black chain line is obtained
from Eq. (10), and the blue cross points show the numerical data of
our simulation. We perform the Monte Carlo simulation to make the
histogram of the heat distribution function, and numerically obtain
the fluctuation function F (q). The bin width for the heat histogram is
0.03, the time step is 0.0001, and the number of samples is 5 × 107.

where J = 0 holds. We note that η̂ is the Gaussian noise in
the limit λ′ → ∞. In this case, the fluctuation function F (q) ≡
limt→∞(1/t) ln P (+q,t)/P (−q,t) is positive for q > 0, which
is interpreted as follows: although P (q,t) converges to δ(q) in
the limit t → ∞, the convergence speed is asymmetric in terms
of q. Thus, the heat tends to flow from the environment with
the higher non-Gaussianity to the other environment, although
the average heat flux is zero.

We numerically checked the validity of Eq. (18) as shown
in Fig. 3. By taking t = 1000, T = 0.20, T ′ = 0.19, λ = 2.0,
and λ′ = ∞, we numerically obtain the fluctuation function
F (q) and compare it with Eqs. (18) and (10). We observe
a significant deviation from the conventional heat fluctuation
theorem (10), and the deviation is consistent with our result
[Eq. (18)]. We also demonstrate how the heat fluctuation
theorem is modified for the case in which the nonlinear
correction is relevant in Appendix D.

C. A generalized zeroth law of thermodynamics

We next discuss the zeroth law of thermodynamics [35–38].
In the case of non-Gaussian noises with �Kn �= 0 for n � 3,
Eq. (11) implies that the condition of J = 0 explicitly depends
on the spring potential U (ẑ). In contrast, in the case of Gaussian
noises, J = 0 if and only if �T = 0. Therefore, the zeroth law
of thermodynamics is not universally valid for non-Gaussian
noises; the condition of J = 0 depends on the details of the
contact device (i.e., the spring). When we fix the contact
device, however, there is a transitive relation for thermal
equilibrium and we can introduce an indicator characterizing
the direction of heat current.

To show this, we consider three athermal environments,
AE(1), AE(2), and AE(3), whose fluctuations are characterized
by the cumulants (T (i),{K (i)

n }n�3) with i = 1,2,3. If we link the
contact device between AE(i) and AE(j )(i,j = 1,2,3, i �= j ),
the average heat current between them is given by J (ij ) =
−∑

n�2 κn�
(ij )Kn, where �(ij )Kn ≡ K

(j )
n − K (i)

n . We can
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then show the transitive relation: if J (12) = 0 and J (23) = 0,
then J (13) = 0. We also introduce a device-dependent indicator
μU (T ,{Kn}n�3) as

μU (T ,{Kn}n�3) =
∞∑

n=2

κnKn, (19)

which characterizes the direction of the average heat current

J (ij ) = μU

(
T (i),

{
K (i)

n

}
n�3

) − μU

(
T (j ),

{
K (j )

n

}
n�3

)
. (20)

In this sense, μU (T (i),{K (i)
n }n�3) plays a corresponding role to

that of the temperature in equilibrium thermodynamics. Such
a device-dependent temperature has also been introduced in
Refs. [39,40] for driven lattice gases, which implies that our
results may hold beyond our model.

IV. DERIVATIONS

In this section, we present the details of the derivation of the
main results introduced in the previous section. This section
consists of two parts: the derivations of the generalized Fourier
law and of the generalized heat fluctuation theorem.

A. Derivation of generalized Fourier law

We now present the derivation of the generalized Fourier
law [Eq. (11)]. By introducing a new variable ẑ ≡ x̂ − ŷ,
Eqs. (1) reduce to a single equation:

dẑ

dt
= −2

dU (ẑ)

dẑ
+ ξ̂ + η̂. (21)

Let us introduce a stochastic distribution function as P̂(z,t) ≡
δ(z − ẑ(t)), which satisfies the stochastic Liouville equa-
tion [41]

∂P̂(z,t)

∂t
= − ∂

∂z

(
dẑ

dt
∗ P̂(z,t)

)

= 2
∂

∂z

dU

dz
P̂(z,t) − ∂

∂z
(ξ̂ + η̂) ∗ P̂(z,t). (22)

Using the transformation formulas from the ∗ integral to the
Itô integral [i.e., Eqs. (B4) and (B5)], we obtain the master
equation of the distribution function P (z,t) ≡ 〈P̂(z,t)〉 as

∂P

∂t
=

[
2

∂

∂z

dU

dz
+ (T + T ′)

∂2

∂z2
+

∞∑
n=3

Kn + K ′
n

(−1)nn!

∂n

∂zn

]
P

= 2
∂

∂z
(L0 + L1)P (z,t), (23)

where

L0 ≡ dU

dz
+ T

∂

∂z
, L1 ≡ �T

2

∂

∂z
+

∞∑
n=3

Kn + K ′
n

(−1)n2n!

∂n−1

∂zn−1
.

The normalization of the probability is given by∫ ∞
−∞ dyP (y,t) = 1. The steady solution of Eq. (23) sat-

isfies the relation (L0 + L1)PSS(z) = 0, where PSS(z) ≡
limt→∞ P (z,t). We assume that �T , Kn, and K ′

n are per-
turbative terms. In the first-order perturbation, we expand the
steady solution as PSS(z) = P0(z) + P1(z), where P0 and P1

are the nonperturbative and perturbative steady distributions,

respectively. Here, P0(z) and P1(z), respectively, satisfy the
equations

T
dP0(z)

dz
+ dU

dz
P0(z) = 0, (24)

T
dP1(z)

dz
+ dU

dz
P1(z)

= −�T

2

dP0(z)

dz
−

∞∑
n=3

(−1)n

2

Kn + K ′
n

n!

dn−1P0(z)

dzn−1
. (25)

Thus we obtain the solutions

P0(z) = e−U (z)/T∫ ∞
−∞ dye−U (z)/T

= Peq(z), (26)

P1(z) = P0(z)

[
C + �T U (z)

2T 2
−

∞∑
n=3

(−1)n

2T

Kn + K ′
n

n!

×
∫ z

0
dyP −1

0 (y)
dn−1P0(y)

dyn−1

]
, (27)

where C is a renormalization constant determined by∫ ∞
−∞ dyP1(y) = 0. The average heat flux is given by

J ≡
〈(

−dx̂

dt
+ ξ̂

)
∗ dx̂

dt

〉
SS

=
〈
−

(
dU

dẑ

)2

+ dU

dẑ
∗ ξ̂

〉
SS

=
〈
T

d 2U

dẑ2
−

(
dU

dẑ

)2〉
SS

+
∞∑

n=3

Kn

n!

〈
dnU

dẑn

〉
SS

=
∫ ∞

−∞
dz(P0(z) + P1(z))

[
T

d2U

dz2
−

(
dU

dz

)2]

+
∞∑

n=3

Kn

n!

〈
dnU

dẑn

〉
eq

, (28)

where we have used Eq. (B4), 〈Â〉SS ≡ ∫ ∞
−∞ dzPSS(z)A(z), and

〈Â〉eq ≡ ∫ ∞
−∞ dzP0(z)A(z). Using the following equalities:

T
d 2U

dz2
−

(
dU

dz

)2

= − T 2

P0(z)

d 2P0(z)

dz2
,

∫ ∞

−∞
dzP0(z)

d

dz

(
P −1

0 (z)
dn−1P0(z)

dzn−1

)
=

〈
(−1)n−1

T

dnU

dẑn

〉
eq

,

we obtain ∫ ∞

−∞
dzP0(z)

[
T

d2U

dz2
−

(
dU

dz

)2]
= 0, (29)

and ∫ ∞

−∞
dzP1(z)

[
T

d2U

dz2
−

(
dU

dz

)2
]

= −T 2
∫ ∞

−∞
dzP0(z)

d 2

dz2

(
P1(z)

P0(z)

)

= −�T

2

〈
d 2U

dẑ2

〉
eq

−
∞∑

n=3

Kn + K ′
n

2n!

〈
dnU

dẑn

〉
eq

. (30)
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Thus we obtain

J = −�T

2

〈
d 2U

dẑ2

〉
eq

−
∞∑

n=3

K ′
n − Kn

2n!

〈
dnU

dẑn

〉
eq

, (31)

which is the generalized Fourier law (11).

B. Derivation of generalized heat fluctuation theorem

We here derive the generalized heat fluctuation theorem
[Eq. (15)]. We first assume a harmonic potential U (ẑ) = ẑ2/2
and derive the master equation of a distribution function for
ẑ and Q̂. Let us introduce a stochastic distribution function
P̂(z,Q,t) ≡ δ(z − ẑ(t))δ(Q − Q̂(t)). The stochastic Liouville
equation for P̂(z,Q,t) is given by

∂P̂(z,Q,t)

∂t
= −

[
∂

∂z

dẑ

dt
+ ∂

∂Q

dQ̂

dt

]
∗ P̂(z,Q,t)

= 2
∂

∂z
[zP̂(z,Q,t)] + ∂

∂Q
[z2P̂(z,Q,t)]

− ∂

∂z
(ξ̂ + η̂) ∗ P̂(z,Q,t) − ∂

∂Q
zP̂(z,Q,t) ∗ ξ̂ .

(32)

Using Eqs. (B4) and (B5), we obtain the master equation of
P (z,Q,t) ≡ 〈P̂(z,Q,t)〉 as

∂P (z,Q,t)

∂t
=

[
2

∂

∂z
z + ∂

∂Q
z2 + T

(
∂

∂z
+ z

∂

∂Q

)2

+ T ′ ∂2

∂z2

+
∞∑

n=3

(−1)n

n!

{
Kn

(
∂

∂z
+ z

∂

∂Q

)n

+ K ′
n

(
∂

∂z

)n}]
P (z,Q,t). (33)

By introducing the Laplace transformation of P (z,Q,t)
as ρv(z,t) ≡ ∫ ∞

−∞ dQe−vQP (z,Q,t), we derive the modified
master equation for ρv(z,t) as

∂ρv(z,t)

∂t
= (

Lv
0 + Lv

1

)
ρv(z,t),

Lv
0 ≡ 2

∂

∂z
z + vz2 + T

(
∂

∂z
+ zv

)2

+ T ′ ∂2

∂z2
,

Lv
1 ≡

∞∑
n=3

(−1)n

n!

{
Kn

(
∂

∂z
+ zv

)n

+ K ′
n

(
∂

∂z

)n}
.

(34)

The adjoint operators of Lv
0 and Lv

1 are respectively given by

(
Lv

0

)† ≡ −2z
∂

∂z
+ vz2 + T

(
− ∂

∂z
+ zv

)2

+ T ′ ∂2

∂z2
,

(
Lv

1

)† ≡
∞∑

n=3

(−1)n

n!

{
Kn

(
− ∂

∂z
+ zv

)n

+ K ′
n

(
− ∂

∂z

)n}
.

Let us denote an eigenfunction of the operator Lv
0 + Lv

1 by
ψv

n (z) (n = 0,1,2, . . . ) and the corresponding eigenvalue by
μv

n (n = 0,1,2, . . . ). We assume that the eigenvalues satisfy
Re(μv

n) � Re(μv
m) for n > m, where Re(a) is the real part of

an arbitrary complex number a. We denote an eigenfunction of

the operator (Lv
0)† + (Lv

1)† by φv
n(z) (n = 0,1,2, . . . ) and the

corresponding eigenvalue by νv
n (n = 0,1,2, . . . ). According

to the Perron-Frobenius theory [20], we can generally set νv
n =

(μv
n)∗ for any n and the largest eigenvalues νv

0 and μv
0 are real.

Furthermore, the largest eigenvalue μv
0 is known to be equal

to the scaled cumulant generating function [20]

�(v) ≡ lim
t→∞

1

t
ln 〈e−vQ̂(t)〉. (35)

The orthonormal conditions for the eigenfunctions are
given by ∫ ∞

−∞
dy[φn(y)]∗ψm(y) = δn,m, (36)

where n and m are non-negative integers and δn,m is the
Kronecker delta. To solve this eigenvalue problem, we perform
a perturbative calculation in terms of Kn and K ′

n (n � 3).
We expand the largest eigenvalue μv

0 and the corresponding
eigenfunctions ψv

0 (z), φv
0 (z) as

μv
0 = μv

0,0 + μv
0,1, (37)

ψv
0 (z) = ψv

0,0(z) + ψv
0,1(z), (38)

φv
0 (z) = φv

0,0(z) + φv
0,1(z), (39)

where μv
0,0, ψv

0,0(z), and φv
0,0(z) are the nonperturbative terms,

and μv
0,1, ψv

0,1(z), and φv
0,1(z) are the perturbative terms. In the

first-order perturbation, we obtain

Lv
0ψ

v
0,0(z) = μv

0,0ψ
v
0,0(z), (40)(

Lv
0

)†
φv

0,0(z) = μv
0,0φ

v
0,0(z), (41)

Lv
0ψ

v
0,1(z) + Lv

1ψ
v
0,0(v) = μv

0,0ψ
v
0,1(z) + μv

0,1ψ
v
0,0(z). (42)

The solutions of Eqs. (40) and (41) are given by [42,43]

μv
0,0 = 1 −

√
(1 + T v)(1 − T ′v), (43)

ψv
0,0(z) = exp

(
− z2

2T ∗
1

)
, (44)

φv
0,0(z) =

√
1

T ∗
1

+ 1
T ∗

2

2π
exp

(
− z2

2T ∗
2

)
, (45)

where T ∗
1 ≡ (T + T ′)/[

√
(1 − T ′v)(1 + T v) + 1 + T v] and

T ∗
2 ≡ (T + T ′)/[

√
(1 − T ′v)(1 + T v) − 1 − T v]. Multiply-

ing φv
0,0(z) to the both sides of Eq. (42) and integrating them

over z, we obtain

μv
0,1 =

∫ ∞

−∞
dzφv

0,0(z)Lv
1ψ

v
0,0(z)

=
√

1
T ∗

1
+ 1

T ∗
2

2π

[ ∞∑
n=3

(−1)nKn

n!

×
∫ ∞

−∞
dze

− z2

2 ( 1
T ∗

2
+v) dn

dzn
e
− z2

2 ( 1
T ∗

1
−v)

+
∞∑

n=3

(−1)nK ′
n

n!

∫ ∞

−∞
dze

− z2

2T ∗
2

dn

dzn
e
− z2

2T ∗
1

]
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=
∞∑

n=2

K2n

n!

[−v

4

√
1 − T ′v
1 + T v

]n

+
∞∑

n=2

K ′
2n

n!

[
v

4

√
1 + T v

1 − T ′v

]n

, (46)

where we have used Eqs. (36), (41), (44), (45), and identities
for Hermite polynomial Hn(z):

d

dz
+ vz = e− vz2

2
d

dz
e

vz2

2 , Hn(z) ≡ (−1)nez2 dn

dzn

(
e−z2)

,

∫ ∞

−∞
dze− z2

2α Hn(z) =
{√

2πα n!
(n/2)! (2α − 1)n/2 (even n)

0 (odd n).

Thus, we obtain the scaled cumulant generating function

�(v) = �0(v) + �1(v),

�0(v) ≡ 1 −
√

(1 − T ′v)(1 + T v),
(47)

�1(v) ≡
∞∑

n=2

K2n

n!

[−v

4

√
1 − T ′v
1 + T v

]n

+
∞∑

n=2

K ′
2n

n!

[
v

4

√
1 + T v

1 − T ′v

]n

.

We note that the scaled cumulant generating function has
singular points v = −1/T , 1/T ′, near which the perturbation
is not valid.

The asymptotic form of the distribution function P (q,t) =
〈δ(q − Q̂(t)/t)〉 is related to the cumulant generating function
[44] as

lim
t→∞

1

t
ln P (q,t) = v∗q + �(v∗), (48)

where v = v∗ is the point at which vq + �(v) is minimum.
The explicit form of v∗ is given by the condition q +
d�(v)/dv|v=v∗ = 0. In the first-order perturbation, we obtain

lim
t→∞

1

t
ln P (q,t) = v∗

0q + �0(v∗
0 ) + �1(v∗

0 ), (49)

q + d�0(v)

dv

∣∣∣∣
v=v∗

0

= 0, (50)

where we have expanded v = v∗
0 + v∗

1 with the nonperturbative
and perturbative terms v∗

0 and v∗
1 , respectively. By solving

Eq. (50), v∗
0 is explicitly written as

v∗
0 = �β

2
− (β + β ′)q

2
√

q2 + T T ′ , (51)

where β ≡ 1/T , β ′ ≡ 1/T ′, and �β ≡ β ′ − β. We note that
our perturbation is not valid in the limit q → ±∞ because of
the singularity of the scaled cumulant generating function. By
substituting Eq. (51) into Eq. (49), we obtain

lim
t→∞

1

t
ln P (q,t)

= 1 + �βq

2
− β + β ′

2

√
q2 + T T ′

+
∞∑

n=2

K2n

n!

[
1

4T 2

(
q + 2q2 + T �T

2
√

q2 + T T ′

)]n

+
∞∑

n=2

K ′
2n

n!

[
1

4T ′2

(
−q + 2q2 − T ′�T

2
√

q2 + T T ′

)]n

, (52)

which implies the generalized fluctuation theorem (15).

V. CONCLUDING REMARKS

In this paper, we have studied heat conduction induced by
non-Gaussian noises from two athermal environments. As a
result, we found new terms in the Fourier law and the heat
fluctuation theorem, which implies that heat current can be
induced by the non-Gaussianity of athermal fluctuations. We
have also discussed that the zeroth law of thermodynamics is
not straightforwardly valid for athermal systems.

Our numerical results are not consistent with the con-
ventional Fourier law and the fluctuation theorem but are
consistent with the analytical results obtained in this paper.

Our theory departs from Gaussian stochastic thermody-
namics toward a universal theory of nonequilibrium statistical
mechanics in the presence of non-Gaussian noises. It is
interesting to investigate if the generalized Fourier law and
fluctuation theorem obtained in this paper would hold in a
much broader class of athermal heat conduction.
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APPENDIX A: CUMULANT FUNCTIONAL AND n-POINTS
DELTA FUNCTIONS

We discuss the relationship between the cumulant func-
tional of non-Gaussian white noise ξ̂ (t) and the n-points delta
functions. Let us introduce the characteristic functional G[v]
and the cumulant functional H[v] [45] as

G[v] ≡
〈
exp

[
i

∫ t

0
dsξ̂ (s)v(s)

]〉
, H[v] ≡ lnG[v], (A1)

where v(s) is an arbitrary function. The nth-order moments
〈ξ̂ (t1) · · · ξ̂ (tn)〉 and the nth-order cumulants 〈ξ̂ (t1) · · · ξ̂ (tn)〉c
can be respectively written as

〈ξ̂ (t1) · · · ξ̂ (tn)〉 ≡ δnG[v]

δiv(t1) · · · δiv(tn)

∣∣∣∣
v=0

, (A2)

〈ξ̂ (t1) · · · ξ̂ (tn)〉c ≡ δnH[v]

δiv(t1) · · · δiv(tn)

∣∣∣∣
v=0

. (A3)

It is known that there are relations between the moments and
the cumulants [46]. In particular, the forth cumulant can be
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written as

〈ξ̂ (t1)ξ̂ (t2)ξ̂ (t3)ξ̂ (t4)〉c = 〈ξ̂ (t1)ξ̂ (t2)ξ̂ (t3)ξ̂ (t4)〉
− 〈ξ̂ (t1)ξ̂ (t2)〉〈ξ̂ (t3)ξ̂ (t4)〉
− 〈ξ̂ (t1)ξ̂ (t3)〉〈ξ̂ (t2)ξ̂ (t4)〉
− 〈ξ̂ (t1)ξ̂ (t4)〉〈ξ̂ (t2)ξ̂ (t3)〉, (A4)

for 〈ξ̂ (t)〉 = 0. We note that the fourth cumulant can be
decomposed into the second cumulant only in the case of
the Gaussian noise. According to the Lévy-Itô decomposition
[46,47], the cumulant functional can be transformed into the
standard form of Lévy processes

H[v] =
∫ t

0
ds

[
iav(s) − σ 2v2(s)

2

+
∫ +∞

−∞
dz(eiv(s)z − 1)w(z)

]
, (A5)

where a and σ 2 are arbitrary constants and w(z) is a transition
rate function.

We next introduce the n-points delta functions as [48]

δn(t1, . . . ,tn) =
{∞ (t1 = · · · = tn)

0 (otherwise),
(A6)∫ ∞

−∞
dt2 · · · dtnδn(t,t2, . . . ,tn) = 1. (A7)

We assume the symmetric property for the delta function
δn(t1, . . . ,tn) = δn(s1, . . . ,sn), where {s1, . . . ,sn} is an arbi-
trary permutation of {t1, . . . ,tn}. The following equality can
be derived from this symmetric property:∫ t

0
dt2dt3dt4δ4(t,t2,t3,t4) = 1

4
. (A8)

The derivation of Eq. (A8) is as follows: By definition, we
obtain ∫ t

0
dt1dt2dt3dt4δ4(t1,t2,t3,tn) = t. (A9)

By differentiating the left- and right-hand sides with respect
to t , we obtain∫ t

0
dt2dt3dt4δ4(t,t2,t3,t4) +

∫ t

0
dt1dt3dt4δ4(t1,t,t3,t4) + · · ·

+
∫ t

0
dt1dt2dt3δ4(t1,t2,t3,t) = 1. (A10)

The symmetric property of the delta function leads to the
following equality

4
∫ t

0
dt2dt3dt4δ4(t,t2,t3,t4) = 1, (A11)

which implies Eq. (A8). Similar equalities can be derived using
the parallel techniques.

We can represent the functional derivatives of the cumulant
functional with the n-points delta functions:

δ2H[v]

δiv(t1)δiv(t2)

∣∣∣∣
v=0

= 2T δ2(t1,t2),

δnH[v]

δiv(t1)δiv(t2) · · · δiv(tn)

∣∣∣∣
v=0

= Knδn(t1,t2, . . . ,tn),

where K2 = 2T ≡ σ 2 + ∫
z2w(z)dz and Kn ≡ ∫

znw(z)dz

for n � 3. We note that the assumption of the symmetry of the
delta function is consistent with that of the mixed functional
derivative

δn�[v]

δiv(t1) · · · δiv(tn)

∣∣∣∣
v=0

= δn�[v]

δiv(s1) · · · δiv(sn)

∣∣∣∣
v=0

, (A12)

where {s1, . . . ,sn} is an arbitrary permutation of {t1, . . . ,tn}.

APPENDIX B: THE ∗ INTEGRAL

We briefly review the formulation of the ∗ integral [34].
The main idea of the ∗ integral is to take a white-noise limit
of a colored noise in order to remove the singularity of the
white noise. Let x̂(t) be an arbitrary stochastic variable. The
∗ integral for an arbitrary function f (x̂(t)) is defined as a
white-noise limit of a colored noises:

∫ t

0
dsξ̂ (s) ∗ f (x̂(s)) ≡ lim

ε→+0
lim

�t→+0

N−1∑
i=0

�tξ̂ε(ti)f (x̂(ti)) ,

(B1)

where �t ≡ t/N , ti ≡ i�t , and ξ̂ε(t) is a colored noise with
a finite correlation time ε. An explicit definition of ξ̂ε(t) is
given by

ξ̂ε(t) ≡ 1

ε

∫ t+ε

t

dsξ̂ (s). (B2)

The ∗ integral is a generalization of the Stratonovich integral
and is the same as the Stratonovich integral for Gaussian
processes. An advantage of the ∗ calculus lies in the fact that
the chain rule holds even for non-Gaussian processes [34]. The
∗ integral is applicable to the definition of heat in stochastic
energetics [4–6,34].

The ∗ integral can be transformed into the Itô integral,
which is a crucial technique for the derivations of Eqs. (11)
and (15) in the main text. Let us assume a Langevin equation
and the corresponding stochastic heat current respectively as

dẑ

dt
= −2

dU (ẑ)

dẑ
+ ξ̂ + η̂,

(B3)
dQ̂

dt
= −

(
dU (ẑ)

dẑ

)2

+ dU (ẑ)

dẑ
∗ ξ,

where U (ẑ) is a potential functions, and ξ̂ and η̂ are white
non-Gaussian noises. The ∗ integrals for an arbitrary function
f (ẑ,Q̂) can be transformed into the Itô integrals as

dL̂ ∗ f (ẑ,Q̂) =
∞∑

n=0

(dL̂)n+1

(n + 1)!
·
[

∂

∂ẑ
+ dU (ẑ)

dẑ

∂

∂Q̂

]n

f (ẑ,Q̂),

(B4)

dL̂′ ∗ f (ẑ,Q̂) =
∞∑

n=0

(dL̂′)n+1

(n + 1)!
·
[

∂

∂ẑ

]n

f (ẑ,Q̂), (B5)

where the symbol · denotes the Itô integral, and the Lévy pro-
cesses L̂(t), L̂′(t) are respectively defined by L̂(t) ≡ ∫ t

0 dsξ̂ (t)
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and L̂′(t) ≡ ∫ t

0 dsη̂(t). These equations can be derived as
follows: According to Ref. [45],

〈ξ̂ ∗ f (ẑ,Q̂)〉 = lim
t→∞〈ξ̂εf (ẑ,Q̂)〉

=
∞∑

n=0

Kn+1

(n + 1)!

〈
δnf (ẑ,Q̂)

δξ̂ n

〉

=
∞∑

n=0

〈dL̂n+1/dt〉
(n + 1)!

×
〈[

∂

∂ẑ
+ dU (ẑ)

dẑ

∂

∂Q̂

]n

f (ẑ,Q̂)

〉
, (B6)

where 〈dL̂n〉 = Kndt , δẑ/δξ̂ = 1, and δQ̂/δξ̂ = dU/dẑ. This
equation can be rewritten as

〈dL̂ ∗ f (ẑ,Q̂)〉

=
∞∑

n=0

〈
dL̂n+1

(n + 1)!
·
[

∂

∂ẑ
+ dU (ẑ)

dẑ

∂

∂Q̂

]n

f (ẑ,Q̂)

〉
. (B7)

Because this equality holds for an arbitrary function f (ẑ,Q̂),
we obtain Eq. (B4). In a parallel calculation, we obtain
Eq. (B5).

APPENDIX C: WEAKLY QUARTIC POTENTIAL

In this Appendix, we discuss a correction term to the Fourier
law for a weakly quartic potential with non-Gaussian noises.
Let us consider a system with a weakly quartic potential
U (ẑ) = ẑ2/2 + εẑ4/4, where ε is a small constant. Here
we do not assume that the temperature difference �T and
the non-Gaussian properties {Kn}n�3 are also small. In the
first-order perturbation in terms of ε, we obtain a correction
term to the Fourier law as

J = −κ�T − κ ′�K4 + O(ε2), (C1)

where κ ≡ (1/2)[1 + {3ε(T + T ′)/2}] and κ ′ ≡ ε/8. We note
that only the fourth cumulant difference �K4 appears on the
rhs of Eq. (C1) as the correction term because dnU/dẑn = 0
with n = 3 and n � 5. This result is consistent with Eq. (11)
when �T and {Kn}n�3 are small. A similar result to Eq. (C1)
was obtained for an underdamped system with a weakly quartic
potential [33]. We note that the zeroth law of thermodynamics
is not straightforwardly valid because the condition of J = 0
in Eq. (C1) depends explicitly on the properties of the heat
conductor. However, we can introduce the device-dependent
indicator με(T ,K4) ≡ T/2 + 3εT 2/4 + εK4/8 to show the
transitive relation if we fix the contact device, where με

characterize the direction of heat current as J = με(T ,K4) −
με(T ′,K ′

4).
Equation (C1) can be derived as follows: We assume that

the solution of Eq. (21) is expanded as ẑ(t) = ẑ0(t) + εẑ1(t) +
O(ε2), where ẑ0(t) and ẑ1(t) respectively satisfy

dẑ0

dt
+ 2ẑ0 = ξ̂ + η̂,

dẑ1

dt
+ 2ẑ1 = −2ẑ3

0. (C2)

By solving Eq. (C2), we obtain the explicit solution

ẑ(t) =
∫ t

0
ds1e

−2(t−s1)(ξ̂1 + η̂1) − 2ε

∫ t

0
ds1e

−2(t−s1)

×
∫ s1

0

4∏
i=2

dsie
−2(s1−si )(ξ̂i + η̂i), (C3)

where we denote ξ̂n and η̂n by ξ̂ (sn) and η̂(sn) with a positive
integer n, respectively. From straightforward calculations, we
obtain

〈ẑ ∗ ξ̂〉SS = T + O(ε2), (C4)

〈ẑ3 ∗ ξ̂〉SS = 3T (T + T ′)
2

+ K4

4
+ O(ε), (C5)

〈z2〉SS = T + T ′

2
− 3ε(T + T ′)2

4
− ε(K4 + K ′

4)

8
+ O(ε2),

(C6)

〈ẑ4〉SS = 3(T + T ′)2

4
+ K4 + K ′

4

8
+ O(ε). (C7)

From Eqs. (C4)–(C7) and (7), we then obtain

J = 〈ẑ ∗ ξ̂〉SS + ε〈ẑ3 ∗ ξ 〉SS − 〈ẑ2〉SS − 2ε〈ẑ4〉SS + O(ε2)

= −1

2

[
1 + 3ε(T + T ′)

2

]
�T − ε

8
�K4 + O(ε2), (C8)

which implies Eq. (C1).

-0.003

-0.002

-0.001

 0

 0.001

 0.002

 0.003

-0.15 -0.1 -0.05  0  0.05  0.1  0.15

Eq. (18)
Numerical data 

FIG. 4. (Color online) Numerical observation of the nonlinear
effect in the fluctuating function F (q). The cross points indicate
the numerical data of F (q) for t = 100, and the dashed line is the
theoretical line obtained from Eq. (18). We perform the Monte Carlo
simulation to make the histogram of the heat distribution function and
numerically obtain F̃ (q,t) ≡ (1/t) ln P (q,t)/P (−q,t) for t = 50 and
t = 100. According to the Richardson extrapolation [49], we plotted
2F̃ (q,t = 100) − F̃ (q,t = 50) as the fluctuating function F (q) for
t = 100. The bin width for the heat histogram is 0.02, the time step
is 0.0002, and the number of samples is 7.6 × 108.
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Here we show the explicit derivations of Eqs. (C4)–(C7). 〈ẑ(t) ∗ ξ̂ (t)〉 for an arbitrary t can be written as

〈ẑ(t) ∗ ξ̂ (t)〉 =
∫ t

0
dse−2(t−s)〈ξ̂ (t)ξ̂ (s)〉 − 2ε

〈∫ t

0
dse−2(t−s)ξ̂ (t)

∫ s

0

3∏
i=1

dsie
−2(s−si )(ξ̂i + η̂i)

〉
+ O(ε2) = T + O(ε2), (C9)

which implies Eq. (C4). 〈ẑ3(t) ∗ ξ̂ (t)〉 for an arbitrary t can be written as

〈ẑ3(t) ∗ ξ̂ (t)〉 =
〈
ξ̂ (t)

∫ t

0

3∏
i=1

dsie
−2(t−si )(ξ̂i + η̂i)

〉
+ O(ε) = 6T (T + T ′)

∫ t

0
dse−4(t−s) + K4

4
+ O(ε)

= 3T (T + T ′)
2

[1 − e−4t ] + K4

4
+ O(ε), (C10)

which implies Eq. (C5). 〈ẑ2(t)〉 and 〈ẑ4(t)〉 are explicitly given by

〈ẑ2(t)〉 =
∫ t

0

〈
2∏

i=1

dsie
−2(t−si )(ξ̂i + η̂i)

〉
−

〈
4ε

∫ t

0
ds1

∫ t

0
ds2e

−2(t−s1)−2(t−s2)(ξ̂1 + η̂1)
∫ s2

0

5∏
i=3

dsie
−2(s2−si )(ξ̂i + η̂i)

〉
+ O(ε2).

= 2(T + T ′)
∫ t

0
dse−4(t−s) − 48ε(T + T ′)2

∫ t

0
ds2

∫ s2

0
ds1

∫ s2

0
ds3e

−2(t−s1)−2(t−s2)−2(s2−s1)−4(s2−s3)

− 4ε(K4 + K ′
4)

∫ t

0
ds2

∫ s2

0
ds1e

−2(t−s1)−2(t−s2)−6(s2−s1) + O(ε2)

= T + T ′

2
[1 − e−4t ] − 3ε(T + T ′)2

4
[1 − 8te−4t − e−8t ] − ε(K4 + K ′

4)

8
[1 − e−4t ]2 + O(ε2), (C11)

〈ẑ4(t)〉 =
∫ t

0

〈
4∏

i=1

dsie
−2(t−si )(ξ̂i + η̂i)

〉
+ O(ε) = 12(T + T ′)2

[ ∫ t

0
dse−4(t−s)

]2

+ (K4 + K ′
4)

∫ t

0
dse−8(t−s) + O(ε)

= 3(T + T ′)2

4
[1 − e−4t ]2 + K4 + K ′

4

8
[1 − e−8t ] + O(ε), (C12)

where we have used Eqs. (C3) and (A8). Equations (C11) and (C12) respectively imply Eqs. (C6) and (C7) in the steady limit
t → ∞.

APPENDIX D: NONLINEAR PART OF GENERALIZED HEAT FLUCTUATION THEOREM

We have numerically observed the nonlinear effect in Eq. (18) in terms of q. Figure 4 shows the numerical data of the
fluctuating function F (q) for t = 100 with T = T ′ = 0.30, λ = 20.0, and λ′ = ∞. Due to large cost of the numerical simulation,
we could not observe the convergence of F (q) to our theoretical line (18) in the limit of t → ∞.
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