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Thermal equilibrium in Einstein’s elevator
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We report fully relativistic molecular-dynamics simulations that verify the appearance of thermal equilibrium
of a classical gas inside a uniformly accelerated container. The numerical experiments confirm that the local
momentum distribution in this system is very well approximated by the Jüttner function—originally derived
for a flat spacetime—via the Tolman-Ehrenfest effect. Moreover, it is shown that when the acceleration or the
container size is large enough, the global momentum distribution can be described by the so-called modified
Jüttner function, which was initially proposed as an alternative to the Jüttner function.
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I. INTRODUCTION

Ever since Albert Einstein began formulating the theory
of general relativity in 1907 [1–3], the uniformly accelerated
system has proven to be a central paradigm of relativity,
providing a very simple description of the principle of equiv-
alence. Turned into a vivid thought experiment by Einstein
himself [4,5], “Einstein’s elevator,” it famously led him to the
prediction of the bending of light by gravity [2] in the earliest
stages in the development of the theory of general relativity
and was experimentally confirmed by Eddington in 1919 [6].
Even today, it is one of the most utilized models for explaining
the main ideas of general relativity.

The uniformly accelerated system was used by Hawking
and Unruh in the 1970s to show how gravitational forces
can thermalize quantum fields [7,8] or, more rencently, in the
derivation of the Planck spectrum of thermal scalar radiation
[9] or to explore the relationship between the entropy of a gas
and the horizon area as in black holes mechanics [10].

In this paper, we study the thermal equilibrium of a classical
gas inside Einstein’s elevator by using molecular dynamics
one-dimensional simulations. The same kind of simulations
were used in Ref. [11] to show that the Jüttner function
[12] is the correct generalization of the Maxwell-Boltzmann
velocity distribution in special relativity. In Ref. [13] it
was further shown that the modified Jüttner function [14],
originally proposed as an alternative to the Jüttner function,
provides a good description of the numerically measured
distribution in special relativity when a parametrization on
the particle’s proper time is used, which could be useful in
situations where decay processes are important, since particle’s
lifetime issues are usually dealt with in terms of proper time
intervals. These numerical experiments, having successfully
been used to probe notions such as thermal equilibrium and
ergodicity in special relativity, still remain the simplest fully
relativistic molecular dynamics technique, since simulations in
higher dimensions [15,16], though approximately correct for
dilute gases, usually assume superluminal interactions during
the collision events. A similar difficulty is found generally
in relativity for Hamiltonian mechanics: As shown by the
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“no-interaction” theorem proved by Currie, Jordan, and Su-
darshan [17], the Hamiltonian formalism can be applied only
to systems constituted by noninteracting particles. In Ref. [18],
the generalized Jüttner distribution function of a noninteracting
gas in a uniformly accelerated frame was derived using the
Hamiltonian formalism discussed in Ref. [19] and the usual
probabilistic assumptions of statistical mechanics for thermal
equilibrium. Since interactions are actually necessary to be
able to reach equilibrium, we believe that the numerical tools
used in Refs. [11,13]—where particles’ interactions drive the
system naturally to equilibrium—are pertinent to verify that
the usual ideas of thermal equilibrium can indeed also be
applied in a curved spacetime.

The manuscript is organized as follows. First, we discuss
some relevant analytical results of thermal equilibrium in sta-
tionary gravitational fields, specializing some of these results
for a gas inside Einstein’s elevator in the following section.
Details of the relativistic molecular dynamics simulations are
given in Sec. IV, and numerical results are presented and
discussed in Sec. V. Finally, Sec. VI provides a short summary
and conclusions.

II. THERMAL EQUILIBRIUM IN STATIONARY FIELDS

Consider a material particle which is moving freely under
the influence of purely gravitational forces. We will char-
acterize its coordinates in an arbitrary coordinate system �

by xμ = (ct,x) = (ct,x1, . . . ,xd ), where d is the number of
spatial dimensions in the system and c the speed of light in
vacuum. Unless explicitly stated, in the following, natural units
such that c = 1 will be assumed. The coordinate system �

may be at rest or accelerated, being all effects of gravitation
or inertial forces comprised in the metric tensor gμν(xμ). We
will assume that the gravitational field created by the material
particle is very small compared with external gravitational or
inertial forces, so we can regard gμν as independent of the state
of the particle. According to the principle of equivalence, the
equation of motion for the freely falling particle is (see, for
example, Ref. [20])

duμ

dτ
+ �

μ
αβuαuβ = 0, (1)
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where uμ = dxμ/dτ is the particle four-velocity, τ is the
proper time

dτ 2 = gαβdxαdxβ, (2)

and the Christoffel symbols

�
μ
αβ = 1

2
gμν

(
∂gνα

∂xβ
+ ∂gνβ

∂xα
− ∂gαβ

∂xν

)
. (3)

The energy-momentum four-vector of the particle in the
coordinate system is defined as pμ = (p0, p) = muμ, where
m is the particle rest mass.

Quite importantly, the following equations can be readily
derived [19] from (1) and (3) for the covariant components of
the four-momentum pμ = gμνp

ν ,

dpμ

dτ
− 1

2

∂gαβ

∂xμ
uαpβ = 0. (4)

If the metric tensor gμν does not depend explicitly on time
t = x0, that is, the gravitational field is stationary, the energy
p0 = g0νp

ν is a constant of motion,

dp0

dt
= 0. (5)

Therefore, we may regard p0 as the total energy of the
particle [19], “total” because it includes the interaction with
the gravitational fields (or with the inertial forces if the
coordinate system is accelerating). From the definition of
the four-velocity uμ, it is clear that uμuμ = 1, implying
pμpμ = m2. This last equation can be used to find p0 as a
function of p = (p1, . . . ,pd ), yielding an explicit expression
for the total energy p0 in terms of x and p,

p0 =
√

(g0ipi)2 + g00(m2 − gijpipj ), (6)

where the sum over the latin indices run over the spatial
coordinates only, i,j = 1, . . . ,d.

A. Generalized Jüttner distribution

The particle’s total energy (6) determines the shape of
the momentum distribution of a gas in thermal equilibrium
under stationary gravitational fields. To show this, let us
consider a dilute gas of relativistic particles which is confined
to some container at rest in the coordinate system. If we
assume that each collision between any two gas particles
occurs around an space-time event in which the metric tensor
gμν does not appreciably vary, then the conservation of the
energy-momentum p

μ

l + p
μ
n of the two particles in the (elastic)

collision, together with the linear dependence of p0 on pμ,
p0 = g0μpμ, guarantees that the sum of the total energies
p0,l + p0,n is also a collisional invariant. Therefore, the total
energy of the system

Et =
N∑

n=1

p0,n (7)

is conserved throughout the system, provided that there is no
energy exchange at the boundaries. From this point, it is easy to
show for a dilute gas, using a similar kinetic theory derivation
than in the case of the Boltzmann equation for special relativity

[21], that the one-particle phase-space distribution, defined as

f (x, p,t) = 1

N

N∑
i=1

δ[x − xi(t)]δ[ p − pi(t)], (8)

must tend in the proper coordinate system � where the gas is at
rest, for sufficiently large times and large number of particles
N , to the equilibrium distribution

f (x, p) = Z−1 exp(−βp0)

= Z−1 exp[−β

√
(g0ipi)2 + g00(m2 − gijpipj )],

(9)

where Z is a normalization constant given by the condition∫
dd xdd pf (x, p) = 1, and β = 1/(kBT ), where kB is the

Boltzmann constant and T the global temperature of the gas
(see the discussion below). Equation (9) can be regarded as the
generalization of the Jüttner distribution to stationary gravita-
tional fields or inertial forces. For an ideal gas, it contains
all the information required to compute any thermodynamic
variable.

B. Tolman-Ehrenfest effect

In the following, let us restrict ourselves to situations
where g0i = 0 for i = 1, . . . ,d, that is, to the so-called [19,22]
case of static fields. Then, assuming also a Cartesian coordi-
nate system in space, gij = −δij for i,j = 1, . . . ,d, we can
write Eq. (9) as

f (x, p) = Z−1 exp[−β
√

g00

√
m2 + p2]. (10)

Comparing (10) with the original Jüttner distribution in special
relativity [11,12]

fJ (x, p) = Z−1
J exp[−β0

√
m2 + p2], (11)

with β0 = 1/(kBT0), yields the Tolman-Ehrenfest equation
[23,24]

T0(x)
√

g00(x) = T , (12)

where T0 is the local temperature at x. This definition
of T0 deserves further discussion. Unlike the temperature
transformations between different observers of the traditional
relativistic thermodynamics of Planck and Einstein [19,22,25]
or Ott [26], which are based on questionable definitions of
global quantities [16], Eq. (12) can be provided with distinct
physical content.

Let us consider a second gas confined to a very small
container C0 placed at x, the container being so small than
the metric tensor gμν does not appreciably vary throughout
it. If we allow the gas inside to interact with the gas spread
in �, eventually both systems will reach thermal equilibrium
with a common temperature T . Then, despite being in an
accelerated frame with a possibly non-negligible inertial
force—the container C0 is at rest in �—the momentum
distribution function of the gas inside C0 will be given
by the special relativity expression (11), being practically
indistinguishable from (10) in the scale of the container (apart
from a trivial normalization constant). Thus, all the local
thermodynamic quantities in C0 will be given by the usual
special relativity expressions [27], with a local temperature T0
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being given by (12). If the container C0 is sufficiently small,
the larger system will be scarcely affected by the smaller
one. Temperature T then will be unchanged, and we may
properly regard the smaller system as a thermometer device.
If a local observer monitoring this thermometer does not have
knowledge of the full metric gμν(x), only the local temperature
T0 will be measured.

In addition, note that an inertial reference frame which is
momentarily at rest with the grid point x in � will observe
the same particles’ momenta inside a small region around
x, though, in general, not the same velocities because of
the different proper clocks used as their time coordinate.
Since the local statistics given by (10) in that region is
the same as that in special relativity, we are entitled to use
the statistical thermometer proposed in Ref. [11] for inertial
frames, provided we express it in terms of particle momenta.
This thermometer has been used in the simulations presented
below.

Nevertheless, it must be noticed that the Tolman-Ehrenfest
effect does not imply that the particle dynamics in a small
region of � will be the same than in an inertial frame with a
flat metric. As mentioned above, even if the metric tensor is
approximately flat in C0, the particles inside may well feel the
gravitational (or inertial) force. Rather, the global equilibrium
distribution (10) shows that the momentum distribution is
not largely affected by this static force (apart from the
Tolman-Ehrenfest effect), in a similar fashion to what happens
in the nonrelativistic limit, where the Maxwell-Boltzmann
distribution remains valid under an external gravitational field.

III. EINSTEIN’S ELEVATOR

Let us now consider a gas inside Einstein’s elevator. The
elevator itself will be modeled as a rigid container that is
being uniformly accelerated along the positive direction of the
z axis with respect to an inertial reference frame �̃. More
precisely, the bottom of the container—chosen as the origin
of the accelerated coordinate system �e—has a four-vector
acceleration ãμ = d2x̃μ/dτ 2 with respect to �̃ given at any
time by ãμãμ = −g2. This implies that the bottom of the
container has a constant acceleration g in its proper frame, that
is, in an inertial frame momentarily at rest at this point [28].
To describe the rest of the container we can use the grid points
of a coordinate system with rigid axes whose origin is moving
with the above-mentioned uniformly acceleration. It is well
known [19,28] that such an accelerated system �e has the
following metric tensor (taking d = 1):

gμν = diag[(1 + gz)2, − 1]. (13)

This coordinate system—also called the Rindler coordinates—
fails for x1 = z � −1/g [28], but this is of no consequence to
us because we have chosen the lower boundary of the container
at z = 0. Let us locate the top at z = L. Note that, despite being
at rest with the container’s bottom in �e, from the point of view
of �̃ the top is moving with a reduced proper acceleration;
indeed, an accelerometer at z = L would measure ãμãμ =
−g2/(1 + gL)2. Thus, an observer in the inertial frame �̃

would notice a continuous shortening of the container’s length,
which is easily explained in terms of the Lorentz-Fitzgerald
contraction [29]. Nevertheless, in an inertial frame which is

momentarily at rest with the origin of �e, the whole container
will be seen at rest.

According to the principle of equivalence, the inertial force
observed in �e is equivalent to an external gravitational field
with a line force running in the negative direction of the z

axis. This gravitational field—which is homogeneous only to
a first approximation [2]—is fully determined by the metric
tensor (13).

Inserting this metric tensor in (2) yields dτ = dt/�(z,v),
where v = dz/dt is the particle’s velocity and

�(z,v) = 1√
(1 + gz)2 − v2

(14)

is a generalized Lorentz factor. This factor allows us to write
uμ = �(1,v), which on insertion in (1) leads to the following
equation of motion for freely falling particles:

dv

dt
− 2gv2

1 + gz
+ g(1 + gz) = 0. (15)

The solution of (15), for the generic initial conditions z(0) = z0

and v(0) = v0, is

z(t) = 1

g

[
(1 + gz0)2

(1 + gz0) cosh(gt) − v0 sinh(gt)
− 1

]
(16)

and

v(t) = (1 + gz0)2[v0 cosh(gt) − (1 + gz0) sinh(gt)]

[(1 + gz0) cosh(gt) − v0 sinh(gt)]2
. (17)

The particle’s energy is given by p0 =
√

m2 + p2/(1 +
gz). However, we have already seen that the relevant energy
in the presence of gravitational or inertial forces is the
particle’s total energy p0 (6), shaping the generalized Jüttner
distribution (10), and here taking the form

f (z,p) = Z−1 exp [−β(1 + gz)
√

m2 + p2], (18)

with the normalization constant given by

Z = 2

βg
[K0(βm) − K0(βm(1 + gL))], (19)

and Kn being the modified Bessel functions of the second
kind [30].

Note that despite the spatial inhomogeneity introduced by
the system acceleration, the distribution (18)—or the more
general expression (10)—is symmetric with respect to the
momentum p, like in the nonrelativistic limit. Consequently,
the equilibrium average momentum at each point z is zero, and
every point of the fluid is at rest in the frame �e.

IV. RELATIVISTIC MOLECULAR DYNAMICS

To verify the appearance of thermal equilibrium in
Einstein’s elevator, we have performed fully relativistic d = 1
molecular dynamics simulations, similar to those presented in
Refs. [11,13] for nonaccelerated gases.

In this model, the gas consists of classical point particles:
N1 light particles of rest mass m1 and N2 heavy particles
of rest mass m2 = 2m1. Neighboring particles may exchange
momentum and energy in elastic binary collisions, governed
by the relativistic energy-momentum conservation laws [11].
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Taking place in single space-time points, these collisions are
unaffected by the curvature of the metric tensor. Interactions
with the container’s walls are elastic, i.e., p → −p in �e,
thus defining the accelerated frame �e as the rest frame of the
container.

Performing the simulations in �e, the main distinctive
feature introduced by the accelerated container is the time
evolution of all particles in the intervals between collisions,
i.e., the equation of motion (1). In the simulations, all particles
are moved according to the formulas (16) and (17) in those
time intervals.

Another difference with the simulations of Refs. [11,13] is
that we have considered here semipenetrable point particles.
Every time two particles meet at a given space-time point, they
exchange momentum with probability pt , remaining unaltered
with probability qt = 1 − pt . In other words, a fraction qt

of the time, with qt �= 0, two colliding particles just cross
each other like if there would be no interaction between them,
allowing each particle to diffuse among the entire simulation
box. As it will be discussed later, this rule is aimed at
avoiding configurational constraints, highly dependent on the
initial conditions, which may inhibit relaxation towards the
inhomogeneous equilibrium induced under the influence of
the inhomogeneous metric tensor (13).

V. NUMERICAL RESULTS

In order to verify the generalized Jüttner distribution
globally, let us start with the marginal distribution of momenta
φ(p), which can be obtained from (18) by direct integration

φ(p) =
∫ L

0
dz f (z,p) = Z−1e−β(1+gL/2)

√
m2+p2

× sinh(βg
√

m2 + p2/2)

βg
√

m2 + p2/2
. (20)

Obviously, in the limit g → 0 we recover the standard Jütner
momentum distribution [11],

φJ(p) = 1

2mK1(βm)
e−β

√
m2+p2

. (21)

Figure 1 depicts the marginal distribution of momenta
φ(p) from one-dimensional simulations as described above
for a system with g = 0.5c2/L. In the simulations, reduced
units are defined such that L = c = m1 = 1. Each particle
had been given a random initial position and a random
initial velocity vi(0) = ±0.8. Once the system reached the
equilibrium state, we measured the particle momenta �e

simultaneously, repeating this procedure many times during
a simulation run in order to have a good statistics and, finally,
collecting the data into a single histogram. A very good
agreement is found between the analytical prediction (20) and
the simulation data for both the light and heavy particles using
the parameter β = 0.914. The fact that there is good agreement
with the same parameter β = 1/kBT is an indication that both
gas species have reached a common equilibrium with same
global temperature kBT = 1.094.

This global temperature was computed indirectly
from the local temperature using the Tolman-Ehrenfest

-10 -5 0 5 10
p

10-5

10-4

10-3

10-2

10-1

100

φ (
p)

FIG. 1. (Color online) Numerically measured equilibrium dis-
tributions of momenta in Einstein’s elevator. The results are based
on simulations of an accelerated rigid container of length L with a
mixture gas inside consisting of N1 = 415 light particles with mass
m1 (diamonds) and N2 = 585 particles with mass m2 = 2m1 (crosses)
and a transparency probability of qt = 1/2. Reduced units are defined
such that L = c = m1 = 1. In these units, the acceleration of the
bottom of the container (located at z = 0) in its proper inertial frame
is g = 0.5. The solid lines correspond to the prediction (20) with
same parameter β = 0.914, showing a very good agreement.

equation (12), i.e.,

T = T0(z)(1 + gz). (22)

The local temperature T0(z), shown in Fig. 2, was measured
directly from the simulations using the statistical thermometer
proposed in Ref. [11]. More specifically, we divided the
simulation box into 50 bins, and in each bin we measured the
local temperature by using the special-relativity formula [11]

kBT0 =
〈

p2√
m2 + p2

〉
, (23)

where the averages 〈·〉 are to be computed in an inertial
reference frame which is momentarily at rest with the corre-
sponding grid point z of �e (since there 〈p〉 = 0, see Ref. [11]).

0 0.2 0.4 0.6 0.8 1
z

0.7

0.8

0.9

1

1.1

k B
T

0

FIG. 2. (Color online) Tolman-Ehrenfest effect in Einstein’s
elevator. Local temperature T0 of the light (diamonds) and heavy
(crosses) particles as measured locally using the statistical thermome-
ter proposed in Ref. [11]. The solid line is the Tolman-Ehrenfest
equation (22) with kBT = 1.094. The rest of the parameters are as
described in the caption to Fig. 1.
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2
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FIG. 3. (Color online) Particle density in Einstein’s elevator for
light particles (diamonds) and heavy particles (crosses). The solid
lines correspond to (24) for both species. The rest of the parameters
are as described in the caption to Fig. 1.

As we have already discussed above, this is equivalent to
compute (23) in a small region around z in the accelerated
frame �e. Figure 2 shows a common local temperature of the
light and heavy particles, as expected, as well as a very good
agreement with the Tolman-Ehrenfest equation (22). The value
of T used in Figs. 1 and 2 corresponds to the average over all
bins in the system, being the largest fluctuation over the bins
smaller than 0.4% of its magnitude.

Another macroscopic quantity that can be readily measured
in the simulations is the number density ρ(z), which can be
easily computed from (18) as

ρ(z) =
∫ ∞

−∞
dp f (z,p) = βgmK1 [βm(1 + gz)]

K0[βm)] − K0 [βm(1 + gL)]
.

(24)

Figure 3 shows a very good agreement between the simulation
results and this analytical prediction.

It is worthwhile to mention that when the particles are not
allowed to cross each other, i.e., as in the case of impenetrable
particles (qt = 0), the measured particle density data, though
following the same trend, is not so smooth as in Fig. 3, as
shown in the top panel of Fig. 4. This is not unexpected, as the
geometrical constraint imposed by the spatial one-dimension
inhibits the complete relaxation to equilibrium. To understand
this fact let us consider a system of impenetrable particles
with an initial condition in which light and heavy particles are
placed strictly consecutively in the line. After a transient, the
particles of one species can accumulate around some point in
space so the local density would approach the corresponding
equilibrium value. However, since particles of different species
will remain arranged consecutively at any time, there will
be the same number of particles of each species inside
a small interval around that point, and, consequently, the
system cannot produce the density differences associated to the
thermal equilibrium (24) for each species. If the particles are
initially arranged at random, as the case shown in the top panel
of Fig. 4, the initial relative density fluctuations will survive,
producing a poor agreement with the analytical prediction.
On the other hand, this effect is expected to disappear when
the particles are allowed to diffuse throughout the system

0.6
0.8

1
1.2
1.4
1.6
1.8

2

ρ(
z)

0 0.2 0.4 0.6 0.8 1
z

10
-5
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-4

10
-3

10
-2

10
-1

10
0

|ρ
- 

ρ th
| /

 ρ
th

FIG. 4. (Color online) Sensibility of particle density on the point
particles’ semipenetrability. The top panel shows the same as in Fig. 5
but for a system of impenetrable particles, i.e., qt = 0. The bottom
panel show the relative error |ρ − ρth|/ρth, where ρ is the numerically
measured particle density and ρth the analytical prediction given
by (24), for the light particles for several transparency probabilities:
qt = 0 (filled diamonds), qt = 1/4 (circles), qt = 1/2 (triangles),
and qt = 3/4 (squares), all simulations starting with the same initial
conditions. The rest of the parameters are as described in the caption
to Fig. 1.

with a nonvanishing transparency probability qt �= 0. This is
indeed shown in the bottom panel of Fig. 4, where different
values of qt are shown to produce equivalent data, displaying
deviations from the analytical prediction that are about an order
of magnitude smaller than the data for impenetrable particles.
Obviously, the case qt = 1 must also be excluded since then
there are no collisions to drive the system to equilibrium. For
values of qt which are very close to the end points of the
interval (0,1), the behavior will depend on the time scale of
the simulation, whether it is large enough so each particle can
diffuse throughout the system or there are enough collisions for

0

0.1

0.2

0.3

0.4

0.5

f(
z,

p)

-10 -5 0 5 10
p

0
0.05

0.1
0.15

0.2
0.25

f(
z,

p)

(a) z=0

(b) z=L

FIG. 5. (Color online) Momentum distributions f (z,p) at the
borders of the container. The simulation box was divided into 50 bins
along the z direction: (a) lower bin and (b) upper bin. The diamonds
(crosses) correspond to light (heavy) particles and the solid lines to
the generalized Jüttner function (18). The rest of the parameters are
as described in the caption to Fig. 1.
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SÁNCHEZ-REY, CHACÓN-ACOSTA, DAGDUG, AND CUBERO PHYSICAL REVIEW E 87, 052121 (2013)

0 1 2 3 4 5 6
p

10
-3

10
-2

10
-1

10
0

φ(
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FIG. 6. (Color online) Equilibrium distributions of momenta in
Einstein’s elevator for an acceleration g = 5 (rest of the parameters
as in Fig. 1). The diamonds (crosses) correspond to the light (heavy)
particles. The marginal distributions are very well approximated
by the modified Jüttner function (25) with β = 0.71 (solid lines).
This inverse temperature value was obtained by using the same
procedure as in Fig. 2. The dotted lines show the special-relativity
Jüttner functions (21) with the same β, plotted as a reference. As
the distributions are symmetric with respect to the origin, only the
positive momentum axis is shown.

equilibrium. Finally, let us mention that other quantities such
as the global momentum distribution show a better agreement
with the analytical prediction in the case qt = 0, similar to the
observed behavior for other values of qt .

So far we have tested global or single-average local
macroscopic quantities such as φ(p) or T0(z) and ρ(z). A
slightly more demanding test can be observed in Fig. 5,
where the one-particle phase-space distributions at the borders
of the system are plotted. Again, an excellent agreement is
observed for both species between the simulation results and
the analytical prediction—in this case given by the generalized
Jüttner function (18).

Finally, let us highlight a curious feature that happens when
the acceleration g, or, equivalently, the container size L, is
large enough. Formally, it is easy to check that in the limiting
case gL → ∞ the momentum distribution function (20) tends
asymptotically to the modified Jüttner distribution [13,14],

φMJ(p) = 1

2K0(βm)

e−β
√

m2+p2

√
m2 + p2

. (25)

Therefore, when the dimensionless quantity gL/c2 is large
enough, the modified Jüttner distribution (25) can be used to
approximate the marginal distribution of momenta, as shown
indeed in Fig. 6 for a system with gL/c2 = 5. Even though
this value is not much larger than unity, an excellent agreement
between the modified Jüttner and the measured distribution is
observed. In this situation, the gravitational field pushes the
particles towards the bottom of the container so strongly that
the particle density of both species at z = L is negligible, and,
thus, the top boundary becomes irrelevant.

This phenomenon is not restricted to the one-dimensional
situation considered here. From (10), it is easy to show that
in a generic system of dimension d, the marginal equilibrium
distribution in Einstein’s elevator is also well approximated
by the modified Jüttner distribution if the acceleration or the
system size are large enough.

VI. SUMMARY

After discussing some analytical results of the thermal
equilibrium of an ideal gas in a stationary gravitational
field, leading to the generalized Jüttner distribution, we have
presented numerical evidence of the existence of this thermal
equilibrium in a one-dimensional gas confined to a container at
rest in a uniformly accelerated system. The numerical results,
based on fully relativistic molecular dynamics simulations,
also verify the Tolman-Ehrenfest effect for this static system
by using the statistical thermometer proposed in Ref. [11] for
inertial frames.

In addition, we have shown that when the acceleration g

or the container size L in the direction of the acceleration is
large enough so the upper wall is not needed for confinement,
because its role is played by gravitational force, the marginal
distribution of momentum in the container becomes the
so-called modified Jüttner function (25). This fact, together
with the observation that the momentum distribution function
can always be approximated locally by the standard Jüttner
distribution (11), shows that Einstein’s elevator is a versatile
system where the Jüttner and modified Jüttner functions may
refer to different aspects of the same equilibrium distribution.
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[12] F. Jüttner, Ann. Phys. (Leipzig) 34, 856 (1911).
[13] D. Cubero and J. Dunkel, Europhys. Lett. 87, 30005

(2009).

052121-6

http://dx.doi.org/10.1002/andp.19113401005
http://dx.doi.org/10.1002/andp.19163540702
http://arXiv.org/abs/0709.0685
http://dx.doi.org/10.1007/BF02345020
http://dx.doi.org/10.1103/PhysRevD.14.870
http://dx.doi.org/10.1103/PhysRevD.81.105024
http://dx.doi.org/10.1103/PhysRevD.83.064034
http://dx.doi.org/10.1103/PhysRevD.83.064034
http://dx.doi.org/10.1103/PhysRevLett.99.170601
http://dx.doi.org/10.1002/andp.19113390503
http://dx.doi.org/10.1209/0295-5075/87/30005
http://dx.doi.org/10.1209/0295-5075/87/30005


THERMAL EQUILIBRIUM IN EINSTEIN’S ELEVATOR PHYSICAL REVIEW E 87, 052121 (2013)

[14] J. Dunkel, P. Talkner, and P. Hänggi, New J. Phys. 9, 144 (2007);
J. Dunkel and P. Hänggi, Phys. Rep. 471, 1 (2009).

[15] A. Aliano, L. Rondoni, and G. P. Moriss, Eur. Phys. J. B 50, 361
(2006).

[16] J. Dunkel, P. Hänggi, and S. Hilbert, Nat. Phys. 5, 741
(2009).

[17] D. G. Currie, T. F. Jordan, and E. C. G. Sudarshan, Rev. Mod.
Phys. 35, 350 (1963).

[18] D. Louis-Martinez, Class. Quantum Grav. 28, 035004 (2011).
[19] C. Moller, The Theory of Relativity (Oxford, Claredon, 1972).
[20] S. Weinberg, Gravitation and Cosmology (John Wiley & Sons,

New York, 1972).
[21] S. R. de Groot, W. A. van Leeuwen, and C. G. van Weert,

Relativistic Kinetic Theory: Principles and Applications (North-
Holland, Amsterdam, 1980).

[22] R. C. Tolman, Relativity, Thermodynamics, and Cosmology
(Clarendon Press, Oxford, 1934).

[23] R. C. Tolman, Phys. Rev. 35, 904 (1930).
[24] R. C. Tolman and P. Ehrenfest, Phys. Rev. 36, 1791 (1930).
[25] M. Planck, Ann. Phys. (Leipzig) 26, 1 (1908).
[26] H. Ott, Z. Phys. 175, 70 (1963).
[27] G. Chacón-Acosta, L. Dagdug, and H. A. Morales-Técotl, Phys.
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