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We study subdiffusive overdamped Brownian ratchets periodically rocked by an external zero-mean force
in viscoelastic media within the framework of a non-Markovian generalized Langevin equation approach and
associated multidimensional Markovian embedding dynamics. Viscoelastic deformations of the medium caused
by the transport particle are modeled by a set of auxiliary Brownian quasiparticles elastically coupled to the
transport particle and characterized by a hierarchy of relaxation times which obey a fractal scaling. The most
slowly relaxing deformations which cannot immediately follow to the moving particle imprint long-range memory
about its previous positions and cause subdiffusion and anomalous transport on a sufficiently long time scale.
This anomalous behavior is combined with normal diffusion and transport on an initial time scale of overdamped
motion. Anomalously slow directed transport in a periodic ratchet potential with broken space inversion symmetry
emerges due to a violation of the thermal detailed balance by a zero-mean periodic driving and is optimized with
frequency of driving, its amplitude, and temperature. Such optimized anomalous transport can be low dispersive
and characterized by a large generalized Peclet number. Moreover, we show that overdamped subdiffusive
ratchets can sustain a substantial load and do useful work. The corresponding thermodynamic efficiency decays
algebraically in time since the useful work done against a load scales sublinearly with time following to the
transport particle position, but the energy pumped by an external force scales with time linearly. Nevertheless,
it can be transiently appreciably high and compare well with the thermodynamical efficiency of the normal
diffusion overdamped ratchets on sufficiently long temporal and spatial scales.
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I. INTRODUCTION

Brownian motors can be described as prototype models for
the biomolecular motors in biological cells that work out of
thermal equilibrium [1–3]. Most research in this area is devoted
to normal classical ratchet transport, where both the mean
position and the position variance grow linearly in time, i.e.,
〈δx(t)〉 ∝ t and 〈δx2(t)〉 ∝ t , respectively. At the same time,
anomalous diffusion and transport [4–6] become increasingly
popular as indicated by the huge literature produced during
the past 20 years (see, e.g., recent overview papers in Ref. [7]
and Fig. 1 in Ref. [8] therein). Experimental works have
discovered that both viscoelasticity of dense polymer solutions
[9–11] and colloids [12,13] such as, e.g., cytosol of biological
cells [14–19], and spatial inhomogeneity and disorder [20,21]
in such media can entail subdiffusion, 〈δx2(t)〉 ∝ tα , with a
power-law exponent 0 < α < 1. This naturally inspires the
question on how natural molecular motors can operate in such
crowded environments featured by a large macroscopic (zero-
frequency) viscosity which causes subdiffusion of macro-
molecules on a transient mesoscopic spatial (several microme-
ters) and time (up to several minutes) scales [15,22,23]. In fact,
such transient transport phenomena are faster on mesoscopic
scales than one expects [22,23] for such highly viscous media
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from their effective macroscopic viscosity coefficient, which
depends on the Brownian particle size [24,25]. Clarifying the
problem requires, first, generalizing well-known toy Brownian
ratchets models such as a rocking ratchet or flashing ratchet
towards anomalous viscoelastic dynamics with memory. The
first related steps were done recently in Refs. [26,27] for
rocking ratchets and in Ref. [28] for flashing ratchets within
the framework of a nonlinear generalized Langevin equation
(GLE) approach [29,30] applied to viscoelastic stochastic dy-
namics with memory within a generalized Maxwell-Langevin
Markovian multidimensional embedding dynamics [31,32]. In
particular, in Ref. [27], it has been shown that such viscoelastic
rocking ratchets are genuine ratchets capable to sustain a
sufficient load in the direction opposite to rectified motion and
perform thus a useful work. Moreover, an optimal subdiffusive
ratchet transport reflects synchronization between the potential
periodic tilts and advancing the Brownian particle over one
or two spatial substrate periods in the transport direction.
Such a synchronization can be interpreted as stochastic
resonance occurring in a highly non-Markovian dynamics
on a thermal noise intensity variation [27]. Furthermore, a
synchronization between the potential periodic flashes and
nonlinear oscillations within the potential wells is responsible
for an optimization of the ratchet transport in the case of
flashing ratchets [28]. Clearly, similar features are simply
impossible within an alternative subdiffusive transport mech-
anism based on continuous time random walks (CTRWs)
with divergent mean residence times in traps or associated
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fractional Fokker-Planck dynamics (FFPD) [6]. Moreover,
such anomalous transport can be low dispersive, with a large
or even diverging (for vanishingly small temperature, cf. in
Ref. [28]) generalized Peclet number, which presents the
ratio of the scaled subvelocity and subdiffusion coefficient.
This is in sharp contrast with highly dispersive CTRW and
FFPD transport featured by a vanishing generalized Peclet
number [32]. In spite of these recent advances, many important
fundamental questions remain open. In particular, in our
previous works [26–28] the inertial effects in the anomalous
ratchet transport were very essential. Will the anomalous
ratchet transport persist also in the overdamped limit, where the
inertial effects are entirely neglected? This is the first important
question which is answered in the affirmative in this work. The
second important question concerns thermodynamic efficiency
of such anomalous isothermal anomalous Brownian motors,
namely which portion of the energy provided by an external
field for transport can be transformed into useful work against
a load? Do the conventional notions of power, i.e., the work
done per unit of time, remain meaningful for anomalous
transport or does it requires a generalization? This is one of
the fundamental questions about anomalous ratchet transport
which we address in this work.

In this article, we study subdiffusive overdamped Brownian
motors operating in viscoelastic media and periodically rocked
by an external force. It will be shown that a subdiffusive current
can be optimized with the driving frequency and temperature
also in the overdamped limit. Such anomalous ratchets can be
characterized by a very good transport quality (coherence)
at sufficiently low temperatures in spite of the anomalous
character of transport. Studying dependence of subvelocity
on load we will show that the considered Brownian ratchet is
a genuine one. It does a useful work against a load and we find
the corresponding thermodynamic efficiency which turns out
to be a slowly decaying function of time. This is because the
energy pumped into rectified motion scales linearly with time,
but the subdiffusive transport is sublinear. Nevertheless, this
efficiency is not vanishingly small and it compares well with
the efficiency of the corresponding normal diffusion ratchets
on the time scale of simulations, which is a surprise.

II. MODEL

Let us consider the following model of anomalous Brow-
nian motion. A Brownian particle moving with velocity
dx(t)/dt ≡ ẋ(t) in a dense water solution of polymers (e.g.,
cytosol of biological cells) experiences Stokes memoryless
friction with friction coefficient η0 (corresponding to water)
and, in addition, a frequency-dependent friction with memory
which is characterized by a fractional friction coefficient ηα .
It corresponds to a polymeric fluid. Considering a general
case of linear friction with memory, fmem(t) = − ∫ t

0 η(t −
t ′)ẋ(t ′)dt ′, for a particle starting its motion at t0 = 0, the
normal contribution corresponds to the memory kernel η(t) =
2η0δ(t) and frictional force, fStokes(t) = −η0dx(t)/dt , while
an anomalous one emerges for η(t) = ηαt−α/�(1 − α), where
0 < α < 1 and �(·) is a � function. The corresponding term
with memory, which captures, e.g., viscoelastic effects, can
be abbreviated as fα(t) = −ηαdαx(t)/dtα using the notion
of fractional Caputo derivative, just per its definition [33]. In

accordance with the second fluctuation-dissipation theorem
(FDT) [29], these dissipative forces are complemented by
the corresponding mutually independent thermal fluctuation
forces ξ0(t) and ξα(t), which are Gaussian, zero-mean, and
completely characterized by the autocorrelation functions
〈ξ0(t)ξ0(t ′)〉 = 2kBT η0δ(t − t ′) and

〈ξα(t)ξα(t ′)〉 = kBT ηα|t − t ′|−α/�(1 − α), (1)

at the environmental temperature T . In the presence of
external force field f (x,t) = −∂V (x,t)/∂x the motion of an
overdamped Brownian particle is described by an overdamped
generalized Langevin equation (GLE) [29,30],

η0
dx

dt
+ ηα

dαx

dtα
= f (x,t) + ξ0(t) + ξα(t). (2)

Furthermore, we shall consider a spatially asymmetric periodic
ratchet potential [34],

U (x) = −U0

[
sin

(
2πx

L

)
+ 1

4
sin

(
4πx

L

)]
, (3)

with amplitude U0 and spatial period L. The motion is driven
also by an external periodic force fext(t) = A cos(	t) with
amplitude A and driving frequency 	. The FDT (1) ensures
that the energy dissipated is always balanced by the energy
gained from the environment at the thermal equilibrium
(fext → 0) so there is no net heat exchange and the kinetic
degree of freedom has energy kBT /2 on average. The external
force fext is expected to violate thermal detailed balance
and cause a net directed motion of the Brownian particles
beyond thermal equilibrium. This net motion can be directed
against a loading in the opposite direction constant force
f0 and do a useful work against such a load. Altogether,
V (x,t) = U (x) − fext(t)x + f0x.

Let us scale further the coordinate x in the units of L and
time t in the units of τr = (4π2U0/L

2ηα)−1/α . In these units,
the GLE (2) reads

η0
dx

dt
+ dαx

dtα

= 1

2π
[f (x,t) +

√
2T η0ζ0(t) +

√
T/�(1 − α)ζα(t)], (4)

where the friction coefficient η0 is scaled in the units of ηατ 1−α
r ,

temperature T in the units of U0/kB and

f (x,t) = cos(2πx) + (1/2) cos(4πx) + A cos(	t) − f0, (5)

where A and f0 are scaled in the units of 2πU0/L. More-
over, 〈ζ0(t)ζ0(t ′)〉 = δ(t − t ′), and 〈ζα(t)ζα(t ′)〉 = 1/|t − t ′|α
in these units. Next, we follow to the road of Markovian
embedding in Refs. [31,32] and approximate the memory
kernel by a sum of exponentials, η(t) = ∑N

i=1 ki exp(−νit) and
the corresponding noise ξα(t) by a sum of Ornstein-Uhlenbeck
processes. By choosing the spectrum of relaxation rates scaled
as νi = ν0/b

i−1 via a maximal relaxation rate ν0 and a scaling
parameter b > 1 the corresponding power dependence t−α can
be nicely approximated over about r = N log10 b − 2 time
decades between two time cutoffs τl = ν−1

0 and τh = bN−1τl .
To ensure a power-law scaling one chooses ki ∝ να

i , or ki =
Cα(b)να

i /�(1 − α), where Cα(b) is a numerical fitting constant
which mostly depends on α and b for a sufficiently large r

and N . Weak dependencies of r on N and b ensure a very
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powerful numerical approach to integrate fractional stochastic
non-Markovian dynamics with a well-controlled numerical
accuracy (of several percentages in this work). Alternatively,
it can be considered an independent approach to anomalous
transport which is even not bounded by a strict requirement
on the power scaling. Approximation of the memory kernel
by a sum of exponentials can be derived from an experiment;
see a practical example in Fig. 3 in Ref. [32], where the sum
of just four exponentials suffices to fit a power-law memory
kernel extending over four time decades. This approach
allows also for a vivid physical interpretation in terms of
viscoelastic forces ui = −ki(x − xi) caused by overdamped
Brownian particles modeling viscoelastic degrees of freedom
of the environment and corresponding to viscoelastic defor-
mations of the medium (principal modes). These auxiliary
quasiparticles are elastically attached to the transport particle
with spring constants ki and subjected to Stokes frictional
forces with frictional constants ηi = ki/νi . This leads to the
following Markovian embedding dynamics with uncorrelated
white noise sources, 〈ζi(t)ζj (t ′)〉 = δij δ(t − t ′):

η0ẋ = 1

2π
f (x,t) −

N∑
i=1

ki(x − xi) +
√

2T η0

2π
ζ0(t),

(6)

ηiẋi = ki(x − xi) + 1

2π

√
2T ηiζi(t).

Initial xi(0) must be thermally (Gaussian) distributed around
x(0), with 〈[xi(0) − x(0)]2〉 = T/ki , in order to have complete
equivalence with above GLE description for a memory kernel
being a sum of exponentials, which is, of course, an approxi-
mation to the considered power-law memory kernel [32]. The
accuracy of this approximation is, however, well controlled.
We do the corresponding sampling of xi(0) below. Otherwise,
there would be a transient force present in GLE reflecting
thermal equilibration of the medium disturbed initially by
the Brownian particle (e.g., on its insertion) or corresponding
aging effects [32]. The general presence of such transients
adds a flexibility to this modeling approach. However, we
shall not consider such transient aging effects because we
are interested in an asymptotic transport regime, which is not
influenced by initial transients. Thereafter we fix α = 1/2 and
choose b = 10, C1/2(10) = 1.3, and ν0 = 100. Most results
presented below were obtained using an ensemble averaging
over 104 trajectories. Simulations are done with the help of the
stochastic Heun method [35] on the graphical processor units
(GPUs) with double precision [36]. This technique provided
an effective acceleration of numerics by a factor of about 100
for the studied system over the standard CPUs computing on
modern commodity processors. The total integration time of
GLE (6) was varied in the interval ttotal ∈ [3 × 105 · · · 106] and
the time step was t = 2 × 10−3. The number of auxiliary
particles was fixed to N = 12.

As discussed previously [28,31,32], N auxiliary particles
can be roughly divided into the groups of fast, Nf , and
slow Ns = N − Nf particles. This division can be made on
comparison of the mean time of transitions made by central
Brownian particle to the neighboring potential well with the
relaxation times ν−1

i of the corresponding viscoelastic force
components ui . Fast medium’s deformations move together
with the Brownian particle, forming together a quasiparticle.

It reminds polaron in condensed matter physics, i.e., a naked
particle plus deformation of its nearest environment which
are considered together as a compound particle. The mean
viscoelastic force created by such a nearest-neighbor environ-
ment equals to zero, on average, on the time scale of slow
motion. However, the most sluggish deformations temporally
imprint the medium’s memory about the previous particle’s
positions and create a quasielastic slow varying retarding force
acting in the direction opposite to the transport direction.
These viscoelastic deformations introduce long-lived negative
correlations in the particle displacements. Such a mechanism
leads to anomalously slow diffusion and transport with
〈δx2(t)〉 ∝ tα and 〈x(t)〉 ∝ tα , respectively, where 〈δx2(t)〉 =
〈x2(t)〉 − 〈x(t)〉2. The corresponding subdiffusion coefficient
Dα and the subvelocity vα are defined as follows:

Dα = 1

2
�(1 + α) lim

t→∞
〈δx2(t)〉

tα
,

(7)

vα = �(1 + α) lim
t→∞

〈x(t)〉
tα

.

The limit should be understood as a physical limit in the follow-
ing sense: t is large but yet much smaller than the time cutoff
τ0b

N−1. The latter time scale is made not attainable (and, thus,
irrelevant) in our simulations. To characterize the coherence
and the quality of the transport we shall use a generalized
Peclet number Peα = vαL/Dα [26]. Such a Peclet number
is a natural quantifier for the coherence quality of stochastic
transport in periodic potentials. It measures the ratio of the
mean traveling distance 〈x(t)〉 (in units of L) to the diffusional
spread 〈δx2(t)〉 (in units of L2) [37].

III. RESULTS AND DISCUSSION

First, we tested numerics and compared the results for the
ensemble-averaged position variance 〈δx2(t)〉 with the exact
result in the absence of potential which can be readily obtained
from a general expression for the considered particular case
of GLE, see in Ref. [32], using the Laplace transform of
generalized Mittag-Leffler function from Ref. [38]. The result
reads (in the original nonscaled units),

〈δx2(t)〉 = 2D0tE1−α,2[−(t/τ0)1−α], (8)

where Ea,b(z) := ∑∞
0 zn/�(an + b) is a generalized Mittag-

Leffler function, D0 = kBT /η0 is a normal diffusion coeffi-
cient, and τ0 = (η0/ηα)1/(1−α) is a transient time constant. For
a small argument, Ea,b(z � 1) ≈ 1, and for a large argument,
Ea,b(z  1) ∼ −1/[�(b − a)z], in the leading order of z−1.
Hence, E1−α,2(−z1−α) ∼ zα−1/�(1 + α), for z  1. This
result shows that at small times, t � τ0, the diffusion is
normal, 〈δx2(t)〉 ≈ 2D0t , whereas at large times, t  τ0,
it becomes anomalously slow, 〈δx2(t)〉 ≈ 2Dαtα/�(1 + α),
with Dα = kBT /ηα . τ0 defines a characteristic time separating
these two different regimes. Notice that it scales as η

1/(1−α)
0

with η0. For α = 1/2, this general result can be expressed
in terms of complementary error function and a power-law
dependence,

〈δx2(t)〉 = 2Dα

{
2

√
t

π
+ √

τ0

[
et/τ0 erfc

(√
t

τ0

)
− 1

]}
. (9)
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FIG. 1. (Color online) Subdiffusion in driven ratchet potential for
various η0, 	 = 1.0, A = 1.0, and T = 1.0: solid, dashed, and dash-
dotted curves correspond to ensemble averaging; the dotted curve (s)
relates to a single trajectory averaging in Eq. (10) and the agreement
indicates ergodicity. The insert demonstrates an excellent agreement
between the analytical result in Eqs. (8) and (9), and numerics for
free diffusion case over eight time decades for η0 = 1.

In the scaling used, it is a solution of Eq. (4), with f → 0,
ηα → 1 and Dα → 1/(2π )2 at T = 1. The agreement with
numerics is excellent (cf. the insert in Fig. 1).

It has been shown previously for subdiffusive dynamics
with inertial effects [8,26,31,32] that a periodic potential does
not influence the variance 〈δx2(t)〉 and the corresponding
subdiffusion coefficient Dα in the asymptotical limit. This was
named a universality class of viscoelastic subdiffusion in tilted
periodic potentials in Refs. [8,32]. This remarkable property is
also valid for the overdamped ratchets considered in this work.
The explanation is also similar: most sluggish viscoelastic
modes of the environment determine the asymptotic character
of subdiffusion not being affected by external static fields.
Strong time-periodic fields can make some influence on
viscoelastic subdiffusion pumping energy into the system at
some rate. However, this influence was not strong even in the
presence of inertial effects [31], as Figs. 1 and 2 also illustrate
for the inertia-free dynamics. For a sufficiently large driving
frequency 	 some deviation from the force-free subdiffusion
coefficient, D(0)

α = T/(2π )2, occurs in Fig. 2. However, it is
not appreciably strong.

Ω

π
α

η
η
η

FIG. 2. (Color online) Scaled subdiffusion coefficient Dα as
function of driving frequency 	 for several different values of
temperature T and friction coefficient η0.

One can see in Fig. 1 that an increase in viscous friction
η0 leads to extension of the initial normal diffusion regime. In
contrast to the case studied earlier [26,27,31,32], there is no
ballistic regime here due the absence of inertial effects. Initially
diffusion is normal, 〈δx2(t)〉 ∼ t , in accordance with above
analysis. Finally, on a large time scale, diffusion becomes
anomalous, 〈δx2(t)〉 ∼ t1/2. Normal friction does not affect
this asymptotics, leading merely to increase of the transition
time τ0 (compare the dash-dotted, solid, and dashed curves in
Fig. 1).

To check if the considered dynamics is ergodic, in accor-
dance with previous studies of viscoelastic subdiffusion in
periodic potentials, we computed a time average 〈δx2(t)〉T of
the squared displacement,

〈δx2(t)〉T = 1

T − t

∫ T −t

0
[x(t + t ′) − x(t ′)]2dt ′, (10)

over single trajectories [31,39–41]. Here, the total integration
time T is chosen to be much larger than the maximal time
tmax for the ensemble-averaged trajectories 〈δx2(t)〉. We used
T /tmax = 103 in our calculations. The underlying idea of
ergodicity is that the time average of a quantity, here squared
particle displacements within a time interval of length t is equal
to a corresponding ensemble average. In other words, a moving
time average of the squared displacement should coincide with
the ensemble average. Comparing solid and dotted curves in
Fig. 1 for η0 = 10, one can conclude that this indeed is the
case. The diffusion is clearly ergodic on the considered time
scale.

A. Transport dependence on driving frequency

To compute the frequency dependence vα(	) we have
chosen several different values of temperature T and normal
friction coefficient η0 and varied the driving frequency 	 in
the window (0 . . . 2] at fixed amplitude A = 1. The results for
the anomalous current (subvelocity vα) as a function of driving
frequency 	 are shown in Fig. 3.

The occurrence and frequency dependence of the recti-
fication effect is particularly interesting in the considered
overdamped dynamics. In the presence of inertial effects,
rectification ratchet effect is suppressed in the adiabatic

Ω

Ω

Ω

α

η
η

α

η

FIG. 3. (Color online) Anomalous current (subvelocity vα) as
function of driving frequency for different temperatures T and friction
coefficients η0.
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frequency limit 	 → 0 [26,27]. This reflects the universality
class of anomalous GLE subtransport in washboard potentials
and differs markedly from the normal diffusion case, where the
rectification effect for the fluctuating tilt ratchets is maximal,
namely in the discussed limit [2,3,34]. One expects that this
anomalous feature survives also for overdamped dynamics, as
Fig. 3 indeed confirms.

Further, let us compare the influence of temperature and
driving frequency on the subvelocity vα(	) at the fixed
η0 = 1 (see curves with filled circles and squares for small
and intermediate temperatures, respectively). For the tested
values of temperature the subcurrent indeed optimizes with
the driving frequency. An increase in temperature leads to
a decrease in the maximal value of subvelocity and to shift
of the optimal driving frequency towards larger values. The
qualitative explanation of these effects is similar to one for
subdiffusive ratchets with inertial effects [27]. With increasing
temperature the role of trapping potential diminishes (transport
is absent in the absence of ratchet potential), and the mean time
to escape out of potential well decreases. We expect that the
optimal frequency also corresponds to a stochastic resonance
(SR) effect, similar to the one in Ref. [27], when the mean
frequency of jumps in the transport direction synchronizes
with the corresponding potential tilts. This question was not
studied, however, in more detail for the case considered.

Furthermore, it has been shown for the inertial case that an
increase in the driving frequency can lead to the subcurrent
inversion, where the transport occurs in the counterintuitive
direction. The corresponding driving frequency is of the order
of magnitude of the inverse anomalous relaxation time constant
of the velocity autocorrelation function τv = (m/ηα)1/(2−α),
in the presence of inertial effects. It depends on the mass
of Brownian particle m. We considered here, however, an
overdamped limit, m → 0 with τv → 0. For this reason, it
is a priori not clear if the inversion of transport direction
can occur also in the complete absence of inertial effects.
Numerics do reveal such an inversion for a sufficiently large
frequency. However, the corresponding characteristic time
scale is given now not by the velocity relaxation time constant
τv , but by the time scale of intrawell coordinate relaxation,
τ (eff)
r . Such an inversion is similar to one detected for normal

diffusion ratchets in Ref. [34]. For small η0 → 0, it is primarily
determined by the anomalous relaxation time constant τr , i.e.,
τ (eff)
r ∼ τr ∼ η

1/α
α . An increase in η0 decelerates the intrawell

relaxation process and leads to an increase in the effective
relaxation time, which becomes proportional to η0, τ (eff)

r ∼ η0,
in the normal diffusion limit ηα → 0. For this reason, a critical
inversion frequency, 	cr ∼ 1/τ (eff)

r , should decrease with the
increase in η0 at fixed ηα . Moreover, an increase in temperature
should also increase the relaxation rate leading to a larger value
of 	cr. The results in Fig. 3 are consistent with this explanation
and show the corresponding tendencies.

B. Temperature dependence of anomalous transport
and its dispersion

Given a subthreshold driving, we are dealing with a
thermal-noise-assisted ratchet transport. Thermal noise is
necessary to overcome the potential barriers and, therefore,
subtransport vanishes in the limit of zero temperature, T →

η  = 1.0, Ω = 0.02
η  = 1.0, Ω = 0.6
η  = 0.1, Ω = 0.05

α

FIG. 4. (Color online) Subvelocity vα as function of temperature
T for several values of frequency 	 and friction coefficient η0.

0. It vanishes also for a large temperature T  U0, when
the potential ceases to matter. Therefore, an optimization
with temperature is expected also for the inverted transport
regime. Indeed, numerics reveal such an optimization clearly;
see Fig. 4 for different parameters and different regimes.
Dependency on frequency 	 for the same η0 implies, for
sufficiently small 	 (not shown), that the maximum versus
temperature corresponds to a stochastic resonance (SR), when
the overbarrier jumps synchronize with the potential tilts in the
transport direction, like in the presence of inertial effects [27].
A detailed study of such a non-Markovian SR for overdamped
dynamics was, however, not done. It is left for a separate
study. The coherence quality of the overdamped transport, as
measured by the generalized Peclet number Peα = vαL/Dα ,
can also be rather high, like in the presence of inertial effects.
Figure 5 shows this clearly for vα in Fig. 4. This is an
expected result since Dα ∝ T . Because of this the considered
non-Markovian stochastic coherence resonance is shifted to
smaller values of optimal T as compare with SR.

The next question we address is whether the subtransport
can be further optimized by a variation of η0 for a maximal
value of vα in Fig. 4. The corresponding results are shown in
Fig. 6. They reveal that this dependence on η0 is rather weak,
even if a minor optimization does take place; see the insert in
Fig. 6.

η  = 1.0, Ω = 0.02
η  = 1.0, Ω = 0.6
η  = 0.1, Ω = 0.05

α

FIG. 5. (Color online) Generalized Peclet number Peα as function
of temperature T for several values of frequency 	 and friction
coefficient η0.
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η

η

α

α

FIG. 6. Dependence of maximal vα in Fig. 4 on η0 variations.

C. Load and efficiency

Finally, we come to clarifying the question of whether
the studied anomalous ratchets can do any useful work and
how big their thermodynamic efficiency can be. This question
is not a trivial issue at all since friction can and does
play a useful role, contrary to intuition, which can mislead.
Not understanding the essence of the thermal fluctuation-
dissipation theorem (FDT) can drive and mislead research into
a wrong direction by tempting us to eliminate the dissipative
effects overall and concentrating on the limit of the so-
called frictionless or Hamiltonian ratchets. Friction is always
associated with dissipative losses and one can believe that a
complete elimination of friction will result in a most efficient
motor. However, the FDT says that at thermal equilibrium
the energy dissipated in motion of a Brownian particle by
friction is regained due to absorption of energy obtained from
thermal random forces, so both processes are balanced at the
thermal equilibrium, where the total heat exchange between the
particle and its environment is absent. For example, isothermal
biological molecular motors can work in spite of a strong
friction at thermodynamic efficiency close to 1 (though then
infinitely slow at power close to zero) [42–44]. However,
subdiffusion introduces new features. Phenomenologically,
it can be characterized by a viscous friction that effectively
increases in time. Indeed, let us do an ad hoc Markovian
approximation in GLE (2) by replacing ẋ(t ′) with ẋ(t) in
the memory friction integral (the explicit form of the term
formally written with use of the Caputo fractional derivative).
The dissipative part of this equation then is characterized by
an effective friction ηeff(t) = ∫ t

0 η(t ′)dt ′ ∝ t1−α that infinitely
increases in time. This is the simplest way to understand
the origin of subdiffusion and subtransport in physical terms
(though, generally, one has to be very careful with such an
ad hoc approximation, especially in the presence of inertial
effects). Even if the effective friction increases indefinitely in
time, such a ratchet does useful work against a load and is
characterized by a finite stopping force; see Fig. 7. Similar
results were shown also in the presence of inertial effects; see
Fig. 5 in Ref. [27]. The numerics are well described by a simple
analytical dependence,

vα(f0) = vα(0) − f0/2π, (11)

which can be inferred by a linear response argumentation
given the asymptotical independence of the subtransport on

α

α π

FIG. 7. Dependence of the maximal in Fig. 4 subvelocity vα on
the load f0: numerics (symbols) vs. analytical result (line).

the presence of periodic potential in the static case, A → 0.
The presence of the factor 1/2π is due to the used scaling of
nondimensional variables.

Is the thermodynamic efficiency also finite? We define it
in a standard way as a portion of input energy Wext(t) put
into useful work Wuse(t) against the loading force f0, i.e.,
R(t) = Wuse(t)/Wext(t). To find this quantity, we follow the
ideas presented in Ref. [45] and first rewrite Eq. (2) as a force
balance equation,

−fint(x) = u(t) + fext(t) − f0, (12)

where fint(x) = −dU (x)/dx is the periodic potential force
acting on the particle (stator potential) and

u(t) = −η0
dx

dt
− ηα

dαx

dtα
+ ξ0(t) + ξα(t) (13)

is the total stochastic viscoelastic force acting on the particle
from the side of environment. Multiplying the force balance
equation (12) by ẋ(t), integrating it within the time interval
[0,t), and averaging over many trajectories (time averaging
is also appropriate since the considered dynamics is ergodic),
one obtains the following energy balance equation:

U (t) = Q(t) + Wext(t) − Wuse(t), (14)

where U (t) = U (x(t)) − U (x(0)) is the change of inter-
nal energy of the considered Brownian motor (which is
bounded), Q(t) = 〈∫ x(t)

x(0) u(t ′)dx(t ′)〉 is the heat exchanged
between the motor particle and its environment, and Wext(t) =
〈∫ x(t)

x(0) fext(t ′)dx(t ′)〉 is the work done by the external force on
the whole system or the input energy provided by it. This input
energy is used to do useful work Wuse(t) = f0〈x(t) − x(0)〉
against a load. For a large t , the fluctuating change of internal
energy is negligible and we have

Wuse(t) = Wext(t) − |Q(t)| . (15)

Thermodynamic efficiency is R(t) = Wuse(t)/Wext(t). Notice
that this efficiency is zero when an external loading force is
absent. All the external work done then is dissipated as heat
absorbed by the environment. At thermal equilibrium the total
heat exchange is absent, Q(t) = 0. This is expression of
FDT, which is guaranteed by the FDT condition for GLE. The
efficiency of Brownian motors is therefore maximized when
they are operating mostly close to the thermal equilibrium
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α

1−α

FIG. 8. (Color online) Dependencies of the pumped energy,
useful work, and thermodynamic efficiency on time for an optimal
load, 	 = 0.02, A = 1, T = 0.075, and η0 = 0.2.

to minimize heat losses. Theoretically, efficiency can reach a
value of 1 (if operating very slowly at almost zero power), and
some biological molecular motors can indeed be very efficient
by operating in multiple small steps [44,46,47]. This is a classic
observation [24].

The efficiency of subtransport presents new features. Since
the transport is subdiffusive, the useful work scales sublinearly
in time, Wuse(t) = aW tα , for a sufficiently large t . We can
name the coefficient Pα = aW�(1 + α) subpower or fractional
power. It replaces, for anomalous motors, the notion of power,
i.e., the work done per unit of time. However, the averaged
energy pumped by a force that is periodically changing in time
scales linearly with time, Wext(t) = P t , i.e., with a number
of oscillations done, see Fig. 8. It can be characterized by a
pumping power P . For this reason, thermodynamics efficiency
decays in time as R(t) = aR/t1−α , with aR = aW/P . One can
name aR fractional efficiency. Despite this decaying character,
(a) the useful work and subpower are always finite in the
presence of a load bounded by 0 < f0 < fstop and (b) the
efficiency decays algebraically slowly and compares well
with the efficiency of normal fluctuating tilt ratchets on the
time scale of simulations. In this respect, the efficiency of
normal ratchets estimated for the first time in Ref. [45] was as
low as 0.01%. Fluctuating tilt ratchets operate as isothermal
Brownian machines rather poor. This is a well-known fact. For
larger values of α, say, for α ∼ 0.9, considered subdiffusive
ratchets would operate with a very slow decaying efficiency,
R(t) ∝ 1/t0.1, on a very long time scale. This again confirms
that even an infinitely strong effective friction (in a naive
Markovian approximation assuming a strict subdiffusion) is
not an obstacle for thermodynamical efficiency, paradoxically
enough.

Now we are able to provide a very simple theory
for subpower coefficient aW and the fractional efficiency
coefficient aR . Clearly, because of Wuse(t) = f0〈x(t)〉 ∼
f0vα(f0)tα/�(1 + α) and Eq. (11), we have

aW (f0) = f0[vα(0) − f0/2π ]/�(1 + α). (16)

This parabolic dependence on f0 agrees with the numerical
results in Fig. 9 very well. Furthermore, since the input power
P does not depend on load (the same feature as for normal

α

1−α

FIG. 9. (Color online) Dependencies of the subpower coefficient
aW (in arbitrary units), input power P (in arbitrary units), and the
fractional efficiency aR on load. Theoretical results (full lines) agree
with numerics (symbols). Parameters are same as in Fig. 8.

diffusion ratchets; see Fig. 9), the dependence of fractional
efficiency aR(f0) on load is qualitatively the same with the
only modification aR(f0) = aW (f0)/P .

1. Other definitions of motor efficiency

Other definitions of the efficiency of Brownian motors
were introduced in order to characterize their performance
in the absence of a loading force. Then, all the input energy
is dissipated finally as heat. The main idea is to characterize
the motor performance against the dissipative force of the en-
vironment when a hindering force is absent or its performance
against both environment and hindering force while the motor
translocates a cargo. Different characterizations have been
proposed for normal ratchets [48–50]. Let us consider how
they can be modified for anomalous transport and what might
be a natural proposal for the efficiency in the absence of load
or natural Stokes efficiency. Let us consider the frictional part
of the dissipative force of the environment u(t) in Eq. (13).
It is udiss(t) = fmem(t) + fStokes(t) or udiss(t) = 〈u(t)〉. The
definition of the generalized efficiency given in Ref. [48] for
normal diffusion ratchet is

RDBA = Puse + η0〈v2〉
P

, (17)

where Puse = Ẇuse is the useful power and 〈v2〉 is the steady-
state averaged squared motor velocity. η0〈v2〉 is just averaged
power of dissipation losses caused by the macroscopic Stokes
friction fStokes. Another related option proposed [49] is to use
〈v〉2 instead of 〈v2〉, i.e., to neglect the velocity fluctuations
〈δv2〉 = 〈v2〉 − 〈v〉2 in calculating work done against the
frictional forces. The Stokes efficiency is obtained by setting
Puse = 0. This corresponds to zero loading force, f0 = 0,
although in Ref. [50] it was defined differently as RStokes =
η0〈v〉2/(P + f0〈v〉). A generalization of (17) to the present
case should read

RDBAgen(t) = Wuse(t) + Wdiss(t)

Wext(t)
, (18)
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where Wdiss(t) = η0
∫ t

0 〈v2(t ′)〉dt ′ + ∫ t

0 dt ′
∫ t ′

0 dt ′′η(t ′ − t ′′)
〈v(t ′)v(t ′′)〉. A different generalization in the spirit of Ref. [49]
would amount to replacing 〈v2(t)〉 with 〈v(t)〉2 and 〈v(t ′)v(t ′′)〉
with 〈v(t ′)〉〈v(t ′′)〉 in the last expression. We shall not consider
these various generalizations further in the present paper
but note that the total dissipative force acting from the
environment on the motor particle is yet u(t). It includes
also the randomly fluctuating forces. By Newton’s third law
the particle exerts on the environment the force −u(t) and
the averaged work done by this force on the environment
just equals the heat losses |Q(t)|. Therefore, a natural
definition for the generalized Stokes efficiency would be just
RStokes(t) = |Q(t)|/Wext(t) = 1 − R(t). It equals 100% in
the absence of load and approaches this maximal value even in
the presence of load asymptotically for the studied anomalous
ratchets. In other words, the work on translocation of a cargo
in such a highly dissipative viscoelastic environment is done
mostly against resistance of this environment. This is a natural
conclusion.

IV. SUMMARY AND CONCLUSIONS

We studied a model of overdamped subdiffusive ratchets
rocked by a time-periodic force in viscoelastic media charac-
terized by a power-law decaying memory kernel. The Brow-
nian motor particle is subjected to viscous friction and white
thermal noise. The viscoelastic medium’s degrees of freedom
were modeled by auxiliary Brownian particles that are elasti-
cally coupled to the central Brownian particle. Some of these
auxiliary Brownian particles are extremely slow. They imprint
memory about former positions of the central Brownian parti-
cle and create a retarding viscoelastic force causing anomalous
diffusion and transport. Just a handful of such auxiliary Brown-
ian particles suffices to model subdiffusion and subtransport on
practically any experimentally relevant time scale. Our setup is
fully equivalent to a generalized Langevin equation, where the
memory kernel and random force of environment are related
by the fluctuation-dissipation relation at ambient temperature

of the environment. The setup of our modeling is ergodic
and the Brownian motor subvelocity can be found from a
single particle trajectory, though an ensemble averaging over
104 particles has been done to obtain most results presented.
Subdiffusive current is optimized with the frequency of peri-
odical driving and temperature. It depends also on the viscous
friction acting directly on the motor particle. However, the
subdiffusion coefficient depends weakly on other parameters
being linearly proportional to temperature within the model of
temperature-independent friction. Thus, the directed ratchet
subtransport can possess at low temperature a very good
quality, as characterized by the generalized Peclet number Peα .

Furthermore, we have shown that the considered anomalous
Brownian motors are able to sustain a substantial load and
do useful work which scales sublinearly with time and can
be characterized by subpower. Since the energy pumped by
the external time-periodic force scales linearly with time the
motor efficiency decays algebraically in time. It can, however,
favorably agree with the efficiency of the normal Brownian
motors of the kind considered on an appreciably long time
intervals. We provided a simple theory for thermodynamic
efficiency of anomalous Brownian motors which agrees
remarkably well with the numerical results obtained.

We expect that nontrivial results obtained in this work will
stimulate a further cross-fertilization between the fields of
anomalous diffusion and transport and the field of fluctuation-
induced transport in the absence of a biasing on average force.
A further generalization of the model presented here towards
flashing potential ratchets opens a way to treat the operation
of molecular motors in such viscoelastic environments as
the cytosol of biological cells. The corresponding work is in
progress.
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