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Ising-like transitions in the O(n) loop model on the square lattice
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We explore the phase diagram of the O(n) loop model on the square lattice in the (x,n) plane, where x is the
weight of a lattice edge covered by a loop. These results are based on transfer-matrix calculations and finite-size
scaling. We express the correlation length associated with the staggered loop density in the transfer-matrix
eigenvalues. The finite-size data for this correlation length, combined with the scaling formula, reveal the
location of critical lines in the diagram. For n � 2 we find Ising-like phase transitions associated with the onset
of a checkerboardlike ordering of the elementary loops, i.e., the smallest possible loops, with the size of an
elementary face, which cover precisely one-half of the faces of the square lattice at the maximum loop density. In
this respect, the ordered state resembles that of the hard-square lattice gas with nearest-neighbor exclusion, and
the finiteness of n represents a softening of its particle-particle potentials. We also determine critical points in
the range −2 � n � 2. It is found that the topology of the phase diagram depends on the set of allowed vertices
of the loop model. Depending on the choice of this set, the n > 2 transition may continue into the dense phase
of the n � 2 loop model, or continue as a line of n � 2 O(n) multicritical points.
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I. INTRODUCTION

The O(n) loop model is a highly useful tool for the analysis
of O(n) symmetric n-component spin models [1,2], and also
for that of polymers [3–5]. A number of such loop models in
two dimensions is exactly solvable [6–15]. The present work
investigates the nonintersecting loop model described by the
partition sum

Zloop =
∑
all G

xNx yNy zNznNl , (1)

where G is a graph consisting of any number of Nl closed,
nonintersecting loops. Each lattice edge may be covered by at
most one loop segment, and there can be 0, 2, or 4 incoming
loop segments at a vertex. In the latter case, they can be
connected in two different ways without having intersections.
The allowed four kinds of vertex configurations are shown in
Fig. 1, together with their weights denoted x, y, and z. The
numbers of vertices with these weights are denoted Nx , Ny ,
Nz respectively.

This loop model is equivalent with an O(n) spin model, as
described by Ref. [16]. The n-component spins are sitting in
the middle of the edges of the square lattice. The Boltzmann
weight for each spin configuration is the product over all
vertices of the lattice of the local weights w,

w = 1 + x(�s1 · �s2 + �s2 · �s3 + �s3 · �s4 + �s4 · �s1)

+ y(�s1 · �s3 + �s2 · �s4) + z[(�s1 · �s2)(�s3 · �s4)

+ (�s2 · �s3)(�s4 · �s1)], (2)

where the spins �s1 to �s4 sit on the four edges incident to the
vertex and are labeled anticlockwise. The spins are subject to
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a measure and normalization∫
d�sk = 1,

∫
d�sk(�sk · �sk) = n. (3)

Expansion of the partition integral in powers of the coupling
constants x, y, and z turns the spin model into the loop model
of Eq. (1).

Although the spin dimensionality n can assume only integer
values n = 1,2, . . . in the original O(n) spin model, n can also
have noninteger and even negative values in the loop model of
Eq. (1), while the partition sum remains well defined. Whereas
the Boltzmann weight of Eq. (2) can become negative when
x, y, and/or

√
z exceeds values of order 1/n, the Boltzmann

weights of the loop model remain physical for all non-negative
values of x, y, z, and n.

The parameter space of Eq. (1) contains several exactly
solved “branches” [8,9]. These solutions appear as special lines
parametrized by n in the (x,y,z,n) parameter space. They have
shown the existence of a richness of “nonuniversal” behavior
as a function of n in the range n < 2. Branches 1, 2, 3, and 4
are defined by the weights

z = {2 − [1 − 2 sin α][1 + 2 sin α]2}−1, (4)

x = ±4z sin α cos(π/4 − α/2), (5)

y = ±z(1 + 2 sin α), (6)

n = −2 cos(4α), 2 − k � 4α/π � 3 − k, k = 1,2,3,4,

(7)

where k is the branch number. Branch 1 describes, in the spin
language, the O(n) critical point separating the paramagnetic
phase from the low-temperature O(n) phase. In the language
of the loop model, this critical point separates the dilute loop
phase from the dense phase at larger x, y, z. The size of the
largest loops diverges at the O(n) critical point.

Analytic continuation of branch 1 into the range α < π/4
leads to branch 2, which describes the universal properties

052118-11539-3755/2013/87(5)/052118(8) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.87.052118
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FIG. 1. (Color online) The four kinds of vertices of the O(n)
loop model on the square lattice, together with their weights. Rotated
versions have the same weights. The present work is restricted to two
subspaces of (x,y,z), namely y = x, z = x2 and y = 0, z = x2.

of the dense phase of nonintersecting loop models in two
dimensions. Indeed, the universal properties of branches 1
and 2 match with similar branches of the O(n) loop model
on the honeycomb [6] and on the triangular [10] lattices.
For general n, the dense O(n) phase is still critical in the
sense that the correlation functions decay algebraically. It is
noteworthy that both branch 1 and branch 2 represent points
in the parameter space where the leading temperature field
vanishes. It is irrelevant on branch 2, but its absence greatly
suppresses corrections to scaling, which enables accurate
numerical analyses [16].

To explain the physics of branches 3 and 4, it is helpful
to introduce auxiliary dual Ising variables on the faces of
the square lattice. Two neighboring Ising spins receive the
same sign if and only if they are separated by a loop segment.
Then, dense loop configurations dominated by z-type vertices
will display ferromagnetic Ising order, while more dilute loop
configurations may be Ising disordered. Since it has been found
that the universal properties of branch 4 display a combination
of Ising critical exponents and dense O(n) exponents, branch
4 has been identified as a locus of Ising transitions in the dense
O(n) phase [9,16]. The phase diagram conjectured in Ref. [16]
predicts that, for constant x/y and n, these Ising transitions
form a critical line in the (x,z) diagram. At its small-x end,
this line is believed to merge with the line of O(n) critical
transitions, in a multicritical point with the universal behavior
represented by branch 3.

In addition, there is a fifth exactly solvable branch, called
branch 0, with weights x = z = 1/2, y = 0. Its universal
properties are different from branches 1 to 4. The vanishing of
y imposes Ising order on the dual Ising spins along each loop,
but does not determine the sign of the spins along other loops.
For this reason the y = 0 plane represents a special locus of
partial Ising order in the parameter space. Branch 0 has been
interpreted [16] as the y = 0 special point on the line of higher
critical points represented by branch 3 in the (x,y,z) space.

Whereas these exact solutions have yielded a considerable
insight in O(n)-type universality classes, they cover only a
small part of the parameter space, so that further exploration
is desirable. In particular, the questions arise of what phase
transitions may occur for n > 2, and whether the phase
diagram conjectured in Ref. [16] applies to other parts of the
parameter space as well.

Therefore, our present aim is to supplement the results of
the exact solutions with a numerical analysis of loop models in
other parts of the parameter space. We pay particular attention
to the range n > 2, where we expect an Ising-like phase
transition takes place when the vertex weights are increased.

This expectation is based on the observation that, in the limit
of large n, the local weights are maximal for configurations
with small loops on the elementary faces of the lattice. At most
one-half of these faces can be covered by a loop. There exist
two checkerboardlike configurations at maximum covering,
similar to the ordered phase of the hard-square model with
nearest-neighbor exclusion. Thus, at a sufficient density of
these loops, they will condense on one of the two sublattices.

At this point, we wish to specialize to the simplest nontrivial
case, which is the case parametrized by a single bond weight.
Since the x-type vertex covers one lattice edge, we denote the
bond weight x. The z-type vertices cover two edges, we thus
have z = x2. For this choice, there is, except for the nearest-
neighbor exclusion, no further interaction between the hard
squares in the limit n → ∞. This avoids the complications
that may arise when such further-neighbor interactions lead to
different critical behavior. Also the y-type vertex covers one
edge. Thus, in the present work we will study the case y = x,
z = x2 in the (x,n) plane.

As explained in Ref. [16], the y-type vertices are responsi-
ble for the flipping of the above-mentioned Ising-like degree of
freedom along a loop. This leads to the possibility of different
behavior when the y-type vertices are suppressed. For this
reason the present work will also focus on a second case
parametrized by n and a single bond weight x, namely the
case y = 0, z = x2.

For large n, we expect only small loops, and similar
behavior in both cases. However, for small n larger loops exist
with, if y �= 0, straight segments due to the y-type vertices.
Thus, for small n we may expect qualitative differences
between the cases y = x and y = 0.

In Sec. II we sketch our numerical procedures used to locate
the phase transition lines in the phase diagram. Section III
presents the analysis of these numerical results, as well as the
resulting phase diagram. The conclusions are summarized and
discussed in Sec. IV.

II. TRANSFER-MATRIX ANALYSIS

Our analysis is based on the numerical transfer matrix (TM)
calculation of Zloop for L × ∞ square lattices wrapped on
a cylinder with circumference L. The transfer matrix keeps
track of the change of the numbers of loops and the four kinds
of vertices when a new layer of L sites is added. The TM
techniques for the O(n) loop model and the procedure for
the sparse-matrix decomposition are already described in the
literature, e.g., see Ref. [16].

The largest eigenvalue �0 of the TM determines the free-
energy density f (L) by

f (L) = ln(�0)

L
. (8)

Its finite-size-scaling behavior at the critical point determines
the conformal anomaly c according to [17,18]

f (L) � f (∞) + πc

6L2
+ · · · . (9)

The magnetic correlation function of the O(n) spin model
over a distance r can be expressed in terms of the probability
that two vertices at this distance are connected by a single loop
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segment [19]. Thus one may write

gm(r) = Z′

Z
, (10)

where Z′ is the same as in Eq. (1), but with the sum on all
loop configurations G ′ that contain one additional single loop
segment that runs from position 0 to r .

The exponential decay of gm(r) at large distances is
determined by the magnetic correlation length ξh(x,n,L),
which can be obtained numerically as

ξ−1
h (x,n,L) = ln

(
�0

�1

)
, (11)

where �1 is the largest eigenvalues in the “magnetic sector,”
which refers to the TM for Z′, which is based on loop
configurations with an additional single loop segment running
along the cylinder. The scaled magnetic gap Xh is defined as

Xh(x,n,L) = L

2πξh(x,n,L)
. (12)

Its finite-size-scaling behavior [20,21] near a critical point xc

is given by

Xh(x,n,L) = Xh + a(x − xc)Lyt + bLyu + · · · , (13)

where Xh is the magnetic scaling dimension, yt = 2 − Xt

is the temperature exponent, and yu is the leading irrelevant
exponent. The amplitudes a and b are nonuniversal quantities.

In general, one expects that two phase transitions may occur
in the two-dimensional O(n) model with n � 2 on the square
lattice when the bond weight is increased [16]. The first one is
the transition from the dilute loop phase to the low-temperature
O(n) phase, where the loops are densely packed. The size of
the longest loop diverges at this transition point. The universal
properties of this transition follow from the exact solution [8,9]
for branch 1, and from the Coulomb gas analysis [19]. The
results for the conformal anomaly and the magnetic exponent
are

c = 1 − 6(g − 1)2

g
, Xh = 1 − 1

2g
− 3g

8
, (14)

where g is the Coulomb gas coupling, which is related to n by
n = −2 cos(πg) and 1 � g � 2. The low-temperature phase is
still critical in the sense that the magnetic correlation function
decays algebraically in the infinite system. The universal
properties of the low-temperature phase are characterized by
a conformal anomaly c(LT) and a magnetic scaling dimension
X

(LT)
h , which can be obtained from the results [8,9,19] for

branch 2 of the square-lattice loop model. They are still given
by Eq. (14) and n = −2 cos(πg), but with 0 � g � 1.

A second transition may occur inside the low-temperature
phase, when the loops enter an even denser phase which breaks
the Ising-like symmetry of the loop configurations [16]. Its
universal properties [8,16] were derived from the solvable case
denoted as branch 4. The magnetic scaling dimension X

(LTI)
h

and the conformal anomaly c(LTI) at this Ising-like transition
correspond with a combination of low-temperature O(n) and
Ising-like critical behavior, namely

X
(LTI)
h = X

(LT)
h + 1/8 (15)

and

c(LTI) = c(LT) + 1/2. (16)

To analyze the expected transition for n > 2, which drives
the loop gas into a loop “solid” phase with a checkerboard
pattern, we introduce the staggered loop density and interpret
it as the order parameter. First, we define a face as “occupied”
by a loop if it is surrounded by a loop or any odd number
of loops. In analogy with the hard-square lattice gas, we also
divide the faces of the lattice into “odd” and “even” ones.
Then one defines the staggered loop density as the density
of the occupied odd faces minus that for the even faces. The
staggered lattice gas correlation function is thus

gs(r) = 〈ρs(0)ρs(r)〉, (17)

where ρs(0) and ρs(r) are the staggered densities at positions 0
and r , respectively. For large n, we expect that the dense phase
is dominated by configurations of elementary loops covering
either the even or the odd faces. Therefore, the staggered
correlation function is associated with the leading eigenvector
�v of the TM that is antisymmetric under the operation R, i.e.,

�v = −R�v, (18)

where R is the operator that rotates the lattice by one lattice unit
about the axis of the cylinder. As a consequence of the Perron-
Frobenius theorem, the absolute value of the corresponding
TM eigenvalue �2 cannot exceed �0 which is associated with
a symmetric eigenvector, at least for n > 0. We expect that
the staggered correlation function scales in a similar way
as the magnetic correlation function. Thus we describe the
exponential decay of the staggered correlation function along
the cylinder by means of the staggered scaled gap, defined as

Xs(x,n,L) = L

2π
ln

(
�0

�2

)
. (19)

The scaled gap Xs(x,n,L) is expected to behave according
to Eq. (13), with Xh replaced by the staggered lattice gas
scaling dimension Xs . This transition breaks the Z2 symmetry
of odd and even lattice faces, and is thus expected in the Ising
universality class: c = 1/2 and Xs = 1/8.

The critical point can be estimated by numerically solving
x in the scaling equation involving two different system sizes,

Xi(x,n,L) = Xi(x,n,L′), (i = h,s), (20)

of which the solution xc(L) scales as

xc(L) = xc + a′Lyu−yt + · · · , (21)

where a′ is an unknown constant. Because yu < 0 and yt >

0, xc(L) converges to the critical point xc for a sequence of
increasing system sizes L. At xc(L), the scaled gap in Eq. (13)
converges to the magnetic or the staggered lattice gas scaling
dimension Xi(n) according to the scaling equation,

Xi(xc(L),n,L) = Xi(n) + b′Lyu + · · · , (22)

with an unknown amplitude b′. An alternative way to obtain
estimates xc(L) of the critical point is to neglect the correction
term and thus to solve for x in the equation

Xi(x,n,L) = Xi(n), (23)
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where Xi(n) is the theoretical prediction for the pertinent
scaling dimension. Such predictions can follow the assumption
that Eq. (14) or the Ising magnetic scaling dimension 1/8
applies. If this assumption is correct, the solutions of Eq. (23)
converge to the critical point xc as described by Eq. (21). If the
assumption is not correct, then the finite-size dependence of
the solutions behaves as L−yt , so that they still converge to the
critical point for yt > 0, but relatively slowly. The finite-size
dependence of the solutions of Eq. (23) may thus reveal if the
assumed value of Xh is right.

In the present work, we shall make use of both Eqs. (20)
and (23) to determine the critical points. In most of these
calculations we restrict the system size to even values, because
dense loop configurations do not fit well in odd systems, which
thus leads to an even-odd alternation effect. Here we have
given only a short summary of the relevant finite-size-scaling
procedures; for more details, see Ref. [21].

III. RESULTS

In this section we explore the phase diagram as a function
of n, for loop models described by Eq. (1) and a single bond
weight x. The two cases y = x and y = 0 are treated in
different subsections. We hope to find additional information
beyond what is already known from exact solutions and earlier
numerical work [8,9,16,22,23] for the square-lattice O(n) loop
model, which have mostly been restricted to the range n � 2.

A. Subspace y = x, z = x2

In this subsection we explore the phase diagram for the
case that there are no further conditions on the set of allowed
vertices, thus with vertex weights x, y = x, and z = x2.

We first consider the range n � 2. Since we can compute
the left-hand side of Eq. (23) numerically, we can solve that
equation when we substitute the expected magnetic scaling
dimensions Xh of the O(n) critical branch or of the low-
temperature branch on the right-hand side. In this way, we
obtain finite-size estimates of the critical point that can be
extrapolated to the thermodynamic limit on the basis of the
scaling behavior given in Eq. (21). That equation predicts
convergence with increasing L if yu − yt < 0. Thus, the
procedure still leads to convergent results in the case that
the temperature field associated with x is irrelevant, but less
irrelevant than the other nonzero scaling fields. The latter
situation is expected for the low-temperature phase of the O(n)
model with not too small n, on the basis of the existing results
for branch 2 [9,16].

These transfer-matrix calculations were performed for
system sizes up to L = 16 or, in some cases, 18. Making use of
Eq. (8), we then calculated the free-energy densities f (L) at
the estimated critical point xc, and obtained the conformal
anomaly c by fitting these data according to Eq. (9). The
numerical results for xc and c are listed in Tables I and
II respectively. Our numerical estimations of c agree well
with the theoretical predictions, except for n = −2 where the
finite-size data display poor convergence.

For the Ising-like transition in the LT dense phase, the
numerical results for xc at n = 2 and n = 1.5 are extrapolated
from the solutions of the finite-size scaling equation (20) for

TABLE I. Numerical results for the critical points xc(n) and
conformal anomaly c(n) for the O(n) critical branch in the range
−2 � n � 2 in the subspace y = x,z = x2. The theoretical values
for branch 1 of the conformal anomaly are also listed. Estimated
numerical uncertainties in the last decimal place are shown between
parentheses.

n xc(n) cnum cbr1

−2 0.33732317(2) −1.69(1) −2
−1.5 0.3444544(1) −1.009(1) −1.00961
−1.0 0.35259515(1) −0.60000(2) −3/5
−0.5 0.3620756(1) −0.27901(1) −0.279017
0.0 0.3734237(1) 0 0
0.5 0.38757234(1) 0.25594(1) 0.255949876
1.0 0.406446(2) 0.50000(1) 1/2
1.5 0.4353496(1) 0.74183(2) 0.74184247
1.8 0.4664502(1) 0.89185(1) 0.89185788
1.9 0.484688(1) 0.94432(1) 0.9443219
1.95 0.4988697(1) 0.97151(1) 0.971508
1.98 0.512488(1) 0.98835(1) 0.988346
1.99 0.519766(2) 0.99411(2) 0.994103
2.0 0.5386256(2) 1.00000(1) 1

Xh(L) with even L. For other values of n, the critical points
xc are extrapolated from the solution of the scaling equation
(23), in which Xh is taken as X

(LTI)
h , for even system sizes up

to L = 16. These results are listed in Table III.
The free-energy densities f (L) at the estimated critical

points were calculated for even system sizes up to L = 16.
Using a fit of these data according to Eq. (9), we then estimated
the conformal anomaly c. The numerical results for c are
included in Table III. They appear to be in a good agreement
with the expected values c(LTI) as given in Eq. (16).

Next, we explore the phase diagram for n > 2. For relatively
large values (n � 8), we numerically solved for xc(L) in
Eq. (23), making use of the expected Ising value Xs = 1/8.
For smaller values of n, the corrections to scaling become
more prominent, and for n = 3,4,5 they are so large that
solutions of Eq. (23) are absent. We then solved for xc(L)
in the scaling equation (20). On the basis of these finite-size
data, we obtained the critical point xc, using extrapolation
according to the finite-size scaling behavior given in Eq. (21).

TABLE II. Numerical results for the location xc(n) and the
conformal anomaly c(n) for the low-temperature branch (branch 2) in
the range −2 � n < 2 in the subspace y = x,z = x2. The theoretical
predictions of the conformal anomaly are also listed. Estimated
numerical uncertainties in the last decimal place are shown between
parentheses.

n xc(n) c (numerical) c (theory)

1.99 0.559583(1) 0.99372(2) 0.993716
1.98 0.568975(1) 0.98725(2) 0.987247
1.95 0.58904(1) 0.96714(3) 0.967132
1.9 0.6145(1) 0.93180(1) 0.93179998
1.8 0.657(1) 0.8557(1) 0.855602
1.5 0.72(1) 0.588(1) 0.587572
1.4 0.74(1) 0.485(1) 0.4849998
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TABLE III. Numerical results for the critical points xc(n) and
the conformal anomaly c(n) for the Ising-like transition inside the
LT dense phase in the subspace y = x,z = x2. Estimated numerical
uncertainties in the last decimal place are shown in parentheses. The
results for c(n) agree well with the theoretical predictions cbr4 for
branch 4 of the square O(n) model.

n xc(n) c(n) cbr4

−1.5 1.580(2) −14.4(4) −13.9612
−1.0 1.463(1) −6.51(1) −6.5
−0.5 1.38398(1) −3.318(1) −3.31779
0.0 1.3229(1) −1.501(1) −1.5
0.5 1.27287(2) −0.318(3) −0.319736
1.0 1.23019(2) 0.50000(4) 0.5
1.2 1.21468(1) 0.759(2) 0.758346
1.5 1.19282(2) 1.088(1) 1.08757
2.0 1.15943(2) 1.502(2) 1.5

We then calculated the free-energy density f (L) at the
estimated critical points for even system sizes up to L = 18.
A fit of Eq. (9) to the data was then used to determine the
conformal anomaly c. The best estimates of xc and c are
included in Table IV for several values of n > 2. Our estimates
of c agree well with the expected value c = 1/2 for the Ising
universality class, at least for large n. However, for smaller
values of n, the estimates of c deviate from 1/2. A likely
explanation is provided by the predicted strong corrections
to scaling associated with the expected marginal temperature
field at n = 2.

TABLE IV. Numerical results for the critical points xc(n) and
the conformal anomaly c(n) for the lattice-gas-like phase transitions.
Results are shown for the two cases y = x and y = 0. Estimated
numerical uncertainties in the last decimal place are shown in
parentheses. The results for c agree well with the expected Ising
conformal anomaly c = 1/2, except for n = 2 and for some relatively
small values of n where poor convergence occurs.

Case y = x Case y = 0

n xc(n) c(n) xc(n) c(n)

2 0.784(1) 1.49(2)
3 1.101(2) 2.0(6) 0.809(1) 1.3(2)
4 1.12(2) 1.5(2) 0.800(4) 0.9(3)
5 1.00(2) 1.3(2) 0.787(3) 0.6(3)
8 0.907(2) 0.5(1) 0.746(1) 0.50(1)
10 0.857(3) 0.51(1) 0.7202(1) 0.50(1)
15 0.7716(3) 0.501(3) 0.6696(1) 0.50(1)
20 0.7147(3) 0.500(1) 0.6322(1) 0.50(1)
30 0.64060(1) 0.500(1) 0.5795(2) 0.498(2)
40 0.59240(1) 0.500(1) 0.54318(1) 0.500(2)
50 0.55754(1) 0.500(1) 0.51593(1) 0.500(2)
75 0.4995(1) 0.500(1) 0.46888(1) 0.500(1)
100 0.4622(2) 0.500(1) 0.43760(1) 0.500(1)
200 0.3841(1) 0.500(1) 0.36958(1) 0.500(1)
400 0.32004(1) 0.5001(1) 0.311448(1) 0.5000(1)
800 0.26726(1) 0.5001(1) 0.262179(2) 0.5000(1)
1000 0.25230(1) 0.5001(1) 0.248007(1) 0.5000(1)
10000 0.14033(1) 0.5000(1) 0.139573(1) 0.50000(1)

0
 0.2
 0.4
 0.6
 0.8

1
 1.2
 1.4
 1.6
 1.8

W

n
-2 -1 0 1 2 4 6 10 14 30 100 ∞

FIG. 2. The phase diagram of the O(n) loop model on the square
lattice in the (n,x) parameter space. In order to map the range −2 <

n < ∞ on a finite interval, a 1 − 8/(n + 10) scale is chosen along the
horizontal axis. The vertical axis shows the temperaturelike quantity
W , which is inversely proportional to the bond weight x as defined
in the text. Data for the case y = x are shown as black squares,
for y = 0 as open circles. The lines connecting these symbols are
for visual aid only. The topmost curved line on the left is the O(n)
critical line for x = y. Also shown is a part of its continuation into
the low-temperature O(n) phase, which exists only for n � 2. The
vertical dashed line shows the boundary of this phase at n = 2. The
lines of lattice-gas-like transitions extend all the way to n = ∞, where
they meet in a point that is accurately known as described in the text.

In the limit n → ∞, only loops of the smallest possible
size occur, with the size of an elementary square of the
lattice. The model of Eq. (1) then reduces to the lattice gas
on the square lattice with nearest-neighbor exclusion and no
further interactions. We make use of the existing numerical
result μc = 1.334 015 100 277 4(1) for the critical value of the
chemical potential of this model [24]. By relating the weight of
an elementary loop to this chemical potential, which leads to
nx4

c = exp(μc), we obtain the large-n limiting behavior of xc.
The phase diagram for n in the range (−2,∞) is shown

in Fig. 2. In order to map the range −2 < n < ∞ on a finite
interval, a 1 − 8/(n + 10) scale is chosen along the horizontal
axis. The vertical axis shows the temperaturelike quantity W ≡
1/[x(n + 10)1/4], which parametrizes the bond weight, while
remaining finite in the mentioned interval. The curved line on
the left is the O(n) critical line and a part of its continuation into
the low-temperature O(n) phase which exists only for n � 2.

B. Subspace y = 0, z = x2

As mentioned in Sec. I, for y = 0 there exists an exactly
solvable case xc = zc = 1/2, which is called branch 0 [16]. For
n = 0 it describes the θ point of a collapsing polymer [25]. For
other values of n, it describes a higher critical point (but not
the tricritical point analyzed in Ref. [15]). Since the present
value z = x2 is smaller than that for branch 0, we do not expect
that the y = 0, z = x2 subspace contains the n = 0 collapse
transition. However, the fact that an Ising degree of freedom
is associated with each separate loop implies that a degree of
Ising ordering is introduced at the critical points for n < 2,
where the largest loops are expected to diverge. Thus, we may
expect that, at least for some values of n, transitions occur in a
different universality class than that of branch 1. Furthermore
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it remains to be investigated if the phase diagram displays the
same topology as that for the y �= 0 case.

First, we investigate whether the lattice-gas-like transition
persists in the present subspace with y = 0. For n � 8, we
solved for xc in the scaling equation Eq. (23), after substituting
the Ising magnetic scaling dimension Xs(L) = 1/8. For n =
2,3,4,5, we solved instead the scaling equation Eq. (20) for
Xs(L), for the same reason as in the preceding subsection. Only
even L were used in these calculations. We found that the so-
lutions converge in the way described by Eq. (21), confirming
that Eq. (13) applies to Xs(L), thus indicating that algebraic
decay of the staggered correlation function occurs in the
thermodynamic limit. After extrapolation of the critical points
xc, we calculated the free-energy density f (L) at xc for even
system sizes up to L = 18. A fit of the data according to Eq. (9)
then yields the conformal anomaly c. The results behave in a
way similar to the y = x case: in accurate agreement with Ising
universality (c = 1/2), except for a few relatively small n val-
ues. The numerical results for xc and c are included in Table IV.

Next we address the question of whether the critical
manifold continues into the n � 2 range and connects to an
Ising-dense O(n) transition. We handle this problem by solving
xc(L) in the scaling equation (20), for even system sizes up to
L = 18. For n < 1, the magnetic scaled gap Xh(L) is used in
Eq. (20). We find that the solution xc(L) converges with L in
the way described by Eq. (21). The estimated critical points
are included in the phase diagram in the (x,n) plane shown in
Fig. 2. We then calculated the magnetic scaled gaps Xh(L) for
a sequence of systems with even L up to 18 at the solutions
xc(L). Extrapolation of the gaps according to Eq. (22) yields
the scaling dimension Xh, which is listed in Table V. These
results are, in a limited range, compatible with the known
scaling dimension Xh of the critical O(n) transition, but the
accuracy is low because of strong corrections to scaling, with
the exception of the result at n = 0.

We also calculated the free-energy density at the estimated
xc. A fit of these data by Eq. (9) then yields estimates of the
conformal anomaly c for this transition, which are also listed in
Table V. For most values of n these results do not agree with the
known theory for the O(n) critical line, or with a superposition
of O(n) criticality and Ising behavior, although the numerical
results still seem consistent with the latter situation in the range
1 < n � 2.

For small finite systems with n = −1, the leading eigen-
value �0 becomes twofold degenerate at x = 1/2. The same
applies to the leading eigenvalue �1 in the odd (magnetic)
sector. Moreover, these two pairs of eigenvalues are also
equal. On this basis we conjecture that xc(−1) = 1/2 and
Xh(−1) = 0.

For n � 1, we found no solutions of the scaling equation
Eq. (20) for Xh(L) with even L. The staggered scaled gap
Xs(L) was used instead to study the possible transition. The
scaling equation was solved for a sequence of even systems up
to L = 18. We find that the solutions xc(L) behave in a way
consistent with convergence to a critical point xc as described
in Eq. (21). The estimated critical points are included in the
phase diagram in the (x,n) plane shown in Fig. 2.

Next we calculated the scaled staggered gaps Xs(L) for
even system sizes up to L = 18 at the solutions xc(L). The gaps
converge to the scaling dimension Xs according to Eq. (22).

TABLE V. Numerical results for the critical points xc(n), the
conformal anomaly c(n), and scaling dimensions Xh(n) and Xs(n) for
several values of n in the subspace y = 0. Since solutions of Eq. (20)
for Xh are absent for n � 1, the result Xh(1) was obtained from a fit of
the Xh,L data at the self-dual value x = 1/

√
2 of the bond weight. The

latter value was also used to estimate Xs(1) and c(1). It is in accurate
agreement with the numerical result obtained by fits to the Xs(L)
data for n = 1. Satisfactory finite-size convergence is found only for
n = −1, 0, and 1. The error margins, shown between parentheses, are
difficult to estimate in some cases indicated with a question mark.

n xc(n) Xh(n) c(n)

−1.0 1/2 0 −2.00(1)
−0.8 0.51229(1) 0.06(2)? −1.115(2)
−0.7 0.51889(1) 0.07(2)? −0.92(1)
−0.5 0.53317(2) 0.07(1) −0.60(1)
−0.3 0.54910(1) 0.09(2) −0.339(1)
0.0 0.57686(2) 0.10417(5) 0
0.3 0.6106(3) 0.10(3) 0.306(1)
0.5 0.637(2) 0.16(4)? 0.506(1)
0.8 0.68(1) 0.21(3)? 0.81(1)
1.0 1/

√
2 0.25000000(5) 1.0000 (1)

n xc(n) Xs(n) c(n)

1.0 1/
√

2 1.00000000(1) 1.0000 (1)
1.2 0.731(2) 0.81(4) 1.13(2)
1.5 0.755(4) 0.5(2) 1.32(1)
1.7 0.768(2) 0.3(3) 1.41(1)
2.0 0.784(1) 0.1(3) 1.49(2)

Unfortunately, the convergence of the data is not good except
for n = 1. The results for Xs are listed in Table V. For n = 1
numerical result for xc agrees with the self-dual value x =
1/

√
2 (see Sec. IV for further details), and the latter value was

used to estimate the universal quantities for n = 1.
We also calculated the free-energy density for 1 � n � 2

at the estimated critical bond weight xc. From a fit of Eq. (9)
to these data, we estimate the conformal anomaly c for this
transition, as also listed in Table V.

IV. DISCUSSION

Using a finite-size-scaling analysis of results from transfer-
matrix calculations, we have determined the phase diagram of
the O(n) loop model on the square lattice in the (x,n) plane,
where x is the weight of a lattice edge covered by a loop. Two
subspaces, y = x and y = 0, were investigated.

For n � 2 we find an Ising-like phase transition associated
with the onset of a checkerboardlike ordering of the elementary
loops. In this respect, the ordered state resembles that of the
hard-square lattice gas. For large values of n the critical points
shown in Fig. 2 approach the accurately known lattice-gas
limit. For the case y = x, the data in this figure suggest that
this approach happens with a weak cusplike singularity. This
behavior can be explained by the residual presence of loops
exceeding the size of an elementary face. The next-smallest
loops cover a rectangle with the size of two faces, and contain
two y-type vertices, at the expense of an extra weight factor
x2. The presence of these larger loops thus corresponds
with a repulsive potential of order x2 ∝ 1/

√
n between
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next-nearest-neighboring hard squares. In lowest order, one
then expects a linear dependence of the critical chemical
potential of the hard-square model on such a repulsion. Noting
that the quantity W shown in Fig. 2 plays the role of this
chemical potential, one expects that the critical value of W

depends linearly on 1/
√

n for large n. This corresponds with a
square-root-like singularity on the scale used in Fig. 2, which
behaves as 1/n for large n. This explains the weak cusplike
singularity in the y = x line in Fig. 2.

The appearance of loops exceeding the size of an elemen-
tary square, in particular loops covering two squares, can be
interpreted as a softening of the nearest-neighbor repulsion. In
this respect, the loop model with n < ∞ approaches the exper-
imental situation of monatomic gases adsorbed on the (1,0,0)
surface of a cubic crystal better than the hard-square model.

These results are in part similar to those obtained for the
large-n loop model on the honeycomb lattice [26], which
behaves as a hard-hexagon model [27], with a phase transition
in the three-state Potts universality class. It appears that large-n
loop models generically approach the behavior of systems of
hard particles, with universal properties that are dependent on
the microscopic lattice structure. The universal properties may
also depend on the allowed set of vertices. For instance, if we
put the vertex weights y = z = 0 in the loop model on the
square lattice, then the corresponding hard-square model is
subject not only to nearest-neighbor exclusion, but also to
next-nearest-neighbor exclusion. The universal behavior of
this system is not Ising-like [28,29], while the symmetry of
the Hamiltonian remains the same. Crossover to a different
universality class is thus possible when the parameters in the
Hamiltonian are changed. An example thereof is already due to
Das et al. [30], who added a staggered edge potential into the
loop model on the honeycomb lattice, and observed crossover
from three-state Potts to Ising behavior.

The question about a possible physical interpretation of
this large-n transition of the loop model in the language of the
spin model specified by Eq. (2) is answered by substitution of
the numerical results xc for the critical point, and the length
scale 1/

√
n of the spin vectors in that equation. This shows

that the Boltzmann factors of the spin model with n > 2
can become negative at the phase transition. This exposes
the unphysical nature of the lattice-gas-like transition in the
language of the spin model.

In Sec. III we have also investigated the critical properties
of this O(n) model in the range −2 � n � 2. In the case x = y,
we found that the lattice-gas-like transition line continues into
the low-temperature O(n) phase. The universal behavior along
this part of the transition line is interpreted as a superposition
of Ising criticality and dense O(n) loop model behavior, similar
to earlier findings for a related square-lattice O(n) model. For
the special point n = 1, the O(n) critical point and the Ising-
like transition are dual images of one another. The duality
transformation includes the sum on the weights of the two
z-type vertices, thus leading to a single four-leg vertex with
weight 2z, and a replacement of the loop segments by empty
edges and vice versa. The transformation maps the x- and
y-type vertices on the same type, and interchanges the empty
and the z-type vertices. The normalization of the weight of the
empty vertex to 1 thus reduces x and y by a factor 2z, and
changes z into 1/4z. The n = 1 results for the critical points

xc found in Tables I and III satisfy this dual relation with one
another.

Also for the case y = 0, we find that the lattice-gas-like
transition line continues into the range n < 2, but the topology
of the (x,n) phase diagram is different. It does not enter into
the dense O(n) phase, but continues as a line of critical points
separating the disordered phase from the dense O(n) phase.
Our numerical data suggest that its universal properties do not
match those of the critical O(n) line (for most of the range
n < 1), or those of a superposition of Ising and critical O(n)
behavior. Furthermore, our results for the universal quantities
differ significantly from those reported for branch 3 of the
square O(n) model [8,16] and for the tricritical O(n) model
[31], at least for most of the range n < 1. We remark that both
branch 3 of the square O(n) model and our y = 0 critical line
lie relatively close to the higher critical point of branch 0 (x =
z = 1/2,y = 0), but for −1 < n < 1 they reside on different
sides of branch 0. This allows for the possibility that the y = 0
critical point although also twofold unstable, is attracted by a
different fixed point than branch 3. Unfortunately, the limited
accuracy of our numerical data for the y = 0 line case impedes
the further identification of its universal nature in terms of
possibly existing exact results.

As already mentioned in Sec. I, there exists an Ising-like
degree of freedom that is frozen out along each loop for y = 0.
Thus, for n = 0, where we allow only a single loop, it plays
no role and indeed we find the O(0) or self-avoiding walk
(SAW) critical behavior. For n �= 0 more loops may appear,
whose Ising degree of freedom may differ. But, depending on
the weight z, neighboring loops will tend to meet at z-type
vertices, and thus assume the same Ising variable. It may thus
be expected that at the y = 0 O(n) critical point, where the
largest loop diverges, there will also be some ordering of the
Ising degrees of freedom, thus allowing universal behavior that
is different from that of the generic O(n) critical point.

For n = 1, the numerical result for xc agrees, within an
error margin of about 10−5, with the self-dual location xc(1) =
1/

√
2. Furthermore, this self-dual point can be mapped on

Baxter’s eight-vertex model [32], by adding down- or left-
pointing arrows on the edges covered by an O(n) loop, and
up- or right-pointing arrows to the empty edges. Since two
of the vertex weights are zero, the symmetry relations of the
eight-vertex model allow a further mapping on the six-vertex
model, with vertex weights (a,b,c) = (1/

√
2,1/

√
2,1) in the

notation used in Ref. [32].
Also the conjectured critical point xc(−1) = 1/2 mentioned

in Sec. III B can be given a more firm basis. We recall that
the weight z is actually redundant for n = −1 [16]. To see
this, consider an arbitrary loop configuration where four loop
segments come in at a given vertex. There are two possible
ways to connect these segments by a z-type vertex, and the
numbers of loops closed differ by precisely 1. Taking into
account that the loop weight is −1, one observes that the two
contributions due to the summation on the two z-type vertices
cancel. Thus, in effect, configurations with z-type vertices do
not contribute to the partition sum. Therefore, the n = −1
point of branch 0 in Ref. [16], namely x = 1/2, is an exact
critical point in our y = 0 subspace, in spite of the fact that the
weight z is different. The results Xh = 0 and c = −2 found
there agree with the present findings.
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ZHE FU, WENAN GUO, AND HENK W. J. BLÖTE PHYSICAL REVIEW E 87, 052118 (2013)

ACKNOWLEDGMENTS

We are much indebted to Professor B. Nienhuis for freely
sharing his insights in various subtleties of O(n) loop models.

Z.F. acknowledges hospitality extended to her by the Lorentz
Institute. This work was supported by the NSFC under Grant
No. 11175018, and by the Lorentz Fund.

[1] H. E. Stanley, Phys. Rev. Lett. 20, 589 (1968).
[2] E. Domany, D. Mukamel, B. Nienhuis, and A. Schwimmer,

Nucl. Phys. B190, 279 (1981).
[3] P. G. de Gennes, Scaling Concepts in Polymer Physics (Cornell

University, Ithaca, 1979).
[4] B. Nienhuis, in Fundamental Problems in Statistical Mechanics

VII, edited by H. van Beijeren (Elsevier, Amsterdam, 1990),
p. 255.

[5] B. Duplantier and H. Saleur, Phys. Rev. Lett. 59, 539 (1987).
[6] B. Nienhuis, Phys. Rev. Lett. 49, 1062 (1982); J. Stat. Phys. 34,

731 (1984).
[7] R. J. Baxter, J. Phys. A 19, 2821 (1986); 20, 5241 (1987).
[8] M. T. Batchelor, B. Nienhuis, and S. O. Warnaar, Phys. Rev.

Lett. 62, 2425 (1989).
[9] S. O. Warnaar, M. T. Batchelor, and B. Nienhuis, J. Phys. A 25,

3077 (1992).
[10] Y. M. M. Knops, B. Nienhuis, and H. W. J. Blöte, J. Phys. A 31,
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