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Reduced dynamics of two oscillators collectively coupled to a thermal bath
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We study the reduced dynamics of a pair of nondegenerate oscillators coupled collectively to a thermal bath.
The model is related to the trilinear boson model where the idler mode is promoted to a field. Due to nonlinear
coupling, the Markovian master equation for the pair of oscillators admits non-Gaussian equilibrium states, where
the modes distribute according to the Bose-Einstein statistics. These states are metastable before the nonlinear
coupling is taken over by linear coupling between the individual oscillators and the field. The Gibbs state for the
individual modes lies in the subspace with infinite occupation quantum number. We present the time evolution
of a few states to illustrate the behaviors of the system.
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I. INTRODUCTION

We consider a composite system of two nondegenerate
oscillators coupled collectively to a bath, i.e., the change in
the occupation quantum number of one oscillator mode due to
the environmental influence induces a corresponding change
in the other mode. In the studies of environmental influence
on a pair of oscillators, the oscillators are usually coupled
separately to the bath through linear interactions [1]. In
contrast, our main focus is on the three-body interactions
between the oscillators and the field modes of the bath.

The system is related to the trilinear boson model in
quantum optical systems, where it is used to describe the
process of parametric amplification and frequency conversion
[2–5]. The two oscillators then play the roles of the pump
mode and the signal mode, respectively, which are coupled
to the idler or vibrational mode of a nonlinear medium in
which nonlinear interactions are assumed to be dominant. By
promoting the idler mode to a field and assuming that the
coupling is weak, we can employ the standard open quantum
system approach [6,7] to study the damping of the system of
oscillators in a thermal bath of the field.

As far as we know, the reduced dynamics of this model
has not been discussed before for the general sectors in the
nonintegrable region. We find that the Markovian master
equation as a time independent eigenvalue problem can be
solved analytically. Due to the collective coupling between
the oscillators and the bath, the reduced dynamics exhibits
the behaviors of finite-level systems [8–10] under the cascade
process, even though we are dealing with a continuous variable
system.

The Hamiltonian of the system has the same formal
structure as the Lee model for the bosonic systems [11,12],
and the one-particle sector of its oscillators’ subsystem is
equivalent to the Friedrichs model [13]. The Friedrichs-Lee
model was originally devised to study the effect of perturbation
on the spectra in the Hilbert space [13], the mathematical
structure of renormalizable quantum field theory [11,14], and
later on to study the nonintegrable systems where resonance
states emerge [15–17].
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The reduced dynamics for this type of interaction shows a
few unique features. It gives rise to a family of non-Gaussian
equilibrium states confined to their respective irreducible
subspaces, whereas the Gibbs state of the individual oscillators
is recovered in the subspace with unrestricted occupation
quantum number. The oscillator modes in the equilibrium
eigenstates distribute according to the Bose-Einstein statistics
[18]. These states are metastable before the nonlinear coupling
is taken over by linear coupling between the individual
oscillators and the field.

In our discussion, we first present the Hamiltonian of
the system in Sec. II. The Markovian master equation of
the reduced system and its bosonic representation are then
presented in Sec. III. We then solve for the equilibrium states
in Sec. IV, and study the time evolution of some states in
Sec. V.

II. THE HAMILTONIAN

We consider a system of two oscillators and a field in one-
dimensional space, labeled by 1,2, and k, respectively. The
free Hamiltonian is

H0 = ω1a
†
1a1 + ω2a

†
2a2 +

∑
k

ωka
†
kak, (1)

where we use the units h̄ = c = 1, and ω1,ω2 are the natural
frequencies of the respective oscillators. We assume that
ω1 > ω2, and the field is massless, with the dispersion relation
ωk = |k|. The creation and annihilation operators a

†
i and ai

obey the commutation relations [ai,a
†
j ] = δi,j , i,j = 1,2,k.

We normalize the field in a box with length �, so that
k = 2πi/�, with i = 1,2,3, . . . . The limit � → ∞ will be
taken eventually, but we continue to use the discrete notation
in the expressions below.

We assume that the oscillators are coupled collectively to
the field through the interaction

V = λ
∑

k

v(ωk)√
�/2π

(L+ak + L−a
†
k), (2)

in analogy to the linear coupling model between an oscillator
(labeled by a,a†) and the field, i.e., a†ak + aa

†
k . A derivation

of this interaction can be found in Ref. [4] in the context of the
trilinear boson model, where it is used to describe parametric
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amplification and frequency conversion in quantum optical
systems [2–5]. The L± are the ladder operators of the SU(2)
algebra

L+ = a
†
1a2, L− = a1a

†
2. (3)

They raise and lower the r-quantum number of the composite
system, respectively [see Eqs. (15)–(17b)]. In Eq. (2), λ

is a dimensionless coupling constant, and v(ωk) is a form
factor that contains a high frequency cutoff to regularize the
interactions.

The total Hamiltonian of the system H = H0 + V , when
written explicitly in terms of the individual mode, has a form
similar to the Lee model for the bosonic system [11,12]. Its
one-particle sector of the oscillators’ subsystem is equivalent
to the Friedrichs model [13].

The system possesses two independent constants of motion,

N = a
†
1a1 + a

†
2a2, N1k = a

†
1a1 +

∑
k

a
†
kak. (4)

N remains a constant of motion of the reduced dynamics when
the field modes are traced out. In the unstable regime, the
system develops a resonance at the frequency

ω0 = ω1 − ω2, (5)

where the 1-oscillator turns unstable and decays into the 2-
oscillator and the field [15]. Complex poles corresponding to
the unstable oscillator then arise in the complex energy plane.

From another point of view, the ai’s can be regarded as the
normal modes of two degenerate oscillators coupled through
the SU(2) coupling interactions [19]. The system Hamiltonian
H is then unitarily related to a family of Hamiltonians by SU(2)
transformation. The details are presented in Appendix A.
Therefore, the reduced dynamics discussed below is also
applicable to these systems. It is then interesting to note
that experimentally [20] it had been shown that spatial
wave patterns generated by three-dimensional coherent waves
obtained through the longitudinal and transverse coupling of
laser modes in a cavity [21] are related to the eigenstates
of the system with SU(2) coupling interactions. It may then
be possible to realize the spatial profiles of a mixture of
eigenstates of the system in the future.

We could gain further insights into the conditions under
which the model is applicable by comparing the Hamiltonian to
anharmonic interactions [22]. However, since this comparison
is outside the main line of our discussion, we present it in
Appendix B.

III. MARKOVIAN MASTER EQUATION: BOSONIC
REPRESENTATION OF SU(2)

A. Markovian master equation

The reduced dynamics of the two oscillators’ subsystem
immersed in a thermal bath can be derived by tracing out
the field degrees of freedom with standard methods [6,7],
or through the complex spectral representation [23]. In the
derivation, we assume that the oscillators and the fields are
initially factorizable, and we use the weak coupling limit
or, equivalently, the λ2t approximation [22,24] or the Born-
Markov approximation [6,7,25].

Since the structure of the interaction Hamiltonian is similar
to the linear coupling model between a single oscillator and
a field [7], the master equation acquires the Kossakowski-
Lindblad (KL) form [26,27], with a modified unitary part. The
reduced dynamics is therefore completely positive too [26,27].
The reduced density operator of the two oscillators, f̂ , evolves
according to the equation ∂f̂ /∂t = −Kf̂ , where

K = K0 + Kd (6)

can be decomposed into a unitary part

K0f̂ = i[H ′
0,f̂ ], (7)

H ′
0 = (ω1 − δω1)a†

1a1 + (ω2 − δω2)a†
2a2 − δω′

0a
†
1a1a

†
2a2

= (ω0 − δω0)L0 − 1
2 (ω′

0 − δω′
0)N + δω′

0

(
L2

0 − 1
4N2

)
,

(8)

and a dissipative part

Kdf̂ = − 1
2γ n̄0(2L+f̂ L− − L−L+f̂ − f̂ L−L+)

− 1
2γ (n̄0 + 1)(2L−f̂ L+ − L+L−f̂ − f̂ L+L−).

(9)

In the first equality of Eq. (8), we have presented H ′
0 in terms of

the creation and annihilation operators to exhibit the frequency
renormalization δωi to the individual oscillator. The explicit
expressions of the coefficients are

δω′
0 ≡ δω1 + δω2, (10a)

δω0 ≡ δω1 − δω2, (10b)

δω1 ≡ λ2

�/2π

∑
k

P
|v(ωk)|2
ωk − ω0

(n̄k + 1), (10c)

δω2 ≡ − λ2

�/2π

∑
k

P
|v(ωk)|2
ωk − ω0

n̄k, (10d)

γ = 2πλ2|v(ω0)|2, (10e)

where ω0 is the resonant frequency (5) and γ is the decay
constant. We note that the natural frequencies of the oscillators
are renormalized with opposite signs [compare Eq. (10c)
with (10d)]. In scattering problems, the average number of
field modes is zero n̄k = 0. In this case, we find that only the
frequency of the 1-oscillator is renormalized, consistent with
the discussion in Ref. [11].

We assume that the field modes are in thermal equilibrium
satisfying the Bose-Einstein distribution n̄k = 1/[exp(ωkβ) −
1], where β = 1/(kBT ). For the resonant mode, we label its
occupation number by

n̄0 ≡ 1

eω0β − 1
. (11)

B. SU(2) bosonic representation

The generators of the SU(2) group in terms of the bosonic
representation [28] are

L0 = (a†
1a1 − a

†
2a2)/2, (12a)

L1 = (L+ + L−)/2, L2 = (L+ − L−)/2i. (12b)
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They obey the commutation relations [Li,Lj ] = iεijkLk . The
Casimir operator of the SU(2) is [29]

L2 ≡ 1
2 (L+L− + L−L+) + L2

0 = L+L− + L0(L0 − 1),

(13)

which commutes with the Li’s, [L2,Li] = 0. The total occu-
pation number of both oscillators as denoted by N (4) remains
a constant of motion of the reduced dynamics. It commutes
with the generator of the SU(2) group [N,Li] = 0, i = 0,±.
The quantum number N will be used to label the irreducible
representation [see Eq. (15)].

We make use of the occupation number basis

|n1,n2〉 = (a†
1)n1

√
n1!

(a†
2)n2

√
n2!

|0,0〉, (14)

and denote a state in the irreducible subspace labeled by N as

|r〉N ≡ |n1,n2〉, (15)

where

r ≡ n1 − n2, N ≡ n1 + n2 (16)

are related to the eigenvalues of L0 and L2 through Eqs. (17c)
and (17d), respectively. Using these labels we can establish
the following relations:

L+|r〉N = 1
2

√
(N + r + 2)(N − r)|r + 2〉N, (17a)

L−|r〉N = 1
2

√
(N + r)(N − r + 2)|r − 2〉N, (17b)

L0|r〉N = 1
2 r|r〉N, (17c)

L2|r〉N = 1
4N (N + 2)|r〉N, (17d)

N |r〉N = N |r〉N. (17e)

Whenever a 1-oscillator is created, a 2-oscillator is anni-
hilated, and vice versa. Consequently, the index r changes
in step of ±2 under L±. There is a total number of N + 1
substates in each irreducible subspace, and r ranges from
−N, −N + 2, . . . ,N − 2,N . The highest and lowest states are
|N〉N and |−N〉N , annihilated by the raising and lowering
operators L±|±N〉N = 0, respectively. The state |r〉N has
energy

E = ω1n1 + ω2n2 = 1
2 (Nω′

0 + rω0) (18)

(see Fig. 1 for a plot of the energy levels). They are
nondegenerate if the ratio ω1/ω2 is not a rational number.

We denote the basis in the Liouville space by

f
(N,Ñ )
r;r̃ ≡ |r〉N Ñ 〈r̃| = |n1,n2〉〈m1,m2|. (19)

We find that using this notation is more convenient for our later
discussion since it is more compact and it manifests the fact
that N and Ñ are constants of motion of the reduced dynamics.

Since the L± operators come in pairs in Kd [Eq. (9)], Kf
(N,Ñ )
r;r̃

is a linear combination of f
(N,Ñ )
r;r̃ ,f

(N,Ñ )
r±2;r̃±2. Consequently, the

quantity

ν ≡ r − r̃ (20)

is a constant of motion under K , and the basis states in each
f (N,Ñ ) subspace are connected to the others with the same ν

value only, under the reduced dynamics.

00
N = 0 N = 1 N = 2 N

1×

2×
2×

N×
2(N− 1)×
3(N− 2)×

...

3(N− 2)×
2(N− 1)×

N×

= γ(n̄0 + 1)

= γn̄0

Nω1

2ω1

ω1

Nω2

2ω2

ω2
ω0 = ω1 − ω2

f
(0)
0

f
(1)
1

f
(1)
−1

f
(2)
2

f
(2)
0

f
(2)
−2

f
(N)
N

f
(N)
N−2

f
(N)
N−4

...

f
(N)
4−N

f
(N)
2−N

f
(N)
−N

FIG. 1. Energy level diagram and the rate of transitions between
different levels in the f (N) subspace (between diagonal elements) [see
Eq. (21) for the definition of f (N)

r ]. The transition rates between two
levels are proportional to the numerical constants on the left of the
levels. Transitions between different irreducible f (N) subspaces are
forbidden by the SU(2) symmetry of the reduced dynamics.

It is interesting to note that the generator of the time
evolution K is invariant under a rotation along the L0 axis,
as shown in Appendix D. Furthermore, the SU(2) generalized
coherent states [30–32] reside in the f (N,N) subspace (see
Appendix E for details).

IV. EQUILIBRIUM STATES

In this section, we obtain the set of equilibrium states for
the irreducible subspaces. These states are non-Gaussian states
in the coordinate space, as opposed to the Gaussian Gibbs
state for an oscillator in a thermal bath. We will also show
that the oscillator modes in these equilibrium states distribute
according to the Bose-Einstein statistics, and the Gibbs states
of the individual oscillator are recovered when the occupation
quantum numbers for these modes are not restricted.

We first note that the equilibrium states have nonzero trace
and can be decomposed into the diagonal basis state labeled
by

f (N)
r ≡ f (N,N)

r;r , (21)

whenever Ñ = N and r̃ = r . We can then write the equilibrium
state as a sum of the diagonal basis states:

f (N)
eq = 1

ZN

N∑
n=0

pN−2nf
(N)
N−2n, (22)

where ZN is a normalization constant and pN−2n are coef-
ficients to be obtained below. Note that since each f (N)

r =
|n1〉〈n1| ⊗ |n2〉〈n2| is separable, f (N)

eq is a separable state.
The action of K on these states is

Kf (N)
r = urf

(N)
r+2 + vrf

(N)
r + wrf

(N)
r−2, (23)
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where

ur = −γ

4
n̄0[(N + 1)2 − (r + 1)2], (24a)

vr = γ

4
(2n̄0 + 1)[(N + 1)2 − r2 − 1] + γ

2
r, (24b)

wr = −γ

4
(n̄0 + 1)[(N + 1)2 − (r − 1)2] (24c)

by using Eqs. (17a)–(17e). The transition rates between
different energy levels within the same f (N) subspace are
summarized in Fig. 1. They can be read off from Eqs. (23)–
(24c) directly to give

f (N)
r → f

(N)
r+2 =

{
0, if r = N

ur, if r 
= N
(25a)

→ f (N)
r = vr, all r (25b)

→ f
(N)
r−2 =

{
wr, if r 
= −N

0, if r = −N.
(25c)

The maximum rate is proportional to the numerical factor
N (N + 2)/4 for a transition between the f

(N)
±2 and the f

(N)
0

levels for even N , whereas the maximum rate is proportional
to (N + 1)2/4 for a transition between the f

(N)
1 and the f

(N)
−1

levels for odd N [7].
Since the transitions between the energy levels in the f (N)

subspace are very similar to the Dicke model for N two-level
systems collectively coupled to a field [33,34], superradiance
[33] may also arise in this model. However, the energy levels
for the two models are different (compare Fig. 1 in this paper
to Fig. 1 in Ref. [33]). This is because a symmetrization of the
underlying states is required for N two-level systems but not
for a pair of nondegenerate oscillators.

The equilibrium condition Kf (N)
eq = 0 can be written as a

matrix equation

K · f(N)
eq = 0, (26)

where

K =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

vN uN−2 0 0
wN vN−2 uN−4 0 . . .

0 wN−2 vN−4 uN−6

. . .
w6−N v4−N u2−N 0

... 0 w4−N v2−N u−N

0 0 w2−N v−N

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(27)

is a tridiagonal square matrix of dimension N + 1, and the
eigenvector is a column matrix

f(N)
eq = 1

ZN

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

pN

pN−2

pN−4
...

p4−N

p2−N

p−N

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (28)

The solution to the coefficients is

pN−2n2 = n̄
N−n2
0 (1 + n̄0)n2 , n2 = 0,1,2, . . . ,N (29)

which can be checked to satisfy Eq. (26) easily. By requiring
Tr(f (N)

eq ) = 1, we obtain the normalization constant

ZN ≡
N∑

n2=0,1,2,...

pN−2n2 = (1 + n̄0)N+1 − n̄N+1
0 (30)

by using the relation (1 − r)(1 + r + r2 + · · · + rN ) = 1 −
rN+1.

Furthermore, the equilibrium occupation probability
p2n1−N can be cast into the form (for fixed N )

pN−2n2 = [eβω2 (1 + n̄0)]N e−βE (31a)

∝ e−n1βω1e−n2βω2 , (31b)

where E is the energy of the configuration (18). Equation (31a)
shows that pN−2n2 satisfies the canonical distribution for fixed
N , whereas Eq. (31b) shows that the system obeys the Bose-
Einstein statistics with two energy modes [18], where the 1-
and 2-oscillator states play the roles similar to the excited and
ground states in a two-level system, respectively.

A special case occurs at zero T or, equivalently, when
the field mode has zero occupation number n̄0 = 0. Damping
to the system can then be caused only by the spontaneous
emission of a field quantum [3], accompanied by the lowering
and raising of the 1- and 2-oscillator’s occupation quantum
numbers, respectively. In this situation, the lowest state in each

subspace, such as f
(N)
−N in the diagonal subspaces, and f

(N,Ñ )
−N ;−Ñ

for N 
= Ñ in the off-diagonal subspaces, are annihilated by
Kd . Hence, the subspace spanned by these states does not
experience decoherence. Therefore, they should be included
in the expression of the equilibrium state for T = 0,

f ′
eq =

∑
N=0,1,2,...

cNf
(N)
−N +

N 
=Ñ∑
N,Ñ=0,1,2,...

(
c′
NÑ

f
(N,Ñ )
−N,−Ñ

+ H.c.
)
,

(32)

where cN are real coefficients subjected to the normalization
condition

∑
N cN = 1, and c′

NÑ
are complex coefficients

constrained by the positivity condition of f ′
eq. f ′

eq is a separable
state by inspection. Indeed, since

f
(N,Ñ )
−N,−Ñ

= |0,N〉〈0,Ñ | = |0〉〈0| ⊗ |N〉〈Ñ |, (33)

we can factor out the overall 1-oscillator state |0〉〈0| from the
right-hand side of Eq. (32), so that f ′

eq = |0〉〈0| ⊗ ρ(2), where
ρ(2) is the density matrix of the 2-oscillator. Hence, it is clear
that f ′

eq is a separable state.
It is interesting to compare the reduced dynamics of the

2-oscillators system to that of a single oscillator coupled to a
bath. In the case of a single oscillator, the reduced dynamics too
has the Kossakowski-Lindblad form [26,27], although it has a
different set of L′

i operators, L′
0 = a†a + 1/2, L′

+ = a†, and
L′

− = a, where a†,a are the creation and annihilation operators
of the oscillator. When written in terms of superoperators,
the reduced dynamics has the SU(1,1) symmetry [35]. This
reduced dynamics connects all the number bases in this system,
and the equilibrium state is the Gibbs state.

For the system we consider, if we trace out the 2-oscillator
state from Eq. (22), we find that the 1-oscillator equilibrium
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state becomes

f
(N)
eq,1 = (1 + n̄0)N

ZN

N∑
n1=0,1,2,...

e−n1βω0 |n1; n1〉〉. (34)

When N is unrestricted, we recover the Gibbs state. Tracing out
the 1-oscillator state will produce a similar expression of f

(N)
eq,2

as in Eq. (34), except |n1; n1〉〉 is replaced by |N − n2; N −
n2〉〉, whereas the rest of the coefficients remain unchanged.

V. TIME EVOLUTION OF STATES

To study the time evolution of the reduced system, we first
introduce the interaction picture for the reduced dynamics. We
denote the density state in this picture as

ρ̃ ≡ eK0t ρ = eiH ′
0t ρe−iH ′

0t . (35)

By expanding ρ̃ = ∑
i c̃ifi and ρ = ∑

i cifi in terms of the

time-independent basis fi ≡ f
(N,Ñ )
r;r̃ , the coefficient c̃i acquires

a phase due to the action of exp(iK0t) on fi ,

c̃i = ci exp(iθi t), (36)

in which

θi = 1
2 (ω′

0 − δω′
0)(N − Ñ ) + 1

2 (ω0 − δω0)(r − r̃)

− 1
4δω′

0(N2 − Ñ2) + 1
4δω′

0(r2 − r̃2). (37)

Since the phase angle vanishes for the coefficients associated
to the probability elements f (N)

r , we have c̃i = ci . In this
situation, we drop the tilde sign on the coefficients to simplify
the notation.

In the interaction picture, the equation of motion becomes

∂

∂t
ρ̃ = −K̃d ρ̃, (38)

where the effect of K̃d on the basis state is

K̃dfi = − 1
2γ n̄0(2eiδω′

0νtL+fiL− − L−L+fi − fiL−L+)

− 1
2γ (n̄0 + 1)(2e−iδω′

0νtL−fiL+ − L+L−fi

− fiL+L−), (39)

in which ν is already defined in Eq. (20) (see Appendix F for
details). The extra phase factors in front of two of the terms
L+fiL− and L−fiL+ are due to the action of L2

0 in H ′
0 of

Eq. (8). For basis states that lie in the probability subspace, we
have ν = 0. In this case, K̃dfi reduces to Kdfi .

By noting that the f (N,Ñ ) and f (Ñ,N) subspaces are related

by the following relations, f
(Ñ,N)
r̃;r = [f (N,Ñ )

r;r̃ ]†, K0f
(Ñ,N)
r̃;r =

[K0f
(N,Ñ )
r;r̃ ]†, and K̃df

(Ñ,N)
r̃;r = [K̃df

(N,Ñ )
r;r̃ ]†, we obtain

Kf
(Ñ,N)
r̃;r = [

Kf
(N,Ñ )
r;r̃

]†
. (40)

Hence, we can deduce the action of K on one subspace from
the other. We will next illustrate the general features of the
time evolution of the system with a few examples.

A. States in lower subspaces

We begin by studying the time evolution of a state dwelling
in the subspaces up to N,Ñ = 1. The density matrix is

ρ̃(t) = d(t)f (0)
0 + [

g̃(t)f (0,1)
0;1 + h̃(t)f (0,1)

0;−1 + H.c.
]

+ a(t)f (1)
1 + b(t)f (−1)

−1 + [
c̃(t)f (1,0)

1;0 + H.c.
]
, (41)

where the coefficients are subjected to the normalization
condition d(t) + a(t) + b(t) = 1 and the positivity conditions
of ρ̃. The effect K̃dfi can be worked out using Eqs. (39), (17a),
and (17b). By equating the coefficients associated to the same
basis state fi on both sides of Eq. (38), we find that the
coefficients evolve as

ḋ = 0, (42a)

ȧ = −γ (1 + n̄0)a + γ n̄0b, (42b)

ḃ = γ (1 + n̄0)a − γ n̄0b, (42c)
˙̃c = −γ

(
n̄0 + 1

2

)
c̃, (42d)

˙̃g = − 1
2γ (n̄0 + 1)g̃, (42e)

˙̃h = − 1
2γ n̄0h̃, (42f)

where we have omitted the time dependence on the coefficients
for simplicity.

We first make a few observations. We find that only the
coefficients under the same f (N,Ñ ) subspace are connected.
We also find that the coefficients for the f (1,1) subspace,
namely, a,b,c̃, evolve in exactly the same way as the amplitude
damping channel for qubits [8]. In general, it can be shown
that the f (N,N) subspace evolves similar to the N -level system
under the cascade process with a single decay constant in
vacuum γ ,

|N〉 ↔ |N − 1〉 ↔ · · · ↔ |1〉 ↔ |0〉, (43)

as depicted in Fig. 1. For instance, the dynamics in the f (2,2)

subspace behaves similar to the three-level system [10] under
the cascade process.

The solutions to Eqs. (42a)–(42f) are

d(t) = d0, (44a)

a(t) = a0e
−γ (1+2n̄0)t + n̄0(1 − d0)

1 + 2n̄0
[1 − e−γ (1+2n̄0)t ], (44b)

b(t) = 1 − d0 − a(t), (44c)

c̃(t) = c̃0e
−(2n̄0+1)γ t/2, (44d)

g̃(t) = g̃0e
−γ (n̄0+1)t/2, (44e)

h̃(t) = h̃0e
−γ n̄0t/2, (44f)

where d0 denotes the value of d at t = 0, and etc. From
these expressions, we learn that the diagonal components
eventually settle down at some equilibrium values, whereas
all the off-diagonal components vanish asymptotically. In the
general f (N,N) subspace, we find that the diagonal coefficients
contain the time exponential factor exp[−Nγ (2n̄0 + 1)t],
hence they evolve towards the equilibrium value more rapidly,
whereas all the off-diagonal coefficients vanish asymptotically.
However, as already shown in Sec. IV, for the special case of
zero temperature, the lowest off-diagonal coefficient in each
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subspace does not experience decoherence, as is clear from the
expression of h̃(t) in Eq. (44f), which is independent of time
when n̄0 = 0.

B. States involving infinite number of subspaces

We now investigate the time evolution of states involving
the general subspaces. In principle, the initial states can be
decomposed into basis states in the various f (N,Ñ ) subspaces,
and the time evolution can be analyzed subsequently. Since this
is a tedious and not an illuminating process, we will discuss the
general features of the time evolution by comparing the initial
and the equilibrium states with two examples. To simplify the
expressions, we will make use of the dimensionless position
coordinate

xi ≡
√

miωi

h̄
qi, (45)

where mi is the mass of the i oscillator and qi is the ordinary
position coordinate with the dimension of length.

(1) Assume that the 1-oscillator is initially a superposition
of two Gaussian states centered at x1 = ±a, respectively [36],

φ1(x1) = N1e
−(x1−a)2 + N2e

−(x1+a)2 =
∞∑

n=0

cn〈x1|n〉, (46)

where N1,N2 are the normalization constants that give the
relative height between the two Gaussians. In Eq. (46), we
decompose φ1 in terms of the harmonic oscillator wave
function 〈x|n〉 = Hn(x) exp(−x2/2)/

√
2nn!

√
π , with the ex-

pansion coefficient cn = 〈n|φ1〉, and Hn(x) is the Hermite
polynomial. As an example, we choose a = 2 and N1/N2 = 2.
A little calculation shows that c2 is the dominant term

{c0,c1,c2, . . .} = {0.34,0.22,0.78,0.23,0.41,0.05, . . .}.
(47)

The density matrix ρ
(1)
1,ini(x1,x̃1) = 〈x1|φ1〉〈φ1|x̃1〉 in the coor-

dinate space is plotted in Fig. 2(a).
Consider an initially uncorrelated composite system of two

oscillators �(1)
ini with the 2-oscillator initially in the ground

state ρ
(1)
2,ini = |0〉〈0|:

�(1)
ini ≡ ρ

(1)
1,ini ⊗ ρ

(1)
2,ini =

∞∑
n,m=0

cnc
∗
m|n,0〉〈m,0|

=
∞∑

n,m=0

cnc
∗
mf (n,m)

n;m . (48)

The spatial profile of ρ
(1)
2,ini(x1,x̃2) is plotted in Fig. 2(e).

Under the reduced dynamics, the off-diagonal coefficients
undergo exponential decay, and �(1)

ini eventually evolves into
the equilibrium state

�(1)
eq =

∞∑
N=0

|cN |2f (N)
eq (49a)

=
∞∑

N=0

|cN |2
N∑

n2=0

pN−2n2

ZN

|N − n2,n2〉〈N − n2,n2| (49b)

[cf. Eq. (22) for the expression of f (N)
eq ].

(a) ρ
(1)
1,ini (e) ρ

(1)
2,ini

(b) ρ
(1)
1,eq, n̄0 = 0 (f) ρ

(1)
2,eq, n̄0 = 0

(c) ρ
(1)
1,eq, n̄0 = 1 (g) ρ

(1)
2,eq, n̄0 = 1

(d) ρ
(1)
1,eq, n̄0 = 10 (h) ρ

(1)
2,eq, n̄0 = 10

FIG. 2. Initial and equilibrium configurations of the individual
modes of example (1) for several temperatures, with parameters a = 2
and N1/N2 = 2 in Eq. (46).

In the special case of zero temperature, we have n̄0 =
0. The 1-oscillator then settles down to the ground state
ρ

(1)
1,eq ≡ Tr2�

(1)
eq = |0〉〈0| with a Gaussian profile as depicted in

Fig. 2(b). Notice that the off-diagonal peaks in Fig. 2(a) have
decohered away, much like its single oscillator counterpart in a
thermal bath [36]. The information carried by the 1-oscillator
in the cis is inherited by the 2-oscillator to some extent, as can
be seen in the density matrix of the 2-oscillator,

ρ
(1)
2,eq ≡ Tr1�

(1)
eq =

∞∑
N=0

|cN |2|N〉〈N |, (50)

in which only the highest energy level in each of the 2-
oscillator subspaces is occupied. Since c2 is the dominant term,
ρ

(1)
2,eq ≈ |c2|2|2〉〈2|. The plot in the coordinate space then gives

a characteristic three-peak profile of the wave function 〈x|2〉
along the diagonal [see Fig. 2(f)].

When temperature increases, the populations of the 1- and
2-oscillator start to distribute accordingly among different
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levels in the f (N) subspace. The reduced states are then
approximately given by

ρ
(1)
1,eq ≈ |c2|2

Z2

(
p

(2)
2 |2〉〈2| + p

(2)
0 |1〉〈1| + p

(2)
−2|0〉〈0|), (51)

ρ
(1)
2,eq ≈ |c2|2

Z2

(
p

(2)
−2|2〉〈2| + p

(2)
0 |1〉〈1| + p

(2)
2 |0〉〈0|). (52)

As a result, the three-peak profile is smoothed out, as shown
in Figs. 2(c) and 2(g) for n̄0 = 1. By comparing Eq. (51)
with (52), we notice that the order of the level populations
between the 1- and 2-oscillator, i.e., p

(2)
2 , p

(2)
0 , and p

(2)
−2, is

reversed. This feature recurs in the other subspaces as well.
For large temperature, p

(N)
i,eq ≈ n̄N

0 for all i. Consequently, we
obtain a uniform distribution among all the levels. In this limit,
ρ

(1)
1,eq ≈ ρ

(1)
2,eq, as can be seen by comparing Figs. 2(d) and 2(h)

for n̄0 = 10.
(2) We next consider an initially entangled state

∣∣�(2)
ini

〉 =
∞∑

n=0

cn|n,n〉. (53)

For a comparison with the first example, we choose cn to be the
same as those in Eq. (47). In this example, both the oscillators
are initially in the same state,

ρ
(2)
1,ini = ρ

(2)
2,ini =

∞∑
n=0

|cn|2|n〉〈n| ≈ |c2|2|2〉〈2|. (54)

The density matrix of the system �(2)
ini ≡ |�(2)

ini 〉〈�(2)
ini | evolves

into the equilibrium state

�(2)
eq =

∞∑
N=0

|cN |2f (2N)
eq , (55)

which has been shown to be separable in Sec. IV. Hence, the
entanglement between the pair of oscillators is lost eventually.
In fact, any initial entanglement in the reduced system vanishes
asymptotically in view of the separability of the equilibrium
state f (N)

eq [Eq. (22)].
A comparison of Eq. (55) with (49a) also shows that the

choice of the superpositions |n,n〉 in Eq. (53) has resulted in the
exclusion of the odd f (2N+1) subspace from the equilibrium
state. This is a consequence of the fact that the set of odd
number subspaces are absent from the initial state. Therefore,
by specifically preparing the initial state, some subspaces
could be excluded from the equilibrium state. In this model,
states with different initial conditions may evolve into different
classes of equilibrium states.

VI. CONCLUSION

We have considered a system of two oscillators collectively
coupled to a field through a three-body interaction. The model
is applicable within a time frame in which nonlinear interaction
is dominant. The two oscillator modes become effectively
coupled as a result of their collective interaction with the
field. Consequently, the reduced dynamics possesses the SU(2)
symmetry that is common to finite-level systems, which leads
to non-Gaussian equilibrium states for the collective modes.
These are metastable states until linear interactions between
the individual oscillators and the field take over and drive

them to new equilibrium states. The results suggest that new
forms of equilibrium states could emerge when subsystems
are collectively coupled to the environment under different
symmetry of the reduced dynamics.

It is interesting to further explore the implications and
manifestations of the results in other systems, such as in
the orbital motion of two-electron quantum dots [37] and
light-phonon systems [38], for example, the photosynthetic
systems [39]. The existence of metastable states may prevent
the oscillators from thermalizing too rapidly with the bath. We
leave these interesting investigations to future works.
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APPENDIX A: OSCILLATORS COUPLED BY SU(2)
COUPLING INTERACTIONS

Using the operator [19,20]

U = exp(−iφL0) exp(−iθL2), (A1)

where Li are the generators of the SU(2) group (12a) and (12b),
the ai’s are related to a corresponding set of bi operators by(

a1

a2

)
= U

(
b1

b2

)

U † =
(

eiφ/2 cos(θ/2) e−iφ/2 sin(θ/2)
−eiφ/2 sin(θ/2) e−iφ/2 cos(θ/2)

)(
b1

b2

)
. (A2)

The family of Hamiltonian related to the oscillators’ subsystem
is then given by

H12 = ω1a1
†a1 + ω2a2

†a2

= ω′
0

2
(b1

†b1 + b2
†b2) + ω0 cos θL0

+ω0 sin θ (cos φL1 + sin φL2), (A3)

with the corresponding interaction

V ∼ a
†
1a2ak + a1a

†
2a

†
k

= [− sin θL0 + cos θ (cos φL1 + sin φL2)](ak + a
†
k)

− i(sin φL1 − cos φL2)(ak − a
†
k), (A4)

where a1,a2 in Li [Eqs. (12a) and (12b)] are replaced by b1,b2,
respectively. The second equality is obtained by substituting
Eq. (A2) into the first line of Eq. (A4). Note that N [Eq. (4)]
also commutes with U . Hence, the total occupation quantum
number of the oscillators remains the same under the change
of basis. Note also that the vacuum state does not change under
U , i.e., |0,0〉′ = U †|0,0〉 = |0,0〉.
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APPENDIX B: COMPARISON WITH ANHARMONIC
INTERACTIONS

The anharmonic interactions couple the position operators
of the three species. Using dimensionless position coordinate
defined in Eq. (45), the position operator x̂i is related to the ai

by x̂i = (ai + a
†
i )/

√
2. The anharmonic interactions then take

the form

V ′ = λ
∑

k

v(ωk)√
�/2π

(a1 + a
†
1)(a2 + a

†
2)(ak + a

†
k). (B1)

In this situation, we find that aside from the ω0 resonant
mode, there is a second resonant mode that occurs at a higher
frequency ω′

0 compared to ω0,

ω′
0 = ω1 + ω2. (B2)

This mode is initiated by the interaction terms a1a2a
†
k + H.c.,

where H.c. denotes Hermitian conjugate. If the occupation
number of the ω′

0 mode in the field is small enough, then this
mode is not excited. This could be achieved if the temperature
of the bath, T , is low enough so that the condition

ω0 < kBT � ω′
0 (B3)

is satisfied, where kB is the Boltzmann constant. Another way
to achieve this is to formally impose a high frequency cutoff
ωc to the form factor v(ωk) in the interaction (B1) so that

kBT < ωc � ω′
0 (B4)

is satisfied. Both conditions are separately consistent with the
λ2t approximation [22,24], or the Born-Markov approximation
[7,25], used to derive the Markovian master equation of
the system. Condition (B3) implies that ω1,ω2 should be of
the same order since ω1 − ω2 < kBT for small T , whereas
condition (B4) implies that they should not be too small since
we require ωc � ω1 + ω2 for a large cutoff frequency. In the
latter situation, since ω1 and ω2 are not small, only a few lower
energy modes will be excited in the dynamics (see Fig. 1 for
the energy levels of the system).

Aside from the resonant modes, there are two other
virtual modes that involve the field quanta with negative
frequencies, i.e., ω′

v = −(ω1 + ω2) and ωv = −(ω1 − ω2) <

0. They are initiated by the interaction terms a
†
1a

†
2a

†
k + H.c. and

a1a
†
2ak + H.c. of Eq. (B1), respectively. The ω′

v mode is a fast
rotating mode so that its contribution to the reduced dynamics
averages to zero in the relaxation time scale τR ∼ 1/γ , where
the λ2t approximation is valid. This is the rotating-wave
approximation [7,40] usually implemented in the Markovian
limit.

The virtual mode ωv does not contribute to the reduced
dynamics on the level of the λ2t approximation with the
collision operator ψ �ν

2 defined in Eq. (C1). A similar example
is provided by Ref. [23] for the reduced dynamics of a single
oscillator coupled to a field, in which the interactions contain
a virtual transition mode. The effect of a possible extension of
the collision operator ψ �ν

2 [Eq. (C1)] to include the contribution
of the virtual transitions is presented in the next Appendix.

It is also interesting to note that if instead of assuming ω1 >

ω2 in our discussion so far, the opposite situation ω2 > ω1

would interchange the role played by the ωv and the ω0 modes,

i.e., now ω0 becomes a virtual mode, whereas ωv becomes a
resonant mode. However, the ω′

0 and ω′
v modes are not affected

by this change.
In summary, in comparison to the full anharmonic interac-

tions, the higher frequency resonant mode ω′
0 is not included

in the interaction Hamiltonian of the system we consider here.
The contribution of this mode is negligible compared to the
ω0 mode at low temperature, or when a frequency cutoff is
imposed to the form factor below ω′

0. Moreover, out of the two
virtual modes we have discussed, the effect of the ω′

v mode
is effectively dropped under the rotating-wave approximation,
whereas the ωv mode does not affect the dissipative part of the
reduced dynamics using the usual definition of the collision
operator.

APPENDIX C: EXTENSION OF ψ2

Using the usual definition of the collision operator up to the
second order in the coupling constant [23]

ψ �ν
2 = P �νψ2P

�ν (C1)

≡ P �νL0P
�ν − λ2P �νLV Q�ν 1

L0 − �ω · �ν − iε
Q�νLV P �ν,

(C2)

the virtual mode ωv does not contribute to the collision
operator on the level of the λ2t approximation. However, if
we incorporate the transitions between different P �ν subspaces
into the definition of the collision operator (C1), the virtual
mode ωv may contribute to the dissipative part of the reduced
dynamics as follows [41].

We define the collision operator by ψ ′
2 ≡ Pψ2P , where

P ≡ ∑
�ν P �ν . Figure 3 shows an example of a possible

transition of ψ ′
2 that involves different P �ν subspaces. As

indicated in the figure, the interaction vertex on the right is
due to the virtual transition a

†
1a2a

†
k , whereas the vertex on the

left is due to a real transition mode in the original model (2).
A standard calculation shows that Fig. 3 contributes a term
(a†

1a2)2f̂ to the dissipative part of the reduced dynamics, in
addition to the contributions by the real transitions. When
taking into account all these additional transitions, the terms
L+f̂ L+, L2

+f̂ , f̂ L2
+ and their Hermitian conjugates are added

to the dissipative operator, resulting in a not completely
positive reduced dynamics [42].

nk nk

n1 n2 + 2

n2 n1 − 2

P (ν1,ν2) P (ν1−2,ν2+2)

m1, m2, nk m1, m2, nk

nk − 1

n2 + 1

n1 − 1

a†1a2ak a†1a2a
†
k

FIG. 3. P (ν1,ν2)ψ2P
(ν1−2,ν2+2) transition. It is one of the diagrams

giving the contribution to the collision operator ψ2 when virtual mode
ωv is considered. The operators on the right vertex cause the virtual
transition.
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We note that this extension to the definition of the collision
operator does not affect the reduced dynamics of the original
model (2) since all the possible transitions in this model involve
the same P �ν subspace. We already learned that in this situation
they lead to a completely positive reduced dynamics [26,27]
with the Kossakowski-Lindblad form (9).

APPENDIX D: ROTATIONAL SYMMETRY UNDER L0

In this Appendix, we show that K is invariant under a
rotation along the L0 axis. Indeed, we find that

L′
± ≡ eiθL0L±e−iθL0 = e±iθL± (D1)

by using the commutation relations [L+,L−] = 2L0 and
[L0,L±] = ±L±. Since L+ and L− appear pairwise in K [cf.
Eqs. (6)–(9)], the phase in Eq. (D1) cancels out. Added by the
fact that L0 commutes with N , we conclude that K is invariant
under the rotation.

APPENDIX E: SU(2) GENERALIZED COHERENT STATES
RESIDE IN f (N,N) SUBSPACE

The SU(2) generalized coherent states [30–32]

|τ 〉N = (1 + |τ |2)−
N
2

N∑
n1=0

√(
N

n1

)
τn1 |n1,N − n1〉 (E1)

reside in the corresponding f (N,N) subspace of the system,
where τ = tan(θ/2) exp(−iφ), in which θ,φ are the parameters
that label the coherent states. In terms of the f (N,N) basis, we

have

|τ 〉N 〈τ | =
N∑

n,m

c(N,N)
n;m f

(N,N)
N−2n;N−2m, (E2a)

c(N,N)
n,m = 1

2N
(sin 2θ )N

√(
N

n

)(
N

m

)
eiφ(n−m). (E2b)

APPENDIX F: Kd IN THE INTERACTION PICTURE

In this Appendix, we calculate the effect of K̃d on the fi

basis. Since L0 and N commute, we have

eiH ′
0t = ei(ω′

0−δω′
0)Nt/2−iδω′

0N
2t/4eiδω′

0L
2
0t ei(ω0−δω0)L0t . (F1)

Using Eq. (D1), we find that

ei(ω0−δω0)L0tL±e−i(ω0−δω0)L0t = e±i(ω0−δω0)tL±. (F2)

Therefore, K̃d = eiδω′
0L

2
0tKde

−iδω′
0L

2
0t since L+ and L− appear

pairwise in Kd , and N commutes with L0,L±. Furthermore,
using [

L2
0,L±

] = ±(2L0 ∓ 1)L± = ±L±(2L0 ± 1), (F3)

we can show that

L̃± ≡ eiδω′
0L

2
0tL±e−iδω′

0L
2
0t = L±e±iδω′

0(2L0±1)t (F4)

= e±iδω′
0(2L0∓1)tL±, (F5)

where L̃
†
± = L̃∓. Using the relation (17c), we finally obtain

Eq. (39). Therefore, K̃d differs from Kd by a phase factor in
two of the terms. For basis vectors that lie in the probability
subspace, ν ≡ r − r̃ = 0, and we get K̃d = Kd .
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