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The dynamics of a spin in the presence of a deterministic and a fluctuating magnetic field is solved for
analytically to obtain the averaged value of the spin as a function of time for various kinds of fluctuations
(noise). Specifically, analytic results are obtained for the time dependence of the expectation value of the spin,
averaged over fluctuations, for Gaussian white noise, Gaussian colored noise, and non-Gaussian telegraph noise.
Fluctuations cause the decay of the average spin vector (decoherence). For noise with a finite temporal correlation
time, a deterministic component of the field can suppress the decoherence of the spin component along the field.
Hence, decoherence can be manipulated by controlling the deterministic magnetic field. A simple universal
physical picture emerges which explains the mechanism for the suppression of decay.
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I. INTRODUCTION

Quantum systems are almost invariably coupled to an en-
vironment that degrades their coherence. The decoherence of
quantum systems is a fundamental problem, with implications
across all branches of physics. The temporal evolution of a
spin system in the presence of coupling to an environment is
perhaps the simplest phenomenon involving decoherence. For
example, a particle of spin 1/2, which can be mapped onto
any two-level system (TLS) [1] and vice versa has served as
an important paradigm [2–5]. Specific examples include the
decoherence of a qubit in a quantum-computer or quantum-
information processor [6], spin dynamics in a magnetometer
[7], accuracy and stability limitations of atomic clocks due to
interactions with an environment [8], decoherence of two-level
quantum dot systems [9,10], and nitrogen vacancy centers in
diamond [11,12].

Under certain assumptions, which we discuss in the next
section, the evolution of a spin in the presence of an
environment can be represented by evolving the spin in an
effective magnetic field �B(eff) = �B0 + �BE(t). Here �B0 is a
deterministic magnetic field (which can be time dependent)
that can be used to exert control over the spin. The magnetic
field �BE(t) models the influence of an environment on the
system and is represented by a vector stochastic process �b(t).
Averaging over fluctuations corresponds to tracing out the
environmental degrees of freedom. This yields a reduced,
nonunitary dynamics wherein the averaged spin decoheres in
time.

The physical properties of the environment determine the
statistical properties of �BE(t), which in turn determine the
type of stochastic process �b(t). Here we consider several types
of stochastic fluctuations. A prototype model for fluctuations
is Gaussian white noise [13,14], a random process having
a vanishing correlation time. As a consequence, the system
driven by it evolves without memory since it has no way
to probe the past. A natural generalization is a Gaussian
colored noise [15,16], wherein the random process has a finite
correlation time, hence the system evolves with memory. The
ubiquitousness of this type of noise can be attributed to the
central limit theorem which states that the superposition of

a very large collection of independent sources of fluctuation
tends to Gaussian noise. Moreover, in some spin systems there
are multiple sources of noise which differ in their intensity and
correlation time scale. For example, in the nitrogen-vacancy
(NV) diamond system [17], NV centers experience slowly
fluctuating noise from 13C impurity nuclear magnetic moments
and extremely fast fluctuations from nearby electronic nitrogen
spins. The first of these can be modeled by colored noise,
which is characterized by a very long correlation time, while
the later one can be treated as a white noise since it sets the
fastest time scale in the system. A particular case of colored
noise that is not Gaussian, telegraph noise, has been studied in
connection with quantum dot qubit systems [4,5]. The authors
of Ref. [3] claimed that telegraph noise can be used to model
the environment of systems where a spin can interact with
relatively few random fluctuators in its neighborhood, and
these fluctuators go back and forth between only two states.

The idea of using stochastic methods for modeling an
environment or other complex interactions within the spin
system is not new. For example, the problem of the line shape
in paramagnetic resonance was discussed by the authors of
Ref. [18]. It was assumed that the electrons in an atom were
affected by a perturbation which varies randomly in time at
a rate determined by exchange interactions. As a result, the
fluctuations around the stationary state were induced and their
effect on the absorption spectra could be calculated. Another
example is presented in Ref. [19], where the authors considered
an ensemble of spins interacting with an environment as
well as each other. The problem of calculating the effects
of these complex interactions on the observed line shape is
circumvented by introducing stochastic fluctuations of the
precession frequencies of the observed spins.

The goal of this work is to develop methods to describe
and analyze the process of relaxation of a single spin induced
by contact with an environment. An important result of our
analysis is that, when the spin evolves with memory, it can
be manipulated by applying a sufficiently strong deterministic
magnetic field �B0 to significantly suppress decoherence. We
hope that the level of generality and overall simplicity of
our approach allows for a straightforward application to
appropriate experimental systems.
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The outline of the this paper is as follows. Section II
develops the equations of motion for a spin in the presence of
a deterministic magnetic field and a stochastically fluctuating
magnetic field. Section III describes the evolution of the system
with Gaussian colored noise fluctuations. In that section we
present a simple, intuitive view of the nature of the decay of the
averaged spin due to field fluctuations. We also show that this
decay can be suppressed when the deterministic magnetic field
is strong enough and the correlation time is long enough (i.e.,
when the system has memory). Section IV develops the white
noise limit of colored noise. Section V explains the effects
of memory on decoherence and Sec. VI considers telegraph
noise, which is a specific from of non-Gaussian noise. Finally,
a summary and a conclusion are presented in Sec. VII.

II. SPIN DYNAMICS IN A FLUCTUATING
MAGNETIC FIELD

We consider fluctuations in an otherwise deterministic
system that results from the application of an effective random
field generated by an environment with which it interacts. The
back-coupling of the spin to the source of the noise is not taken
into account (Van Kampen [13] called this external noise).
Hence, the stochastic properties of the noise result only from
the environment which is unaffected by the system. We assume
that these properties can be measured or otherwise deduced.
For each particular system, one should carefully check whether
the back-action can indeed be neglected. Examples of systems
for which back-action was neglected include nitrogen-vacancy
centers in diamond affected by magnetic moments of impurity
spins [12,20], electron spin in a quantum dot affected by
nuclear magnetic moments that fluctuate due to crystal lattice
vibrations [10,21], and magnetic noise in atom chips caused
by fluctuations of electron currents in wires that make up the
atom chip [22].

Consider a particle of spin �S with magnetic moment
�μ = μ�S in the presence of a time-dependent field �B(t). The
dynamics is determined using a Zeeman-type Hamiltonian

H = −�μ · �B(t) = ��(t) · �S, (1)

where �S is the vector of spin operators satisfying commutation
relations [Si,Sj ] = ih̄εijkSk , ��(t) = −μ �B(t)/h̄ is the Rabi
frequency vector, �B(t) is a total magnetic field felt by the
particle, μ = gμ0 is the magnetic moment of the particle, g

is the g factor, and μ0 is the Bohr (or nuclear) magneton.
The magnetic field �B(t) is the sum of a deterministic field �B0,
whose direction defines the z axis, and a fluctuating field �b(t).
Hence, the Rabi frequency is given by

��(t) =

⎛
⎜⎝ 0

0

�0(t)

⎞
⎟⎠+

⎛
⎜⎝ωx(t)

ωy(t)

ωz(t)

⎞
⎟⎠ , (2)

where ��0 = −μ �B0/h̄ and �ω(t) = −μ�b(t)/h̄. For simplicity,
we have taken the deterministic field to have a component
only along the z axis. If the deterministic field varies slowly
in time (adiabatically), our conclusions below remain valid,
but for deterministic fields that vary more quickly, the simple
version of the deterministic part of the evolution matrix that
satisfies Eq. (7) requires revision, as detailed below.

In the Heisenberg representation, the evolution of the spin
operators is given by the equations

d

dt
S

(H )
i (t) = ı

h̄

[
H (t),S(H )

i (t)
]
, (3)

where the superscript (H ) denotes the Heisenberg picture. In
our case, the Hamiltonian contains a stochastic term �ω(t)

H (t) = �0(t)Sz + �ω(t) · �S. (4)

The commutator on the right-hand side of the Heisenberg
equation of motion, Eq. (3), is easy to evaluate, and leads
to the vector form of the equation

d

dt
�S(H )(t) = {�0(t)�ez + �ω(t)} × �S(H )(t), (5)

and the initial condition is simply

�S(H )(0) =

⎛
⎜⎝Sx

Sy

Sz

⎞
⎟⎠. (6)

The solution to Eq. (5) with the initial condition (6) can
be written as a 3 × 3 evolution matrix Û (t,0) acting on
the initial vector �S(H )(0). It is convenient to write the
equations S

(H )
i (t) = ∑3

j=1 Uij (t,0)S(H )
j (0) in vector notation

as �S(H )(t) = Û (t,0)�S(H )(0), where the hat ˆ indicates a 3 × 3
matrix. For convenience, let us take the deterministic field �0

to be constant in time. Substituting into the equations of motion
yields

d

dt
Û (t,0) =

(
�0 ε̂z +

3∑
k=1

ωk(t)ε̂k

)
Û (t,0). (7)

Here the matrix elements of ε̂k are defined as εk
ij ≡ εikj ,

where εikj is the Levi-Civita symbol. The matrices ε̂i satisfy
commutation relations similar to those of angular momentum
operators

[ε̂i ,ε̂j ] = εijkε̂
k. (8)

Consequently, they are generators of rotations in a real, three-
dimensional vector space. For example, ε̂z generates rotations
around the z axis

R̂(θ,z) ≡ exp
{
θ ε̂z

} =

⎛
⎜⎝ cos θ − sin θ 0

sin θ cos θ 0

0 0 1

⎞
⎟⎠. (9)

The evolution operator Û is a rotation operator that causes
the precession of the spin vector around the instantaneous
rotation axis defined by the total field ��(t) = ��0 + �ω(t). The
equation of motion for the spin does not depend upon the
details of the representation of the spin, hence the solution to
the dynamics for an arbitrary spin is also given by Eq. (7). The
only indication of the spin representation, i.e., the dimension
2S + 1 of the representation, is in the initial condition.

Experimental measurements of the spin will, of necessity,
correspond to quantum expectation values and averages over
the stochastic fluctuations of the magnetic field. Hence the

quantity 〈�S(t)〉 corresponds to experimental measurements of
the spin. Here, the symbol 〈 〉 means the quantum average
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and the symbol S means the average over stochastic variables.
Note that the average over fluctuations and the average over the

initial quantum state factorizes in the following way: 〈�S(t)〉 =
Û (t,0)〈�S(0)〉.

For spin 1/2 (i.e., for a TLS), the average expectation value
of the spin �S = h̄�σ/2 fully determines the state of the system.
This is because the density matrix � can be expressed using
the Pauli matrices �σ , which, together with identity operator 1,
form a basis in the space of 2 × 2 Hermitian matrices. In the
Schrödinger representation

�(t) = 1
2 (1 + Tr{�σ (H )(t)�(0)} · �σ ) = 1

2 (1 + 〈�σ (t)〉 · �σ ),

(10)

and the expectation values of the spin at time t is given by
vector parameter �λ(t) ≡ 〈�σ (t)〉. Thus, at any time t , there are
three parameters λi(t), i = x,y,z, which completely specify
the density matrix. This does not mean that the dynamics
of the density matrix for any (2S + 1)-level system can be
represented in terms of the dynamics of a particle with spin
S coupled to a magnetic field since the number of parameters
necessary to specify the density matrix larger than the three
components of the spin [23].

III. GAUSSIAN COLORED NOISE

First, let us consider a process that is Gaussian, isotropic,
and Markovian [13]. The field fluctuates in all three dimensions
with the independent components (isotropy) and statistical
properties of each component completely determined by the
first two moments (Gaussian), the average and the correlation
function. The stationary condition means that the correlation
function depends on the time difference and the average is time
independent. According to Doob’s theorem [24], if the process
is also Markovian, the correlation function is exponential and
the average is zero, i.e.,

ωi(t) = 0, (11)

ωi(t)ωj (t ′) = κ(t − t ′) δij = ω2
0 e− |t−t ′ |

τc δij . (12)

Here the bar indicates the average over the fluctuations,
κ(t − t ′) is the correlation function with correlation time τc, the
average fluctuating Rabi frequency vanishes �ω = 0, and
the variance of the Rabi frequency ω2

0 specifies the strength of
the fluctuations.

Several comments regarding Guassian colored noise are in
order. First, note that the Gaussian process can model a wide
variety of environments due to the central limit theorem; if
the environment consists of many individual and independent
fluctuating elements, the central limit theorem substantiates
the approximation of using a Gaussian process as the effective
field affecting the spin. Second, if there is no back-action of the
spin on the environment and the environment is in a stationary
state (e.g., is in equilibrium) then the process is stationary as
well. Finally, the isotropy assumption regarding the random
magnetic field produced by the environment is appropriate
if no particular special direction can be associated with the
environment.

To solve the equation of motion (7), first we eliminate
the so-called drift term due to the deterministic part of the

magnetic field �0 ε̂zÛ (t,0) from the right-hand side of the
equation by transforming to the rotating frame. Then Eq. (7)
takes the form

d

dt
Û ′(t,0) = [ �ω(t) · �̂ε′(t)]Û ′(t,0). (13)

In this equation we introduced transformed matrices, denoted
by a prime, �̂ε′(t) and Û ′(t,0), which are given by

(ε′)kij (t) ≡
∑
m,n

Rim(t�0,z) εk
mn Rnj (−t�0,z) = Rkl(t�0,z) εl

ij ,

(14)

U ′
ij (t1,t2) ≡

∑
m,n

Rim(t1�0,z) Umn(t1,t2) Rnj (−t2�0,z), (15)

where R̂(t�0,z) = exp{t�0ε̂
z} is a deterministic Euclidean

rotation matrix that results in counterclockwise rotation around
the z axis by the angle �0t [see Eq. (9)]. Note that the scalar
product �ω(t) · �̂ε′(t) in Eq. (13) can be rewritten as

�ω(t) · �̂ε′(t) = [R̂(−t �0,z) �ω(t)] · �̂ε ≡ �ω′(t) · �̂ε. (16)

The time-dependent rotation matrix R̂(t �0,z) “mixes” field
fluctuations in the x and y components. In the Lab frame,
ωx and ωy are independent, however, because of the mixing,
they are correlated in the rotating frame and the correlation
functions are modified in the following way:

ω′
x(t1)ω′

y(t2) = −ω′
y(t1)ω′

x(t2) = κ(t1 − t2) sin[�0(t1 − t2)],

(17)

ω′
x(t1)ω′

x(t2) = ω′
y(t1)ω′

y(t2) = κ(t1 − t2) cos[�0(t1 − t2)],

(18)

ω′
z(t1)ω′

i(t2) = κ(t1 − t2) δ3i . (19)

The stochastic field in the rotating frame �ω′(t) remains a
Gaussian process since it is a linear combination of Gaussian
processes. Note that any time-independent rotation does not
change the correlation functions of the isotropic Gaussian
vector process �ω(t).

The formal solution to Eq. (13) is given in the terms of the
time-ordered exponential function

Û ′(t,0) = T exp

{∑
i

ε̂i

∫ t

0
ω′

i(τ )dτ

}
, (20)

defined by the power series T exp
∫ t

0 Â(τ )dτ ≡ 1̂ +∫ t

0 dτ1Â(τ1) + ∫ t

0 dτ1
∫ τ1

0 dτ2 Â(τ1)Â(τ2) + · · · , where T is
the time-ordering operator [25]. The average value of Û ′,
Û ′(t,0) can be computed by noting that it has the form of a
moment generating functional {MX[ξ (t)]} for matrix processes
X̂i(t) ≡ ω′

i(t)ε̂
i , i = x,y,z, where ξ (t) = [ξx(t),ξy(t),ξz(t)]

is the vector of trial functions [26]. Then, the average
can be “absorbed” inside the exponential function by ex-
pressing MX[ξ (t)] through a cumulant generating functional
{KX[ξ (t)]} in terms of cumulant averages denoted here by
a double bar (see Ref. [27] for a discussion of the cumulant
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PIOTR SZAŃKOWSKI, M. TRIPPENBACH, AND Y. B. BAND PHYSICAL REVIEW E 87, 052112 (2013)

expansion methods used here)

Û ′(t,0) = T exp

{∑
i

ε̂i

∫ t

0
ω′

i(τ )dτ

}

= MX[ξ (t)]| ξ (t) ≡ 1
X̂i ≡ ω′

i ε̂
i

≡ T exp{Kωε̂[1]}

= T exp

⎧⎨
⎩T exp

(∑
i

ε̂i

∫ t

0
ω′

i(τ )dτ

)
− 1̂

⎫⎬
⎭

= T exp

⎧⎨
⎩∑

i,j

ε̂i ε̂j

∫ t

0
dτ1

∫ τ1

0
dτ2 ω′

i(τ1)ω′
j (τ2)

⎫⎬
⎭ .

(21)

In the last step, we took advantage of the fact that all
cumulants beyond the second vanish for Gaussian processes,

and ω′
i(t)ω

′
j (t ′) = ω′

i(t)ω
′
j (t ′) if the average is zero.

Substituting the correlation functions given by Eqs. (17)–
(19), we find the following expression for the cumulant
generating functional K evaluated at ξ (t) ≡ 1:

Kω′ ε̂[1]

= (ε̂z)2
∫ t

0
dτ γ (τ ) + [(ε̂x)2 + (ε̂y)2]

∫ t

0
dτ γ+(τ )

+ (ε̂x ε̂y − ε̂y ε̂x)
∫ t

0
dτ γ−(τ ), (22)

where the rates γ are given by integrals of the correlation
functions:

γ (t) =
∫ t

0
dτ ω′

z(τ )ω′
z(0) =

∫ t

0
dτ κ(τ ), (23)

γ+(t) =
∫ t

0
dτ ω′

x(τ )ω′
x(0)

=
∫ t

0
dτ ω′

y(τ )ω′
y(0)

=
∫ t

0
dτ κ(τ ) cos(�0τ ), (24)

γ−(t) =
∫ t

0
dτ ω′

x(τ )ω′
y(0)

= −
∫ t

0
dτ ω′

y(τ )ω′
x(0)

=
∫ t

0
dτ κ(τ ) sin(�0τ ). (25)

K can be further simplified if we take into account the
properties of the rotation generators ε̂i . From the commutation
relations (8), the commutator in the third term of Eq. (22) is
equal to ε̂z. It is easy to verify that the sum of the squares
of ε̂x and ε̂y in the second term of K can be written as
ε̂x 2 + ε̂y 2 = −(2 1̂ + ε̂2), hence the parts of Eq. (22) commute
with each other. Thus, the average evolution matrix, which is
equal to the exponential of K , factorizes into three parts

Û ′(t,0) = T exp{Kω′ ε̂[1]} = exp

{
ε̂z 2

∫ t

0
dτ γ (τ ) − (21̂ + ε̂z 2)

∫ t

0
dτ γ+(τ ) + ε̂z

∫ t

0
dτ γ−(τ )

}

=

⎛
⎜⎝ e−�(t) 0 0

0 e−�(t) 0

0 0 1

⎞
⎟⎠

︸ ︷︷ ︸
decay caused by

the fluctuations in z

⎛
⎜⎝ e−�+(t) 0 0

0 e−�+(t) 0

0 0 e−2�+(t)

⎞
⎟⎠

︸ ︷︷ ︸
decay caused by

the fluctuations in xy plane

⎛
⎜⎝ cos �−(t) − sin �−(t) 0

sin �−(t) cos �−(t) 0

0 0 1

⎞
⎟⎠

︸ ︷︷ ︸
precession frequency modification

due to fluctuations in xy plane

, (26)

where

�+(t) =
∫ t

0
dτ γ+(τ ) =

(
ω2

0τ
2
c

1 + �2
0τ

2
c

)[
t

τc

+
(

1 − �2
0τ

2
c

1 + �2
0τ

2
c

)(
e− t

τc cos �0t − 1
)−

(
2�0τc

1 + �2
0τ

2
c

)
e− t

τc sin �0t

]
, (27)

�−(t) =
∫ t

0
dτ γ−(τ ) =

(
ω2

0τ
2
c

1 + �2
0τ

2
c

)[
�0t +

(
1 − �2

0τ
2
c

1 + �2
0τ

2
c

)
e− t

τc sin �0t +
(

2�0τc

1 + �2
0τ

2
c

)(
e− t

τc cos �0t − 1
)]

, (28)

�(t) =
∫ t

0
dτ γ (τ ) = ω2

0τc[t − τc(1 − e−t/τc )]. (29)

The first term on the right-hand side of Eq. (26) describes
the decay caused by the fluctuations in the direction parallel to
the applied field ��0 = �0êz. These fluctuations affect only the
spin components perpendicular to the z axis, and the decay rate
�(t) does not depend on the intensity of the constant field. The

second term originates from the fluctuations in the xy plane,
which is perpendicular to the applied field. The fluctuations in
the plane couple to all the components of the spin and cause
their decay. The key feature is that the rate of decay due to
these fluctuations is dependent on �0. Finally, the third term,
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0.2

0.4

0.6

0.8

1.0

t τc

σ
i
t

σ
i
0

FIG. 1. The expectation value of the spin 〈�S(t)〉, subject to
Gaussian colored noise, versus time for �0 = 0 and ω0τc = 1. The

analytic formula for 〈�S(t)〉 is given in Eq. (33).

also related to the fluctuations in the xy plane, describes the
modification of the precession frequency of the system caused
by the noise.

The averaged expectation values of the spin are given by

〈Sx(t)〉 = e−[�(t)+�+(t)]{cos[�0t + �−(t)]〈Sx〉
− sin[�0t + �−(t)]〈Sy〉}, (30)

〈Sy(t)〉 = e−[�(t)+�+(t)]{sin[�0t + �−(t)]〈Sx〉
+ cos[�0t + �−(t)]〈Sy〉}, (31)

〈Sz(t)〉 = e−2�+(t)〈Sz〉. (32)

In the limit �0 → 0, we obtain �+(t) → �(t) and �−(t) → 0,
hence Eqs. (30) to (32) reduce to

〈�S(t)〉 −−−→
�0→0

e−2�(t)〈�S〉. (33)

Substituting Eq. (29) into Eq. (33) yields the analytic form
(33) of the isotropic decay of the average spin, regardless
of the initial state of the spin, as can be seen in Fig. 1. For
times t � τc, the decay is simply exponential with the rate
of decay given by �(t) ≈ ω2

0τct . For times t 
 τc, the rate of
decay is �(t) ≈ ω2

0t
2/2. In the absence of an external field, the

fluctuations in all three directions remain independent and the
average evolution matrix decomposes in the following way:

Û (t,0)|�0=0 =

⎛
⎜⎝ e−�(t) 0 0

0 e−�(t) 0

0 0 1

⎞
⎟⎠

︸ ︷︷ ︸
fluctuations in z

⎛
⎜⎝ e−�(t) 0 0

0 1 0

0 0 e−�(t)

⎞
⎟⎠

︸ ︷︷ ︸
fluctuations in y

×

⎛
⎜⎝1 0 0

0 e−�(t) 0

0 0 e−�(t)

⎞
⎟⎠

︸ ︷︷ ︸
fluctuations in x

. (34)

Here the first part comes from fluctuations in z and causes
the decay of the x and y components of the spin, the second
part comes from fluctuations in y and causes the decay of the
perpendicular components, and the third part originates from
fluctuations in the x direction causing the decay of the y and
z components of the spin.

0 1 2 3 4 50.0

0.2

0.4

0.6

0.8

1.0

t τc

σ
z
t

σ
z
0

10
2.5
0.5
0τc

FIG. 2. (Color online) 〈Sz(t)〉 subject to Gaussian colored noise
versus time for nonvanishing constant �0 (see legend) and ω0τc = 1.
Equation (32) gives the analytic formula for 〈Sz(t)〉.

Now let us consider finite �0. The dependence of 〈Sz(t)〉,
the component parallel to the external field ��0, versus time for
three values of dimensional parameter �0τc is plotted in Fig. 2.
As we discussed previously, the z component of the average
spin decays due to fluctuations in the xy plane, which are
affected by the presence of the constant field. For �0τc 
 1,
the quantity 〈Sz(t)〉 is clearly very similar to the results plotted
in Fig. 1 since �+(t) → �(t). As �0τc increases, the decay of
〈Sz(t)〉 is significantly slowed, and �+(t) → 0 in the limit of
�0τc → ∞, i.e., the decay is fully suppressed.

Figure 3 plots 〈Sx(t)〉 versus time for the case when
〈Sy(0)〉 = 0 and Fig. 4 presents the time dependence of the

length of the vector 〈�S⊥(t)〉 = (〈Sx(t)〉,〈Sy(t)〉,0). The decay
of the components of the average spin perpendicular to the
constant field ��0 is not only induced by the fluctuations in the
xy plane, but also by those in the z direction [see Eq. (26)].
We have previously seen that the effects of the fluctuations
in x and y are inhibited if �0τc is large enough. However,
the influence of the fluctuations in the direction parallel to the
applied field is unperturbed by the presence of �0. As long as
the z component of the field is fluctuating, the perpendicular
component of the average spin will decay to zero for any value
of �0τc as t/τc → ∞. For small �0τc the decay is, again,
similar to the isotropic case shown in Fig. 2, but when �0τc

0 1 2 3 4 51.0

0.5

0.0

0.5

1.0

t τc

σ
x
t

σ
x
0

10
2.5
0.5
0τc

FIG. 3. (Color online) The average value 〈Sx〉, when the spin is
subject to Gaussian colored noise for nonvanishing constant �0 (see
legend) and ω0τc = 1. Equation (30) together with initial condition
〈Sy(0)〉 = 0 yield the analytic formula for the function plotted. The
average value 〈Sy〉 for initial condition 〈Sx(0)〉 = 0 is identical to the
results shown here.
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FIG. 4. (Color online) Average value of |〈S⊥(t)〉| =√
〈Sx(t)〉2 + 〈Sy(t)〉2 subject to Gaussian colored noise for

nonvanishing constant �0 (see legend) and ω0τc = 1. Equations (30)
and (31) yield the analytic formula for the function plotted.

increases, the decay is modulated by oscillations which result
from the precession of the spin about the external field ��0

with the frequency modified by the fluctuations. For t � τc,

the oscillation frequency is given by �0(1 + ω2
0τ

2
c

1+�2
0τ

2
c

) [see

Eq. (28)]. When �0τc � 1 the frequency of precession tends
to �0 as the frequency modification due to fluctuations �−(t)
vanishes, in a similar manner as that of �+(t).

For the spin 1/2 system (a TLS), the decay of 〈Sx(t)〉 and
〈Sy(t)〉 correspond to the decay of the coherence of the system,
whereas the decay of 〈Sz(t)〉 corresponds to the vanishing of
population imbalance. If the constant field is taken along x

(as opposed to along z), the decay of 〈Sx(t)〉 is suppressed,
and the decoherence time T2 ∼ τc�

2
0/ω

2
0, which can be made

arbitrarily large (suppressed decay) by increasing �0.

The averaged spin vector solution obtained in this section
can be extended to the case of a time-dependent deterministic
field. If �0 is a function of time then the frequency of
oscillations in the cos and sin functions appearing in the
definitions of the decay rates (24) and (25) are to be replaced
by an integral �0t → ∫ t

0 �0(t ′)dt ′.

IV. WHITE NOISE LIMIT

The white noise limit of colored noise involves going to
the regime of extremely rapid fluctuations of the field, i.e.,
vanishing correlation time τc. Unfortunately, simply taking
τc → 0 does not yield the correct limit. If we put τc = 0 in
Eq. (29), we obtain that the decay rate of the average spin
equals zero, and the fluctuations do not affect the evolution of
the spin. The proper limit can be obtained if the strength of
fluctuations, as given by the variance of the field ω(t)2 = ω2

0,
is increased as the correlation time τc goes to zero, so that
ω2

0τc remains constant. Thus, we arrive at the limit when the
correlation function of the colored noise becomes proportional
to a Dirac delta function

ωi(t)ωj (t ′) = ω2
0 e− |t−t ′ |

τc δij

= 2ω2
0τc

(
1

2τc

e− |t−t ′ |
τc

)
δij

ω2
0τc→D−−−−→
τc→0

2Dδ(t − t ′)δij .

(35)

In the limit of κ(τ ) → 2Dδ(τ ) the decay rates �+(t) = �(t) =
2Dt and �−(t) = 0. The decay of the expectation value of the
spins are then isotropic and are not affected by the presence of
a constant field ��0, i.e.,

〈�S(t)〉 =

⎛
⎜⎝ e−�(t)−�+(t) cos �−(t) −e−�(t)−�+(t) sin �−(t) 0

e−�(t)−�+(t) sin �−(t) e−�(t)−�+(t) cos �−(t) 0

0 0 e−2�+(t)

⎞
⎟⎠ R̂(�0t,z)〈�S〉 → e−4Dt R̂(�0t,z) 〈�S〉. (36)

Thus, the spin decay is isotropic, purely exponential with
decay rate 4D, and is independent of �0. Moreover, the
precession due to ��0 is unaffected by the fluctuations. In the
white noise limit, the precession due to the deterministic part
of the field and the decoherence due to field fluctuations are
completely decoupled.

V. MEMORY EFFECTS

In the expression for 〈�S(t)〉 for the case of Gaussian colored
noise, the decay rates of the spin depend on the history
of the fluctuating field through the integrals of correlation
functions. But the decay rate for the white noise case does
not depend on history. Based on this observation, we say
that spin system has memory if the fluctuating field driving
it has a finite correlation time. This definition is consistent
with a rigorous notion of memory since �S(t), understood as a
stochastic process, is Markovian [13] (i.e., memoryless) if and
only if the noise driving it is white noise. The memory in the

system has important consequences because it allows control
of spin decay, through the application of an external field.

The role of memory can be understood as follows. Consider
first the case of �0 = 0. Each realization of the fluctuating
field �ω(t) determines the corresponding realization of 〈�S(t)〉 =
Û (t,0)〈�S〉 via the equation of motion, where �ω(t) defines an
instantaneous rotation axis for the spin vector. Hence, each
realization draws a trajectory of the spin on a sphere of
radius |〈 �S〉|. The evolution can be viewed in a simplified
“stroboscopic” picture in which, within a correlation time
τc, the axis �ω(t) does not change much, and subsequently,
it jumps to a new random value within a range on the order of
ω0. Eventually such a sequence of rotations around randomly
selected axes “smears” the trajectories of the spin over the
whole sphere. This results in the decay of the spin averaged
over all realizations.

The situation is different when a constant field along, say,
the z axis is present. This becomes clear when we view the
evolution in the reference frame rotating with frequency �0
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around the z axis. Consider a particular realization of the
fluctuating field �ω(t), and denote it in the rotating frame as
�ω′(t). Since ω′

z(t) = ωz(t), the fluctuations in the direction
parallel to the constant field are unchanged when shifted
to the rotating frame. On the other hand, the projection
of the fluctuating field on the plane perpendicular to the z

axis, �ω⊥(t) = [ωx(t),ωy(t),0], is modified when viewed in the
rotating frame. Within a time of order the correlation time τc,
the projection �ω′

⊥(t) revolves around the z axis with frequency
�0, and if �0τc � 1, �ω′

⊥(t) is able to perform many revolutions
between jumps. The effect of the jumps becomes negligible in
comparison with the systematic rotation. Thus the stochastic
character of �ω′

⊥(t) is lost, and the only contribution to the decay
caused by fluctuations comes from ωz(t). A similar effect
provides stable motion of a spinning top, and for that reason
we will refer to it as a gyroscopic effect. If �0τc 
 1, then the
revolution in between jumps is negligible, so �ω′

⊥(t) ≈ �ω⊥(t),
and by necessity the decay induced by the fluctuations must
be almost the same as if there was no constant field at all.

The suppression mechanism of the decay described above
is inoperative in the white noise limit where the correlation
time vanishes, so the fluctuations of the rotation axis are
instantaneous. Hence, the decay caused by white noise cannot
be affected by a constant field of finite intensity. Moreover,
even if the strength of the fluctuations is small in comparison
to �0, the effect of fluctuations cannot be neglected if the
correlation time is too short.

Note that the important dimensionless parameter here
is �0τc, which can be interpreted as an average angle of
precession due to the deterministic field within the time period
of τc. Bearing this in mind, it is clear that the conclusion
of this paragraph remains valid even if the field �0 varies
in time as long as τc〈�0(t)〉τc

≡ τc( 1
τc

∫ t+τc

t
�0(t ′)dt ′) � 1.

Moreover, the reasoning used above shows that the same
decay suppression effects apply even for non-Gaussian noise
as long as it has nonvanishing correlation time. We verify this
assessment in the following section.

VI. NON-GAUSSIAN PROCESS: TELEGRAPH NOISE

In this section we present an example of a non-Gaussian
process, telegraph noise, i.e., dichotomic noise corresponding
to a memoryless continuous-time stochastic process that jumps
between two distinct values, sometimes called burst noise
[13,28]. We consider telegraph noise in one component of the
field ωz(t). The Rabi frequency of the fluctuating field ωz(t)
jumps randomly between +ω0 and −ω0, with a jump rate
w = (2τc)−1. The average value and the correlation function
of such a process is given by

ωz(t) = 0, ωz(t)ωz(t ′) = ω2
0e

−2w|t−t ′ | = ω2
0 e− |t−t ′ |

τc . (37)

Because telegraph noise is non-Gaussian, the correlation func-

tion κ(t − t ′) = ω2
0e

− |t−t ′ |
τc does not contain all the information

regarding the process.
Telegraph noise can model the effect of a spin 1/2 impurity

atom near the spin [2,3,5]. The impurity spin has probabilities
p+ and p− for being in the spin-up and spin-down states, and
a hopping rate for transferring from one spin state to the other.

Neglecting the back-action of the magnetic moment on the
impurity, this model reduces to telegraph noise.

Our goal is to find the average evolution matrix Û (t,0)
for the telegraph noise case. The technique we have used
previously to find the average does not work in the case
of telegraph noise because, unlike with Gaussian processes,
the closed form of the cumulant generating functional is
not known. Fortunately, it is still possible to find an exact,

analytical formula for Û (t,0) if the fluctuations are parallel to

the constant field. One way of solving for Û (t,0) is to follow
Ref. [29]. We can write the average evolution operator as

Û (t,0) = Û (t,0)+ + Û (t,0)−, where Û (t,0)± are the averages
conditional on ωz(t) being equal to ±ω0. These averages vary
in time because of equation of motion (7) and because ωz(t)
jumps. Thus

d

dt
Û (t,0)+ = (�0 + ω0)ε̂zÛ (t,0)+

− 1

2τc

Û (t,0)+ + 1

2τc

Û (t,0)−, (38)

d

dt
Û (t,0)− = (�0 − ω0)ε̂zÛ (t,0)−

− 1

2τc

Û (t,0)− + 1

2τc

Û (t,0)+. (39)

Adding and subtracting these equations, we obtain
d

dt
Û (t,0) = �0ε̂

zÛ (t,0) + ω0ε̂
z�Û (t,0), (40)

d

dt
�Û (t,0) = �0ε̂

z�Û (t,0) + ω0ε̂
zÛ (t,0) − 1

τc

�Û (t,0),

(41)

where �Û (t,0) = Û (t,0)+ − Û (t,0)−. The next step is to

eliminate �Û (t,0) from Eq. (40) by substituting the solution

to Eq. (41), with the initial condition Û (0,0)± = 1̂/2. This
yields a closed equation for the average evolution matrix

d

dt
Û (t,0) = �0ε̂

zÛ (t,0)

+ω2
0

∫ t

0
dt ′ e−t ′/τc (ε̂z)2Û (t − t ′,0). (42)

Note the particular form of the “memory integral” in Eq. (42),
where the dynamical variable is evaluated at times previous to
t . In this case the system clearly has memory and it remembers
not only the history of the noise but also its own history. It is
easy to check that the solution to this equation that satisfies

the initial condition Û (0,0) = 1̂ is given by

Û (t,0)

= e−t/2τc

[
cosh

(
γ̂

t

2τc

)
+ γ̂ −1 sinh

(
γ̂

t

2τc

)]
R̂(�0t,z),

(43)

where

γ̂ =

⎛
⎜⎜⎝
√

1 − 4ω2
0τ

2
c 0 0

0
√

1 − 4ω2
0τ

2
c 0

0 0 1

⎞
⎟⎟⎠ . (44)
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The average expectation values of the spin are obtained by
applying the average evolution matrix (43) to the initial vector

of spin operators 〈 �S(t)〉 = Û (t,0)〈�S(0)〉, and this yields

〈Sx(t)〉 = e− t
2τc

⎡
⎣ cosh

(√
1 − 4ω2

0τ
2
c

t

2τc

)

+
sinh

(√
1 − 4ω2

0τ
2
c

t
2τc

)
√

1 − 4ω2
0τ

2
c

⎤
⎦

× [cos(�0t)〈Sx〉 − sin(�0t)〈Sy〉], (45)

〈Sy(t)〉 = e− t
2τc

⎡
⎣ cosh

(√
1 − 4ω2

0τ
2
c

t

2τc

)

+
sinh

(√
1 − 4ω2

0τ
2
c

t
2τc

)
√

1 − 4ω2
0τ

2
c

⎤
⎦

× [cos(�0t)〈Sy〉 + sin(�0t)〈Sx〉], (46)

〈Sz(t)〉 = 〈Sz〉. (47)

Neither constant field �0, nor field fluctuations ωz(t) couple
to the z component of the spin, hence it remains constant
throughout the evolution. The effects of �0 and ωz(t) on the
components of the spin in the xy plane are simply superposed:
A constant field causes trivial precession around the z axis,
while the noise makes the x and y spin components decay
on average. Moreover, if the constant field and the fluctuating
field are parallel, the gyroscopic effect cannot be observed.
The only memory effect present in this case is a quadratic
behavior in t of the decay rate at t 
 τc. Figure 5 plots 〈Sx(t)〉
versus time for telegraph noise in ωz(t) for the case of no static
external magnetic present. As ω0τc increases, 〈Sx(t)〉 decays
more quickly, but for ω0τc > 1/2, the square root

√
1 − 4ω2

0τ
2
c

becomes imaginary and the solution changes form from pure
decay to decay with oscillations.

It is of interest to see what happens when noise is present
in the component of the field perpendicular to the constant
field �0, e.g., in ωx(t). Unfortunately, in this case, it is not
possible to obtain a closed form expression for the average
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FIG. 5. (Color online) 〈Sx(t)〉 versus time for a spin subject to
telegraph noise in only the z component of the field ωz(t) and �0 = 0.
〈Sy(t)〉 is identical to 〈Sx(t)〉. Nonvanishing values of �0 simply cause
precession of the spin about the z axis.
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FIG. 6. (Color online) 〈Sz(t)〉 versus time for a spin subject to
telegraph noise only in the x direction, with ω0τc = 1. The determin-
istic magnetic field with Rabi frequency �0 is taken to be in the z

direction, so it is perpendicular to the noise. As the parameter �0τc is
increased (see legend), suppression of the decay of the spin increases.

evolution matrix. According to the previous discussion, one
would expect that, since telegraph noise is colored noise (the
correlation time τc is finite), the gyroscopic effect should work
in a fashion similar to the Gaussian colored noise example.
This is indeed the case. Numerical solutions of 〈Sz(t)〉 versus
time are plotted in Fig. 6 and the suppression of the decay is
more efficient with increasing �0τc.

VII. SUMMARY AND CONCLUSION

We introduced a stochastic model for spin in the presence
of a deterministic magnetic field and a fluctuating magnetic
field (noise), and we derived stochastic equations of motion
for the spin vector 〈�S(t)〉. The environmental degrees of
freedom, represented by the fluctuations of the field, are
eliminated by taking the average over the fluctuations to obtain

〈�S(t)〉. We made the external noise assumption, wherein no
back-action of the system on the environment is present.
The most pronounced consequence of this assumption is
that the system does not go into equilibrium with a thermal
environment, but instead goes to the most democratic density
matrix, i.e., the system tends towards the completely mixed

state, and 〈 �S(t)〉 → 0 as t → ∞. This is in contradistinction
to the case of noise experienced by a system in contact
with a bath wherein the bath affects the system and vice
versa. The lack of mutual interaction (back-action) means that
the fluctuation-dissipation theorem [30] cannot be applied,
and a thermal equilibrium state of the system is not obtained
at large times. If back-action on the bath due to the system
is present, the source of the fluctuations and the dissipation is
the same, they are connected through fluctuation-dissipation
theorem, and thermal equilibrium of the system must result.

We explicitly considered Gaussian colored noise, Gaussian
white noise, and non-Guassian telegraph noise. From our
studies we conclude that if the system has memory, i.e., it has
a finite correlation time, then the system can be manipulated
by means of an external magnetic field and the decoherence
induced by the fluctuations can be significantly suppressed.
However, in the white noise limit, when the correlation
function tends to a Dirac delta function, the decoherence
cannot be controlled in this way. We introduced simple and
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intuitive considerations for why the suppression of decay can
be achieved for any stochastic process as long as the correlation
time is long enough.
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