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Temperature gradient and Fourier’s law in gradient-mass harmonic systems
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The heat flow and thermal profile in a one-dimensional (1D) harmonic lattice with coordinate-dependent
masses have been calculated in the thermodynamic limit. It is shown in the particular example of a 1D harmonic
lattice with linearly increasing masses that in standard Langevin conditions of contact, a temperature gradient
can form, and Fourier’s law can be obeyed.
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I. INTRODUCTION

Raising the efficiency of heat dissipation in nanodimen-
sional systems is presently a major problem whose solution
will define the potential for further miniaturization of elec-
tronic devices. This problem is complicated by the emergence
of a host of effects which are specific to heat transport in
nanodimensional systems. To cite an example, heat transport
is affected noticeably not only by the heat resistance at
interfaces, which plays a dominant part in heat transport in
nanostructures [1], but also by variations of the pattern of
the heat transport itself [2,3], when the phonon mean free
path becomes comparable with the sample size. This results
in the heat transport becoming anomalous: more specifically,
the Fourier law no longer holds; in other words, the heat flux
through the system becomes dependent now not on the gradient
but on the temperature difference, a phenomenon which has
recently been demonstrated experimentally in nanotubes [4,5].

The pursuit of this goal has been a major motivation for
studying not only methods that could reduce the heat resistance
at interfaces, with recent progress in this direction being
reported in Ref. [6], but ways that could lead to development of
thermal rectifiers, i.e., to the possibility of varying the modulus
of the heat flux by changing the sign of the temperature
difference applied to the system [7]. Considerations of a
general nature seem to lead to an obvious assumption that
in order to observe such a “heat rectification effect,” one
should produce asymmetry in a system. A theoretical analysis
[8,9] and an experimental study of a nonuniformly mass-
loaded nanotube [10] have demonstrated that one-dimensional
structures with increasing masses are possible candidates for
realization of the effect.

Obviously enough, development of such gradient-mass
structures is technologically anything but a simple problem
[11], and we are witnessing presently only the beginning of
this process, with the effect of heat rectification not yet realized
in full measure. This is why a search for its realization is
being pursued along more than one direction. It has been
proposed [12] to use filaments of doped silicon. In place
of a spatially varying mass, the idea was also advanced of
subjecting a nanotube to nonuniform tension [13], which is
obviously equivalent to variation of mass [14,15]. One could
apparently employ for this purpose nanodiamond-decorated

*Reich@mail.ioffe.ru

carbon nanotubes [16]. The possibility is also being discussed
of using asymmetric graphene and silicon structures [17,18].

It appears a plausible assumption that, similar to the p-n
junction which has become a basis of electronics, development
of gradient-mass materials will form a foundation for progress
in a new domain—phononics [19]. As a weighty argument for
this conclusion there are proposals for a number of nanodevices
based on such materials, to wit, heat diodes [20,21], heat
transistors [22], heat logical elements [23], memory devices
[24], and heat limiters [25].

The above illustrates an increasing interest in studies of
the thermal properties of gradient-mass systems. Numerous
attempts are being undertaken to investigate such materials
by both numerical [8,12,26,27] and analytical methods [9,28].
Many theoretical aspects remain, open, however, even without
inclusion of anharmonic effects into consideration. To cite an
example, it was shown numerically that a temperature gradient
forms in systems with linearly [13] or exponentially [29]
varying masses, even in a harmonic case. This phenomenon
is surprising in itself. Indeed, despite numerous attempts, a
rigorous analytical microscopic foundation of Fourier’s law is
still lacking [30,31]. Only for several systems has one managed
to obtain an analytical result, more specifically, systems with
identical [32], alternating [33–36], or random masses [37–39].
It should be stressed, however, that in neither of these cases
does the Fourier law hold and a temperature gradient does
not form. The temperature profile is linear and Fourier’s law
holds only in effective models such as harmonic chains with
self-consistent stochastic reservoirs at each site [34,40,41].

We are going to show below that gradient-mass systems
possess truly unique properties; indeed, by now these are
the only systems in which one can obtain a temperature
gradient analytically and make the Fourier law hold with-
out self-consistent stochastic reservoirs. Significantly, such
functionally graded materials, i.e., nonuniform gradient-mass
systems, can be met in nature [42]. Note that the optical
properties of systems with graded dielectric permittivity match
those of gradient-mass systems [43,44]. And it is these systems
that are attracting great current interest [45,46] as effective
media for application of the Faraday effect [47].

II. MODEL

Consider a one-dimensional chain of N + 1 particles which
interact harmonically with their nearest neighbors with a spring
constant K . The momentum and displacement n of a particle
of mass mn will be denoted by pn and xn, respectively. The
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FIG. 1. (Color online) Schematic of a harmonic system with
coordinate-dependent masses.

Hamiltonian of this system (Fig. 1) can be written in the form

H =
N∑

n=0

(
p2

n

2mn

+ 1

2
K(xn+1 − xn)2

)
. (1)

The equations of motion for such a system become

xn cos βn = 1
2 (xn+1 + xn−1), (2)

where cos βn = (1 − ω2mn/2K).
In the thermodynamic limit the solution of this system of

equations can be obtained in analytical form. To do this, we
use Fourier’s method by writing xn in the form

xn =
∫ k2

k1

f (k) exp(ikn)dk. (3)

We choose the limits of integration k1 and k2 such that the
function f (k) and all its derivatives tend to zero at these points.
In this case we come to the equality

(−in)pxn =
∫ k2

k1

dpf (k)

dkp
exp(ikn)dk.

We further assume that the mass mn and βn are functions
of n/N . Now the function cos β(n/N ) can be expanded in a
Taylor series with respect to the variable n/N , with Eqs. (2)
converting into a differential equation for the function f :

cos β

(
i

1

N

d

dk

)
f = f cos(k). (4)

Only in rare cases, such as a linear dependence of the particle
masses on the index,

mn = M0 + M1 − M0

N
n, (5)

does this differential equation allow an exact solution.
Because we are going to revert to this case more than once,

we note that Eqs. (2) are solved in terms of Hankel functions:
xn = H

(1)
n+�n(z), H

(2)
n+�n(z), where �n = z cos β(0), z =

N/[cos β(1) − cos β(0)]. This can be verified by direct sub-
stitution using the recurrence relation 2n/zZn(z) = Zn+1(z) +
Zn−1(z), Zn(z) = H (1)

n (z), H (2)
n (z) [48].

In the general case, we are interested in the solution in the
thermodynamic limit. We are going to look for the solution to
Eq. (4) subject to the condition N → ∞ in the form

f (k) = ϕ(k)eig(k)N .

In this case we come to the following relations for g and ϕ:

g = −
∫ k

β−1(z)dz, (6)

ϕ(β(k)) = exp

[
−
∫ k dx

M ′(x)

(
M(x) − M(0)

x

)′]
, (7)

where β−1 is a function inverse to β. Note that ϕ does not
depend on frequency.

Next we choose the path of integration in Eq. (3) such that it
will descend most steeply from the saddle point. Substituting
the expressions for g and ϕ, we come in the limit that N → ∞
to a particular solution to Eqs. (2):

yn = 1√
sin β(a)

φ(a)eibβ(a)eiN
∫ a

0 β(x)dx, (8)

where n is taken in the form n = aN + b, and φ(k) =
ϕ(β(k))

√|M ′(k)|.
We finally come to the general solution of Eqs. (2) in the

form xn = Ayn + By∗
n .

III. FLUX AND THE TEMPERATURE PROFILE

Using the standard nonequilibrium Green’s function
method [12,30,49] and assuming the temperature on the left to
be TL = T + 1/2�T and that on the right, TR = T − 1/2�T ,
with �T,ωn � T , we can obtain both the heat flux J in the
system, and the temperature profile Tn:

J = γ

mN

�T IN,

(9)

Tn = T + 1

2
�T (In − Īn),

where the quantities

In = mnγ

π

∫ ∞

−∞
dωω2|G0n|2,

(10)

Īn = mnγ

π

∫ ∞

−∞
dωω2|GnN |2

are expressed in terms of the Green’s function:

G(ω) = [K − Mω2 − 	L(ω) − 	R(ω)]−1

with M being a diagonal matrix with elements corresponding
to the particle masses, and K the dynamical matrix for the
system. The function 	(ω) specifies the conditions of contact
of the system under consideration with heat reservoirs. For
the standard (Langevin) contact, 	L(ω) = iωγ δi,0δj,0 and
	R(ω) = iωγ δi,Nδj,N , where γ is the dissipation constant.
After a few straightforward transformations similar to those
made in Ref. [50], we come to

G0,k = |Dk+1,N − 	Dk+1,N−1|2
|D0,N − 	(ω)(D1,N + D0,N−1) + 	(ω)2D1,N−1|2 ,

(11)

where Dl,m is defined to be the determinant of the submatrix of
K − ω2M beginning with the lth row and column and ending
with the mth row and column. This determinant can be readily
derived, because we know the general solution for Eqs. (2):

Dlm = Im yl−1y
∗
m+1

Im yl−1y
∗
l

. (12)

The solution of the equation D0N = 0 with respect to
the frequencies ω yields the dependence of the wave vec-
tor k on the frequency of vibrations in the system under
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phonons

gradons

FIG. 2. (Color online) Dispersion relation of the vibration energy
in a harmonic chain with linearly increasing masses (5) plotted vs
the wave vector for different relations between the boundary masses
ω0,1 = √

2K/M0,1. For energies ω <
√

2ω0, the system operates with
delocalized phonons, and for

√
2ω0 < ω <

√
2ω1, with localized

gradons.

consideration, k(ω):

Re
∫ 1

0
β(x)dx = k(ω). (13)

In particular, for the case of linear mass distribution (5) we
come to

k(ω) = Re
f (β(0)) − f (β(1))

�cos
,

where f (β) = (sin β − β cos β). This dispersion relation is
displayed in Fig. 2. This result correlates with those of
numerical simulations [51].

As seen from Fig. 2, in systems with linearly increasing
masses one can identify two kinds of vibrations, more specifi-
cally, delocalized phonons with frequencies ω <

√
2ω0 and

localized “gradons” with frequencies
√

2ω0 < ω <
√

2ω1,
ω0,1 = √

2K/M0,1.
In the general case, there exist also phonons with frequen-

cies ω <
√

2ωmin and gradons with frequencies ω >
√

2ωmin,
with ωmin being determined by the maximum mass in the
system. Incidentally, for gradons β becomes imaginary, with
the determinant starting to grow exponentially. As a result,
frequencies ω >

√
2ωmin do not contribute to the integrals in

Eqs. (10).
Standard methods of averaging [33] permit reducing the

integrands in Eq. (10) in the N → ∞ limit to the forms

|G0N |2 =
(

φ(0)

φ(1)

)2 sin β(0) sin β(1)

γω(1 + γ 2ω2)[sin β(0) + sin β(1)]
,

|G0n|2 = 1

2γω

(
φ(0)

φ(x)

)2 sin β(0)

[sin β(0) + sin β(1)] sin β(a)
, (14)

|GnN |2 = 1

2γω

(
φ(x)

φ(1)

)2 sin β(1)

[sin β(0) + sin β(1)] sin β(a)
,

where n is used in the form n = aN . To preclude misun-
derstanding, we note that these relations do not go one into
another at a = 1 and a = 0, because N → ∞ is a nonuniform
limit.

Putting relations (14) into (9), we come to a general answer
for the heat flux and temperature profile in a system with

an arbitrary mass distribution. While these integrals cannot
be performed in the general case, they permit a number of
conclusions.

To begin with, it turns out that a flow in a system depends
only on the boundary masses and the maximum mass in the
chain (which specifies the minimum frequency). We readily
see that if the masses are constant, we come to the standard
answer for the heat flow [32]. In the reverse approximation,
when M1 � M0, we obtain

J = 2
√

2�T

πω0γ 2

(
φ(0)

φ(1)

)2

[
√

2ωminγ − arctan(
√

2ωminγ )].

Up to this point, we assumed that the boundary masses do
not depend on N . We can include this dependence in the case
of linearly increasing masses. Setting M1 ∼ M0N

s , the heat
flux will acquire the form

J = 8�T

3π
ω2

0γ
1

N3s/2
.

It is easy to verify the correctness of the assumptions we have
made here, because we know the exact solution for the linear
case.

As follows from the expression for the flux J , for a constant
gradient s = 1 the system behaves as a thermal insulator, J ∼
N−3/2, and for s = 0 the flux does not depend on system size.
In the intermediate case of s = 2/3, the system conforms to
Fourier’s law J ∼ N−1. Note that the dependence of heat flux
on the size of a harmonic system is specified by the boundary
conditions [6,50], and it is possible to select them such that
Fourier’s law in the system will be obeyed. In the s = 2/3
case we selected the system itself appropriately while leaving
unchanged the standard boundary conditions. Thus a system
with linearly increasing masses can be adjusted such that it
will conform to Fourier’s law.

Let us turn now to the temperature profile. First, as seen
from the relations (14), if the masses are not constant within
the chain, the temperature at the points at which M ′(a) = 0
should rise strongly.

Second, it can be shown that in the case of constant masses
the thermal profile within the system T (a) = T is constant,
a point well enough known. In the reverse approximation, in
the case of linearly increasing masses, when M1 � M0, we
come to

Ta = T − 1

π
�T arcsin(

√
a).

We see immediately that the temperature in the system is
determined by the more massive end. Now at the center of the
system under consideration a temperature gradient −�T/π

will appear.
This conclusion correlates well with available numerical

simulations [26]. A temperature gradient is built up in the
graded harmonic chain, but Fourier’s law does not hold
because the mass difference does not grow with the system
size N , as happens in the present work.

In conclusion, we have presented a solution to the system
of linear equations (2) describing systems of functional-
gradient materials. In particular, we analyzed the problem of
a nonequilibrium steady state of a harmonic variable-mass
system connected with heat reservoirs which are maintained
at different temperatures.
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We have shown that in the particular case of linearly
increasing masses the heat flux depends on system size, J ∼
1/N3s/2, with the exponent in this relation being determined by
the law governing the increase of the boundary mass, M ∼ Ns .
This result finds ready explanation when we turn to Fig. 2.
The systems under consideration maintain vibrations of two
types, delocalized phonons which transport heat ballistically
and localized gradons. By properly varying the boundary mass
as a function of N , we modulate in this way the number of
phonons, to arrive finally at the dependence of the heat flux
J on the system size N . A similar effect accounts for the
appearance of a thermal gradient in a system with linearly
increasing masses. We have demonstrated in the particular

example of a system with linearly increasing masses that a
harmonic system can both sustain formation of a temperature
gradient and conform to Fourier’s law.
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