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Scaling laws in critical random Boolean networks with general in- and out-degree distributions
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We evaluate analytically and numerically the size of the frozen core and various scaling laws for critical
Boolean networks that have a power-law in- and/or out-degree distribution. To this purpose, we generalize an
efficient method that has previously been used for conventional random Boolean networks and for networks
with power-law in-degree distributions. With this generalization, we can also deal with power-law out-degree
distributions. When the power-law exponent is between 2 and 3, the second moment of the distribution diverges
with network size, and the scaling exponent of the nonfrozen nodes depends on the degree distribution exponent.
Furthermore, the exponent depends also on the dependence of the cutoff of the degree distribution on the system
size. Altogether, we obtain an impressive number of different scaling laws depending on the type of cutoff as
well as on the exponents of the in- and out-degree distributions. We confirm our scaling arguments and analytical
considerations by numerical investigations.
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I. INTRODUCTION

Boolean networks are often used as generic models for the
dynamics of complex systems such as social and economic
networks, neural networks, and gene or protein interaction
networks [1,2]. Whenever the states of the constituents of the
system can be reduced to being either “on” or “off” without
loss of important information, a Boolean approximation
captures many features of the dynamics of real networks
[3]. In order to understand the generic behavior of Boolean
networks, random models were investigated in depth [4],
although it is clear that neither the connection pattern nor the
usage of update functions of biological networks is reflected
realistically in such random models. For random models, the
distinction among frozen, chaotic, and critical networks has
become commonplace [2,5], with frozen networks having
short attractors where almost all nodes are fixed at one
value, while chaotic networks have attractors the length of
which increases exponentially with the system size. Critical
networks, which are “at the edge of chaos,” are considered
particularly relevant for biological systems, and for this
reason many investigations have concentrated on such critical
networks. One important result of these investigations was
that the number of nodes that do not become frozen on the
attractors increases as N2/3 with the network size N [6–8].

The majority of recent research on Boolean networks was
devoted to networks with more realistic features. In particular,
many natural networks are scale free, which means that the
number of connections per node follows a power law [9].
Typically, the power-law exponent of the degree distribution
is between 2 and 3, which means that the second moment
of this distribution diverges with network size. Due to their
relevance to natural systems, scale-free Boolean networks
have been investigated by various authors. In order to keep
these models as simple as possible, connections between nodes
are made at random within the constraints given by the degree
distribution. The Boolean functions are usually also assigned
at random from a certain set of functions, e.g., threshold
functions. Observations made in computer simulations for
these networks are that attractors are shorter and frozen nodes
are more numerous in critical scale-free networks compared

to conventional random Boolean networks with the same
total number of links and of nodes [10,11], that attractors
are sensitive to perturbations of highly connected nodes, but
not of sparsely connected nodes [11,12], and that scale-free
Boolean networks evolve much faster and more steadily
toward a target pattern of an “output” node than conventional
random Boolean networks [13]. Analytical results are mostly
limited to calculating the phase diagram using the annealed
approximation [12,14,15]. Similarly to conventional random
Boolean networks, which have a fixed in-degree, scale-free
Boolean networks show also frozen, critical, or chaotic
dynamics, depending on the parameter values. A comparison
between results obtained from the annealed approximation and
from computer simulations is performed in [16], but there is
not always an agreement between the two approaches. Three
years ago, Drossel and Greil [17] derived analytically the
scaling exponents for the number of nonfrozen nodes in critical
Boolean networks with a scale-free in-degree distribution. The
values of these exponents depend continuously on the exponent
of the in-degree distribution, if it is smaller than 3. So far,
the equivalent case of scale-free out-degree distributions has
not yet been investigated, although it is relevant for natural
systems [9]. From computer simulations of Boolean networks
with a scale-free out-degree distribution, it is known that the
properties of attractors are different from those in the case of
a scale-free in-degree distribution [18].

It is the purpose of this paper to derive the scaling exponents
of the number of nonfrozen nodes for Boolean networks that
have a power-law out-degree distribution. To this goal, we
generalize an efficient method that has previously been used for
conventional random Boolean networks [7,8] and for networks
with power-law in-degree distributions [17]. The result is a
stunning variety of scaling laws depending on the in- and
out-degree exponent as well as on the type of cutoff used in
both cases. In particular, we also find that the dependence of the
scaling exponents on the degree distribution shows opposite
trends for scale-free in-degree and for scale-free out-degree
distributions. For one of the many cases investigated by
us, we obtain the scaling law given in [19]. However, we
find this scaling law for a different situation than the one
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considered in [19]. We confirm our analytical results by
computer simulations.

II. MODEL

We consider Boolean networks consisting of N nodes,
where each node i has a Boolean value σi ∈ {0,1} and
is connected to other nodes via its inputs and outputs.
Furthermore, each node is assigned a Boolean update function.
Connections and update functions are chosen at random, given
the distribution P (kin) and P (kout) of the number of inputs and
outputs of the nodes, and the distribution of update function.

In conventional random Boolean networks, all nodes have
the same number k of inputs, P (kin) = δkin,k , and a Poisson
distribution of the number of outputs,

P (kout) = kkout

kout!
e−k , (1)

since each node receives its input from each other node with
the same probability. Different probability distributions for
Boolean functions are used, with biased functions being a
familiar choice, where for each possible combination of the
ki input values the output is 1 with probability p and 0 with
probability 1 − p. By adjusting the value of p, the network
can be made critical. In this paper, we use only constant and
reversible functions. For each value of the in-degree, there
are two constant functions, which take the same value for
all possible inputs, and two reversible functions, which are
defined by the condition that the change of one input always
changes the output. For kin = 2, these functions are XOR and
NOT XOR. We will argue in the end that our results are also
valid for other choices of update functions, in particular for
biased functions.

In this paper, we consider scale-free networks, where either
the distribution of inputs is a power law, P (kin) ∝ k

−γin
in , or the

distribution of outputs is a power law, P (kout) ∝ k
−γout
out , or both

are a power law. We only consider the case in which there is no
correlation between the in-degree and the out-degree of a node.
We focus on the interesting case of γin,γout ∈ (2,3), where the
second moment of kin or kout diverges, but the mean value
is well defined. The mean values of the in- and out-degree
distributions have to be identical, since the total number of
inputs and outputs must be the same because each link connects
an input with an output.

We generated scale-free in- or out-degree distributions
P (k) ∝ k−γ in two ways, which lead to a different scaling
of the cutoff values kmax(N ) with network size N . On the one
hand, we draw each value ki at random from the distribution
P (k), which leads to a cutoff

kmax ∝ N. (2)

Alternatively, we fixed the number of nodes with the in- or
output value k to exactly cNP (k) rounded to the next integer,
while adjusting c � 1 such that the size of the sample is as
close as possible to N . This leads to a cutoff

kmax ∝ N
1
γ . (3)

We fixed the minimum value of k in scale-free distributions to
2, since this leads to more nodes with larger values of k and
therefore to a faster approach to the asymptotic behavior with

increasing N . Furthermore, we adjusted the number of nodes
with k = 2 connections such that the mean value of k does not
change with N but equals the asymptotic value taken in the
limit N → ∞. This also reduces finite-size effects.

In order to make the networks critical, the proportion rc of
reversible functions was chosen such that the change of the
state of one node propagates on average to one other node,
implying (1 − rc) × 0 + rc × 〈k〉 = 1, and leading to

rc = 1

〈k〉 . (4)

For such critical networks, the number of nodes that do not
become frozen when the system is on an attractor increases
sublinearly with network size, with a power-law exponent that
will be determined below.

III. ALGORITHM: DETERMINING THE FROZEN CORE
STARTING FROM CONSTANT FUNCTIONS

An elegant way to determine the frozen core was suggested
in [7,8] and is generalized in the present paper such that it can
be used for out-degree distributions that are not Poissonian.
This method is based on the assumption that almost all frozen
nodes can be obtained by starting from the nodes with a
constant update function and by determining iteratively all
nodes that become frozen because some of their inputs are
frozen. This assumption is valid in many cases, in particular
for networks that have only constant and reversible functions.
If the assumption is not correct, one can nevertheless expect
the same scaling exponents, but one must use other methods
to obtain the frozen core [20]. The main idea of the method
is not to specify the network in advance but to choose the
connections within the network while determining the frozen
core. We used the algorithm for our analytical calculations
as well as for our computer simulations. The steps of the
algorithm are as follows:

(1) Initially, each of the N nodes is assigned an update
function, a number of inputs, and a number of outputs
according to the rules given above. These three assignments
are made independently from each other, in order to avoid
correlations between them. Nodes with a reversible function
are placed into “containers” Ci according to their number
kin = i of inputs. Nodes with constant functions are put into
the container C0. We denote the number of nodes in container
Ci by |Ci |. Furthermore, we denote the total number of nodes
in all containers by Nf = ∑imax

i=0 |Ci |, and we denote the total
number of inputs to nodes that are not in containers Ci with
i � 1 by k0

in. The initial value of k0
in is identical to the number

of inputs to nodes with constant functions. All these values will
change during the algorithm. In particular, Nf will decrease by
1 with each step.

(2) Then, the following steps are iterated until |C0| = 0:
(a) Select one node from container C0. Its number of
outputs is denoted by k

Nf
out.

(b) Choose at random k
Nf
out out of all

∑
i i |Ci | + k0

in inputs
to become connected to the outputs of the selected node.

(c) If m > 0 inputs of a node in a container i � 1 became
connected to the selected node, move this node from its
container Ci to Ci−m.
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(d) Reduce the number k0
in of unconnected inputs to

nodes with constant functions by the number of those
that became connected to the selected node in C0. This
ensures that the total number of outputs in all containers
always equals the total number of remaining inputs,∑

i�1 i |Ci | + k0
in.

(e) Remove the selected node from the system. This
implies the replacement Nf := Nf − 1.

(3) The final value of Nf is identical to the number of
nodes that do not belong to the frozen core of the particular
network that was constructed by performing this algorithm.
The probability distribution of Nf follows from the stochastic
process implemented in this algorithm.

In order to finish the construction of the network, the inputs
and outputs of the remaining nodes, which constitute the
nonfrozen part of the network, should also be connected at
random. However, since we are only interested in the number
of nonfrozen nodes and not in the attractors of the networks or
the structure of relevant components, we omit this step.

IV. ANALYTICAL CONSIDERATIONS

Based on the algorithm outlined in the previous section,
the scaling of the number of nonfrozen nodes with network
size can be determined analytically. To this purpose, we define
the parameter ε = Nf

N
, which is the proportion of nodes that

have not yet become frozen. If fluctuations are neglected, the
number of nodes in containers i � 1 can be expressed as [17]

|Ci | =
imax∑
l=i

∣∣C ini
l

∣∣ εi (1 − ε)l−i

(
l

i

)
, (5)

for i � 1, where |C ini
l | is the number of nodes in container l

at the end of step 1 of the algorithm. When ε is small, only a
small proportion of all inputs are still present, and most nodes
that are in container i were initially in containers with values
l � i. Therefore, expression (5) can be approximated for small
ε by

|Ci | 	 εi

∫ imax

i

∣∣C ini
l

∣∣ e−εl li dl. (6)

Every flip of a node will change the input of on average 〈k〉
other nodes. Due to the condition Eq. (4) for critical networks,
on average 1 of these nodes will also flip. This means that on
average 1 out of 〈k〉 nodes has a reversible function, while the
other 〈k〉 − 1 nodes have a constant function. Consequently,
the initial number of nodes in container C0 is

∣∣C ini
0

∣∣ =
imax∑
i=1

(i − 1)
∣∣C ini

i

∣∣ , (7)

which is equivalent to the condition

Nf =
imax∑
i=0

i |Ci | , (8)

which holds during the entire algorithm (again if we neglect
fluctuations), since on average one input in the containers i � 1
will become connected to the selected node during one step,
because each of the Nf〈k〉 remaining inputs connects to the

〈k〉 outputs of the selected node with the same probability.
Consequently, we have

|C0| =
imax∑
i=1

(i − 1) |Ci | (9)

during the entire algorithm, and the contents of all containers
will reach the value zero at the moment when ε reaches zero.

For small values of ε, the sum in Eq. (9) is dominated by
the i = 2 term, as can be concluded from Eq. (5). This means
that for small ε almost all nonfrozen nodes are in C1 and C2

and that

|C0| 	 |C2| (10)

apart from fluctuations.
Due to random fluctuations, |C0| will typically reach the

value zero while Nf is still larger than zero. This will happen
when the standard deviation of |C0|, denoted as σ|C0|, becomes
comparable to the average value of |C0|, which in turn is
identical to the average value of |C2|, giving the condition for
the end of the process

|C2| 	 σ|C0|. (11)

In order to obtain from this relation a condition for the scaling
of the final value Nf with N , we must express both sides in
terms of N and Nf (or, equivalently, ε).

In the following, we determine the variance σ 2
|C0| of nodes

in container C0. In every step exactly one node is removed
from the system and some of the nodes from Ci with i > 0
are moved to C0. The total number of nodes in all containers,
Nf + |C0|, decreases exactly by 1 for each iteration of the
algorithm. Fluctuations of the total number Nf of nodes in
containers Ci with i > 0 are deviations from the mean values
given by (6). These deviations are identical, but with opposite
sign, to fluctuations of the total number of nodes in container
C0, since the total number of nodes in the containers decreases
in a deterministic manner and can therefore not show random
fluctuations. Since for small ε the vast majority of remaining
nodes are in C1, the fluctuation of the number of nodes in
containers Ci with i > 0 is dominated by those in container
C1, leading to

σ|C0| = σNf 	 σ|C1|. (12)

There are two contributions to this variance:
(1) The number of nodes, Nf , remaining in containers Ci

with i � 1 has to be on average the number of remaining
outputs divided by their mean degree. This gives the following
contribution to the variance:

σ 2
Nf

	 Nf

〈k〉σ
2
kout

∝ Nfσ
2
kout

. (13)

(2) The second contribution comes from the fact that
for small ε the number of nonfrozen inputs is Poisson
distributed with a variance identical to the mean value, which
is proportional to Nf . Since the vast majority of nodes only
have one input, this is also the variance of |C1|, leading to
σ 2

Nf
∝ Nf .
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For networks with a scale-free out-degree distribution with
an exponent between 2 and 3, the first term dominates and is
proportional to Nf multiplied by a power of N . Otherwise, the
first and second terms give together σ 2

Nf
∝ Nf . We conclude

that

σ|C0| ∝
√

Nfσkout ∝
√

NfN
A (14)

with an exponent A that depends on the out-degree distribution.
If the variance of the out-degree distribution is finite, we have
A = 0. This holds when the out-degree of all nodes is identical
or is Poisson distributed, or when it is a power-law distribution
with an exponent γout � 3. When the out-degree distribution
is a power law with γout ∈ (2,3), we have

σkout ∝ (
kmax

out

)3−γout
, (15)

leading with Eq. (2) or Eq. (3) to A = 3 − γout or A = (3 −
γout)/γout. For γout = 3, all three expressions agree with each
other and give A = 0, as it must be.

In order to complete the calculation, we need an expression
for |C2| in Eq. (11). This expression is contained in Eq. (6)
and was already given in [17] for the case of a Poissonian
out-degree distribution. When the in-degree distribution has a
finite second moment, which is the case for fixed, Poissonian,
or power-law in-degree distributions with γin � 3, the integral
in Eq. (6) converges even when the cutoff is set to infinity and
ε is set to 0, leading to

|C2| ∝ Nε2. (16)

For networks with a scale-free in-degree distribution we can
rewrite Eq. (6) as

|Ci | ∝ εiN

∫ imax

i

e−εl li−γin dl. (17)

In the case γin � 3, the integral converges, leading again to
Eq. (16). In the case γin ∈ (2,3), the second moment diverges,
and the value of the integral is determined either by the upper
limit of the integral kmax

in or by the inverse exponential decay
constant 1

ε
, whichever is smaller. This gives

|C2| ∝ Nε2

[
min

(
kmax

in ,
1

ε

)]3−γin

. (18)

For the case kmax
in > 1

ε
, we obtain

|C2| ∝ Nεγin−1, (19)

independently of the scaling of kmax
in with N . For kmax

in < 1
ε
, we

obtain for kmax
in ∝ N

|C2| ∝ N4−γinε2, (20)

and for kmax
in ∝ N1/γin

|C2| ∝ N
3

γin ε2. (21)

For γin = 3, all four expressions for |C2| give the same result,
as it must be.

Taking the four cases together, we can write

|C2| ∝ Naεb (22)

with different values for a and b.

TABLE I. The nine different expressions for the exponents x (upper half) and y (lower half) that characterize the scaling Nnf ∝ Nx of the
number of nonfrozen nodes, Nnf , with N and the scaling of the number of nonfrozen nodes with two nonfrozen inputs |C2| ∝ Ny with N . The
expressions obtained in the special case γin = γout are also specified. Where necessary, two expressions for x and the corresponding conditions
are given, as well as the boundary case for which both expressions hold simultaneously.

x out → Poisson SF kmax
out ∝ N

1
γout SF kmax

out ∝ N

in ↓ σ|kout| ∝ 1 σ|kout| ∝ N
3−γout
2γout σ|kout| ∝ N

3−γout
2

Poisson |C2| ∝ Nε2 2
3

1
3

+ 1
γout

5−γout
3

SF kmax
in ∝ N

1
γin

|C2| ∝ N
3

γin ε2 x ≤ 1 − 1
γin 4

3
− 2

γin

1 + 1
γout

− 2
γin

γin ≤ γout
7−γout

3
− 2

γin
γin ≤ 3

4−γout

1 − 1
γ γ = γin = γout 1 − 1

γin
γin = 3

4−γout

|C2| ∝ Nεγin−1 x ≥ 1 − 1
γin

1 − 1− 3−γout
γout

2γin−3 γin ≥ γout
1 − 2−γout

3−2γin γin ≥ 3
4−γout

SF kmax
in ∝ N |C2| ∝ Nεγin−1 2γin−4

2γin−3

1 − 1− 3−γout
γout

2γin−3 always 1 − 2−γout
3−2γin always

1 − 1
γ γ = γin = γout

γ−1
2γ−3

γ = γin = γout

y out → Poisson SF kmax
out ∝ N

1
γout SF kmax

out ∝ N

in ↓ σ|kout| ∝ 1 σ|kout| ∝ N
3−γout
2γout σ|kout| ∝ N

3−γout
2

Poisson |C2| ∝ Nε2 1
3

2
γout

− 1
3

7−2γout
3

SF kmax
in ∝ N

1
γin

|C2| ∝ N
3

γin ε2 x ≤ 1 − 1
γin 2

3
− 1

γin

2
γout

− 1
γin

γin ≤ γout
8−2γout

3
− 1

γin
γin ≤ 3

4−γout

1
γ

γ = γin = γout
1

γin
γin = 3

4−γout

|C2| ∝ Nεγin−1 x ≥ 1 − 1
γin

1 − (γin−1)(2−γout)
γout(3−2γin)

γin ≥ γout 1 − (γin−1)(2−γout)
3−2γin

γin ≥ 3
4−γout

SF kmax
in ∝ N |C2| ∝ Nεγin−1 γin−2

2γin−3

1 − (γin−1)(2−γout)
γout(3−2γin)

always 1 − (γin−1)(2−γout)
3−2γin

always
1
γ

γ = γin = γout
5−5γ+γ2

3−2γ
γ = γin = γout
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Inserting this result together with Eq. (14) into Eq. (11),
we obtain the desired scaling law of the number of nonfrozen
nodes, Nnf , which is identical to the final value of Nf , as

Nnf ∝ εN ∝ N
1−

1
2 +A−a

1
2 −b ≡ Nx. (23)

Since both kmax
in and 1

ε
scale with N in a nontrivial way, and

since the scaling of ε with N depends on the result of Eq. (18),
it is not always possible to tell in advance whether kmax

in is
larger or smaller than 1

ε
. In such cases, we assumed first one

version of the inequality, and if this gave an inconsistency, we
used the other version. If we write kmax

in ∝ Nz and use the fact
that ε ∝ Nx−1 [with x defined in Eq. (23)], the consistency
condition reads

kmax
in ≶ 1

ε
⇔ z + x − 1 ≶ 0. (24)

In the standard case, where the second moments of the in-
and out-degree distributions are finite, we have A = 0, a = 1,
and b = 2, leading to the well-known result

Nnf ∝ N
2
3 . (25)

Since we consider three cases for both the in-degree and
the out-degree distribution, there are altogether nine different
relations for the scaling of the number of nonfrozen nodes
with the total number of nodes in a critical network. These
nine cases are listed in Table I and represented graphically
in Fig. 1. The most striking feature of these results is that
the scaling exponent for the number of nonfrozen nodes
increases with γin, but it decreases with γout. In the case of a
scale-free out-degree disribution, the exponent characterizing
the proportion of nonfrozen nodes that have two nonfrozen
inputs increases with decreasing γout.

There are several ways to check the correctness of these
expressions:

(i) Every expression for x must give 2
3 for γin = γout = 3.

If both distributions are scale free, x must take the expression
for the corresponding Poisson distribution when one of the γ

values is set to 3.
(ii) x must be in the interval [0,1] for γ ∈ [2,3].

(iii) For a scale-free in-degree distribution, one of the
two possible expressions for x should fulfill the consistency
condition Eq. (24). If both fulfill the condition, the values of x

must be identical in the two cases.
(iv) From Eq. (24) follows that x = 1 − z for the border

case. For z = 1 (kmax
in ∝ N ), this meas that x = 0 is only

possible on the border of the considered range. For z = 1
γin

, the

values of x must be x = 1 − 1
γin

on the border, independently
of the out-degree distribution.

We also performed the ultimate check, which entails using
computer simulations, as described in Sec. VI.

In a similar way, one obtains scaling laws for |C2|. To
this purpose, the scaling of ε with N from Eq. (23) must be
combined with Eq. (22), giving

|C2| ∝ N
a+b

1
2 +A−a

b− 1
2 ≡ Ny. (26)

The values of y for the nine cases are also listed in Table I,
and y

x
is visualized in Fig. 1. The check for correctness can
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FIG. 1. (Color online) Graphical representation of the nine cases
listed in Table I: (a) exponent x; (b) exponent y

x
.

be made in the same way as for the exponent x, with the only
difference being that y must be 1

3 for γ = 3.

V. EXTENSION TO OTHER SETS OF UPDATE FUNCTIONS

All results so far were derived by using only constant
and reversible update functions. However, the algorithm can
be generalized to more general sets of update functions, in
particular to biased functions. For general sets of functions, in
step 1 nodes with constant functions are placed in container
C0, while all other nodes are placed in containers according to
their number of inputs. Also step 2 has to be modified. When
m � 1 inputs of a node in container i become connected to the
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selected node, the node in container i may freeze completely
and is then moved to container C0 instead of Ci−m. This occurs
with a probability that depends on the set of update functions
and is given by the probability that a randomly chosen function
of i inputs becomes constant when m of the inputs become
frozen. In this case also the value of k0

in has to be increased
by i − m. Clearly, the container method only works when the
probability distribution of the update functions with i inputs
is identical to the conditional probability distribution that is
obtained by freezing l − i inputs of nodes that are initially in
a container Cl with l > i.

The analytical considerations become slightly different, but
they lead to the same conclusions. Equation (5) still states that
toward the end of the algorithm only containers C0, C1, and
C2 need to be considered. Nodes in C0 or C1 will behave in
the same way as for the case of constant and reversible update
functions. The only difference is that a certain proportion of the
nodes in C2 become already frozen if only one of their inputs
is connected to a frozen node. Such nodes could in principle
be placed in container C1, and then the situation would be
identical to the one of only constant and reversible functions.
Due to the fact that |C1| � |C2|, this make no significant
difference to the calculations and therefore has no effect on
the scaling laws.

VI. COMPUTER SIMULATIONS

In order to confirm our analytical calculations, we per-
formed computer simulations of the algorithm. Instead of a
Poisson distribution we used a fixed value for k. If the value
of 〈k〉 required for criticality was not an integer, we used a
mixture of the two neighboring integer values for generating

10−2 10−1 100

NnfN
−0.635

10−3

10−2

10−1

100

p
(N

n
f
)
N

0
. 6

3
5

FIG. 2. Typical example for the probability distribution of non-
frozen nodes. This sample is for critical networks with a scale free
in- and out-degree distribution with γ = 2.3 and a cutoff scaling as

kmax ∝ N
1
γ . The number of realizations was 2 × 105, and number of

nodes in the network was N = 210 for the solid curve and N = 211

for the dotted curve. The curves were collapsed using the exponent
0.635, which is the best value our algorithm found for these two
curves.

the distribution of k values. Avoiding unwanted correlations
between in-degree and out-degree distribution or between a
degree distribution and the distribution of Boolean functions in
the case of scale-free distributions turned out to be challenging.
The simulations were done in the following way. For each set
of in- and out-degree distributions and each value of γ , we
run the algorithm between 103 and 106 times (with the smaller
value applying to larger values of N , due computation costs)
for values of N ∈ {210,211, . . . ,220, . . .} and thus obtained a
distribution for the number of nonfrozen, Nnf , and the final

kmax
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1
γin

out: Fixed degree
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(a) in: SF

(b) in: SF

(c) in: Fixed degree

(d) in: Fixed degree

(e) in: SF

(f) in: SF kmax ∝ N
out: SF kmax ∝ N
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FIG. 3. (Color online) The quality of the data collapse (color
coded) of the distributions P (Nnf ) obtained for two N values that
differ by a factor of 2, as a function of N (x axis: log scale from
103 to 108) and the exponent used for the collapse (y axis: linear
scale from 0 to 1). The darker the color, the better the collapse.
The different plots are for different combinations of the in- and out-
degree distributions. When the in-degree distribution was identical to
the out-degree distribution, we generated the out-degree distribution
by using exactly the same sample as the one obtained for the in-
degree distribution. The lines give the value 2/3 (white dotted line),
the theoretically predicted exponent (white solid line), and the best
exponent for the collapse of the pairs of curves (black solid line).
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size of nodes in container C2. The data were smoothened
by performing a logarithmical binning with a step width of
1.05. To further smoothen the first part of the curve where
the slope is very small (on the log-log plot), we combined
groups of neighboring bins that comprise approximately the
same number of events. A typical result is shown in Fig. 2,
where the axes were scaled using the exponent that gives the
best data collapse.

However, the quality of the data collapse is not always that
good, in particular when γ is close to 2 or when N is small.
In order to compare the analytical expression, which should
become exact in the limit N → ∞, to the simulation results,
we established an automated procedure for quantifying the
quality of the date collapse between two curves for system sizes
N1 = 2n and N2 = 2n+1 for the entire possible interval (0,1).
This automated procedure gives an optimal (N -dependent)
value of the exponent, which should approach the theoretical
value as N increases. The quality of the collapse was quantified
by a fitness value, which is the mean of the absolute value of the
distance between the two linearly interpolated curves, omitting
the first 20% of the curves. We convinced ourselves that higher
fitness values correspond to what is intuitively considered a
better collapse. The results are shown in Fig. 3, using colors to
indicate the fitness. Each box shows on the y axis the scaling
exponent used for the collapse and on the x axis the value
of N1 of the pair that was compared. The color scale was set
such that the interval between the minimum and maximum
fitness value was stretched to [0,1] and divided by 0.7 and
then taken to the power of 0.5 to improve color resolution for
minimal (optimal) fitness values close to 0. Figure 4 gives an
impression of the quality of the collapse associated with the
different colors. Some of the boxes contain white areas due to

0.165 0.215 0.265

0.315 0.365 0.415

0.465 0.515 0.565 theory

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 4. (Color online) Example for the color coding in Fig. 3.
Each subplot is similar to Fig. 2. The only difference is the number
of nodes, which was in this case 217 and 218. The numbers above the
graphs give the exponents used for scaling the two curves, and the
color indicates the quality of the collapse. The theoretical exponent
is used in (i).

missing simulation values or to large fluctuations due to poor
statistics. The theoretical value for the exponent lies in almost
all boxes in the area of best fitness values. In some of the cases
one can see that this area is moving down or up with increasing
system size N1. This indicates finite-size effects.

We also did this evaluation for the scaling exponents for |C2|
(not shown), and we found again that the agreement between
theory and computer simulations is very good.

VII. CONCLUSIONS

Using analytical calculations and computer simulations, we
have determined the scaling of the number of nonfrozen nodes
of critical scale-free random Boolean networks with network
size, leading to a stunning variety of different scaling laws.
Our calculations are based on an algorithm that determines
the frozen core of the network by an iterative procedure.
The scaling exponent for the number of nonfrozen nodes
depends not only on the values of two exponents of the
power-law degree distributions (if they are smaller than
3) but also on whether these scale-free distributions are
generated by randomly sampling the degree of each node
from a power-law distribution or by exactly matching the
degree distribution of each realization of the network to
the desired power law. We calculated the scaling laws by
generalizing a phenomenological theory that has been used
earlier for critical random Boolean networks with Poissonian
out-degree distributions. Furthermore, we performed computer
simulations using a very efficient algorithm that allowed
us to test the theoretical results for network sizes larger
than 220. These computer simulations confirm our analytical
considerations. This work thus fills an important gap in
our understanding of scale-free critical random Boolean
networks.

Our results show that the size of the nonfrozen part of the
critical network decreases with decreasing γin but increases
with decreasing γout. In the case where the cutoff of the
out-degree distribution scales as N , the scaling exponent of the
nonfrozen part of the network approaches 1 as γout decreases
toward 2. This means that a finite proportion of all nodes
remain nonfrozen in this limit case. In the case γin = γout ≡ γ ,
the trend of the scaling exponents with γ depends on the
scaling of the cutoffs with network size. The opposite trends
observed for scale-free in- and out-degree distributions can be
explained as follows: a smaller value of γin leads to smaller
fluctuations in the contents of the containers (i.e., in the
growth of the frozen core) and therefore to a later stop of the
freezing algorithm, while a smaller value of γout leads to larger
fluctuations in the contents of the containers and therefore to
an earlier stop of the freezing algorithm.

The proportion of nonfrozen nodes with two nonfrozen
inputs increases as γout decreases toward 2, and it approaches
the value 1 in the case where the cutoff of the out-degree
distribution is proportional to N . In contrast, in the case of
Poissonian out-degree distribution the number of nonfrozen
nodes with two nonfrozen inputs scales as the square root
of the total number of nonfrozen nodes, irrespective of the
in-degree distribution. For this case, it was shown in [21] that
the computational core of the network (i.e., the set of relevant
nodes), which determines the number and length of attractors,
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MARCO MÖLLER AND BARBARA DROSSEL PHYSICAL REVIEW E 87, 052106 (2013)

scales also as the square root of the number of nonfrozen
nodes. Our results show that the computational core increases
when the out-degree distribution becomes scale free, and the
majority of relevant components are no longer simple loops.
This means that the length of attractors is much larger for
scale-free out-degree distributions than for scale-free in-degree
distributions.

Finally, we want to emphasize that we only investigated
situations where the in- and out-degree of a nodes were uncor-
related. However, the case where the two degrees are correlated
(e.g., they can be identical) is also relevant. It applies in

particular to networks that have undirected connections, which
means that the in- and outgoing connections are identical. As
argued in [15], the undirected case with a degree-distribution
exponent γ corresponds to the uncorrelated directed case with
an exponent γ − 1.
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