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In this paper, we study experimentally the configurations of a plastic wire injected into a cubic cavity containing
periodic obstacles placed along a fixed direction. The wire moves in a wormlike manner within the cavity until
it becomes jammed in a crumpled state. The maximum packing fraction of the wire depends on the topology
of the cavity, which in turn depends on the number of obstacles. The experimental results exhibit scaling laws
and display similarities as well as differences with a recently reported two-dimensional version of this complex
packing problem. We discuss in detail several aspects of this problem that seem as intricate as the problem of
a self-avoiding random walk. Analogies between the experiment reported and some statistical aspects of the
bond-percolation problem, as well as of the interacting electron gas at finite temperature, and other physical
issues are also discussed.
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I. INTRODUCTION

In the past three decades the study of crumpled systems has
deepened with emphasis on theoretical aspects of structures
with a two-dimensional topology [1–18]. Moreover, a number
of physical systems and physical processes involving crumpled
structures of potential interest in technological applications
have been discovered over the past years. As examples we can
cite the experimental observation of crumpled conformations
in aqueous suspensions of graphite oxide membranes [19], the
study of acoustic emission in processes of crumpling using
Mylar and paper sheets [20,21], the anomalous relaxation of
strain and stress in crumpled sheets of Mylar and aluminum
[22,23], the study of highly heterogeneous organic materials
such as crumpled cream layers [24], and the synthesis of
crumpled graphene sheets [25].

In contrast, the issue of crumpled structures with an
effective one-dimensional topology such as nylon wires or
threads where the length L is much larger than both transverse
lengths has been less frequently studied. Crumpled wires
appear to belong to a class of problems different from the
self-avoiding walks, but with comparable difficulties and chal-
lenges. Anomalous physical properties in spherical structures
of crumpled wires obtained by hand crumpling of a plastic
wire were reported in the early 1990s [26–28]. The extension
of those experimental studies to a crumpled wire confined
in a two-dimensional cavity was shown to yield patterns
of complex structure characterized by anomalous physical
properties and robust scaling laws [29–34]. Furthermore, for
this last two-dimensional version of crumpled wires, several
authors have examined analogies with both a statistical field
theory [35] and two-dimensional gravity [36]. Connections
were made between experiments, simulations, and theory
for crumpled wires and aspects of the packing of DNA
in viral capsids [37–40]. Recently, electrical properties of
graphite structures with nanometric height homologous to
those of crumpled wires in two dimensions were reported
[41].

The present work was inspired by a previous study [42]
dealing with the problem of crumpled states of a wire in a
two-dimensional cavity containing a periodic array of pins

whose height is equal to the diameter of the wire. The jamming
limit of this nonthermal process was investigated as a function
of the number of pins for different types of distributions of pins
and cavity symmetries [42]. An analysis based on statistical
thermodynamics was applied and it was shown that an absolute
effective temperature T dependent on the packing density p

can be introduced at the jamming limit, with T being a function
that varies inversely with the number of pins n. Following this
analysis, the entropy, the internal energy, and the free energy
of the confined wire can be defined. As a result, a mean-field
calculation suggests a connection of this problem with a Fermi
gas with two-body interactions at low temperature as given by
the Hartree-Fock theory in the sense that the total energy of
the plastic wire confined in the cavity is proportional to the
square of the effective temperature.

Here we extend the study of the packing of a plastic wire
to a three-dimensional cubic cavity containing a regular array
of metallic rods oriented in a single direction perpendicular to
a pair of opposite faces. Moreover, the positions of the rods
are defined by a square lattice. Naturally, other distributions
of the metallic rods not studied in this paper are possible,
for instance, cross rods in two and three directions. Beyond
the intrinsic interest, the packing of a wire in a confined
volume presents multiple analogies including (i) connections
with the statistical properties of a trapped polymer chain
in a porous medium [43–45], (ii) the packing of DNA in
biological systems as viral capsids [46–48], (iii) the packing
of DNA constrained to wrap around histone cores [49],
(iv) the electrohydrodynamics of DNA in confined envi-
ronments [50], and (v) the simulation of several process
of packing in different effective temperatures. Additionally,
crumpled wires confined in cells could find applications as
chemical filters, heat exchangers, and catalytic converters. We
would like to emphasize now the two fundamental differences
between the problem that is examined in the present article
and the two-dimensional problem studied previously in [42].
First, in the three-dimensional problem studied here there are
entanglement effects of the wire that are absent in the two-
dimensional problem. The use of cavities with rods in a single
direction allows more freedom for the plastic wire to form en-
tanglements as compared with other situations involving rods
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FIG. 1. (Color online) Cubic cavity of transparent acrylic with an
internal volume of 6.03 cm3 used in the packing experiment described
in this paper. Two rods of steel wire with a diameter of 2.0 mm and
seven perforated plates 3.0 mm thick for installation of n rods on the
sites of a square lattice are shown. A total of 12 values of n were
used, namely, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, and 144.

distributed in more than one direction; hence this geometry
is preferred here. Second, for the three-dimensional problem
considered in the present study, the interaction of the wire
with the obstacles cannot be neglected, as will be explained in
Sec. IV.

This paper is organized as follows. The experimental details
are described in Sec. II. A discussion of the results is presented
in Sec. III. In Sec. IV the mean-field model introduced in [42]
is applied in order to understand some of our findings in terms
of statistical thermodynamics ideas. A brief summary of the
paper and its main conclusions are given in Sec. V.

II. EXPERIMENTAL DETAILS

In our experiment the confining cell of cubic shape has
an internal volume L3

0 = 603 mm3. The faces of the cavity
are made of transparent acrylic 3 mm thick and the rods are
cylindrical pieces of a steel wire 2 mm in diameter with an
effective length L0 within the cavity [i.e., a total length of
(L0 + 6) mm including the fitting in the faces of the cavity].
These rods are fixed in the positions defined by a square
lattice, all pointing in the same direction perpendicular to a
pair of opposite faces. The forced injection of the wire is made
perpendicular to the rods using two small holes localized at the
center of two parallel opposite faces. Figure 1 illustrates the
cubic cell and some rods and perforated plates to fix the steel
rods. The experiment uses cavities with twelve distributions of
rods (n = 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, and 144 rods).
In addition, a control group of eight crumpled wires in cavities
free of rods was also investigated. The position of the rods is
defined by dividing the area of each of two opposite faces of the
cavity L2

0 in n equal nonoverlapping and contiguous squares
of area L2

0/n. Each rod is placed in the geometric center of
those squares and so the nearest-neighbor rod-rod distance
between the center of the rods is � = L0/n

1/2. In order to
reduce the friction, all parts of the cavity are polished. The
cavity and wire operated in a dry regime, free of any lubricant.
The plastic wire used in the packing was an indoor telephone
cable commonly used in telephonic wiring, with diameter

ζ = 1 mm. This type of cable is divided in a core of tinned
copper 0.4 mm in diameter and PVC coverage 0.3 mm thick.

Each experiment begins by fitting a straight wire in the
opposite apertures and subsequently pushing manually and
uniformly the wire on both sides of the cell toward the interior
of the cavity in the horizontal direction defining the injection
axis. Uniformity in the packing operation is guaranteed by the
low injection velocity at each channel, which was of the order
of 1 cm/s, as estimated by the average time spent reaching the
jammed packing density in each case. Typically this time was
of the order of 10 (30) min for cavities with the higher (lower)
number of rods. As observed for two-dimensional cavities, for
wires with the largest lengths, the crumpled structures formed
become rigid. However, differently from the packing of wire in
a two-dimensional cavity, in the present case the difficulty in
the injection increases steadily and the injection velocity goes
to zero with the formation of a jammed state of crumpled wire
within the cavity. The packing process proceeds from the outer
rods close to the faces of the cavity to the central part of the cell.
The observed phenomena are widely independent of the injec-
tion speed for all intervals of injection velocity compatible with
a manual process. Figures 2(a)–2(f) illustrate the morphologies
of configurations of the plastic wire obtained at the maximum
packing fraction for an even number of rods: n = 4 [Fig. 2(a)],
n = 16 [Fig. 2(b)], n = 36 [Fig. 2(c)], n = 64 [Fig. 2(d)],
n = 100 [Fig. 2(e)], and n = 144 [Fig. 2(f)]. In all these
images the injection axis lies along the horizontal. The length
L of the wire in the interior of the cavity in the jammed state is
associated with the corresponding three-dimensional packing
fraction p (0 � p � 1) through the relation p = πζ 2L/4L3

0.
Thus the packing fraction at the beginning of each experiment
is p = pmin = πζ 2/4L2

0. Ensembles with eight equivalent
configurations of three-dimensional crumpled wires were used
in this work for each cavity with a fixed number of rods.

For an odd number n of rods there is a fundamental
difference from the situation in which n is an even number:
In the first case there is a row of n1/2 rods just in front of
the injection axis. Because of this, we show separately in
Fig. 3 typical configurations of the crumpled states of a wire
in a three-dimensional cavity for n = 9 [Fig. 3(a)], n = 25
[Fig. 3(b)], n = 49 [Fig. 3(c)], n = 81 [Fig. 3(d)], and n = 121
[Fig. 3(e)].

As can be observed from Figs. 2 and 3, in contrast to the
two-dimensional case, the wire within the three-dimensional
cavity is, in general, in an entangled state. Only in Fig. 2(f),
corresponding to the maximum number of rods n = 144, do
we observe a less entangled structure. The basic geometric
units of the crumpled wires examined in the present paper
are loops of wires, although these loops lack planarity and
present a somewhat more diversified repertoire of forms
when compared with the two-dimensional case. In the next
section we will estimate the average size of such loops in
this problem using simple mean-field arguments derived
from a detailed exam of the morphology of the structures
of the three-dimensional crumpled wires. As stated above,
the packing of a wire in a three-dimensional cavity presents
frequently the phenomenon of irreversible formation of
entanglements: With the increase in the packing fraction of
wire within the cavity, the number of loops increases and
the probability of one or more loops to cross another loop
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FIG. 2. (Color online) Typical three-dimensional configurations of crumpled wires obtained with the cubic cavity shown in Fig. 1 for an
even number of rods: (a) n = 4, (b) n = 16, (c) n = 36, (d) n = 64, (e) n = 100, and (f) n = 144. The injection axis is located in the horizontal.

increases; this phenomenon gives origin to the entanglements
observed in the structures of three-dimensional crumpled
wires. As a consequence, frequently it is impossible to extract
the wire from the cavity through simple pulling operations. The
occurrence of this entanglement phenomenon is important in
many fields, including surgical operations with a catheter [51].

III. RESULTS AND DISCUSSION

In principle, the packing fraction of the wire within
the cavity must decrease on average with an increase in the
number of rods n due to geometric hindrance factors. However,
oscillations in the packing fraction p(n) are observed with p(n
odd) occupying local maxima, whereas the packing fractions

FIG. 3. (Color online) Same as in Fig. 2, but for an odd number of rods: (a) n = 9, (b) n = 25, (c) n = 49, (d) n = 81, and (e) n = 121.
The injection axis is located in the horizontal.
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FIG. 4. Average packing density p(n) for crumpled wires jammed
in a cubic cavity with rods for n odd (•), n even (�), and n = 0 (∗).
The continuous (dashed) line represents the argument of the constant
capacity of the cavity (best fit to the data). See Sec. III.

for even values of n occupy local minima. These oscillations
can be expected because for n odd there is a row of n1/2 rods
along the injection channels, as noticed in the previous section.
This fact introduces a fundamental geometric difference: If n

is even, the axis of injection is completely free of obstacles.
These oscillations in the packing density are shown in Fig. 4,
which presents alternating minima and maxima of p(n) for n

even and odd, respectively, provided n � 4. Oscillations in the
packing density were observed in other dense packings, e.g.,
in packings of congruent disks in a circle [52]. The region with
n � 4 is peculiar: Surprisingly, the packing density obtained
with the cavity with four rods, p(4), is equal to the density for
a cavity free of rods, p(0), and both are 20% larger than the
corresponding density for the cavity with a single rod, p(1) =
0.100 ± 0.005. That is, to attain higher packing densities, one
rod just along the injection line is less effective than four rods
distributed in the symmetric configuration of Fig. 2(a) but
leaving the injection line free of obstacles. Apparently, the
single central rod is more effective in scattering the wire from
the central region of the cavity, creating there an exclusion
zone.

A detailed examination of Figs. 2 and 3 shows that for small
values of the number of rods the crumpled structures form an
entangled and diffuse state not too compact, but tending to
obliterate the vision of the opposite face of the cavity. This
is particularly true in Figs. 2(a) (n = 4) and 3(a) (n = 9).
The blockage effect is more efficient when the number of
rods n is odd, as a consequence of the tendency of p(n) to
exhibit maxima when n is odd. As shown in Fig. 4, the packing
density presents local maxima for an odd number of rods, that
is, p(i2) > p((i – 1)2) and p((i + 1)2) for i an odd integer
with n = i2 � 9. For the group of cavities with the number
of rods n = 16, 36, 64, 100, and 144 [Figs. 2(b)–2(f)] there
is a transparency in the structures of wire formed that allow
us to discern some parts of the opposite face of the cavity,
a tendency that evidently increases with the number of rods.
Another aspect observed is a clear concentration of braided
structures of wire along the injection axis. With the subgroup
of cavities with 36, 64, 100, and 144 rods [Figs. 2(c)–2(f)] a
third characteristic emerges in the packing of wires, which is
the tendency to form lateral arms made of wire whose angle
with the injection axis is approximately 45◦. This effect is
particularly pronounced for n = 100 [Fig. 2(e)] and n = 144

[Fig. 2(f)]. The existence of arms of wire forming 45◦ with the
injection axis is almost absent for n odd, with the exception
of the situation illustrated in Fig. 3(e). A detailed examination
of Figs. 2 and 3 suggests that, in general, the distributions of
rods with n odd ( �=1) (that is, n = 9, 25, 49, 81, and 121) are
more efficient to scatter the wire in different directions, leading
to an increase in the number of accessible states of the wire,
as compared with the distributions with an even number of
rods.

On average, the maximum (minimum) packing fraction due
to the crumpled wire found in the experiment is 0.13 ± 0.01
(0.049 ± 0.004) for n = 9 (n = 100), corresponding on average
to a length L of plastic wire introduced in the cavity of
35 800 mm (13 500 mm). The volumetric fraction occupied
by rods, prods = nπζ 2/L2

0, in the experiment varies in the
interval 0 � prods � 0.125 and then the cavities work in the
regime of high porosity 1 – prods � 0.875. As a consequence,
a variation of 12.5% in the porosity due to the rods implies
a highly nonlinear variation of � = 265% in the packing
density of the wire [� = (0.13/0.049) × 100 = 265%]. It
is worth mentioning that the total occupancy P of the cavity
by both the wire and rods has a maximum value Pmax for the
configurations with n = 121: Pmax = [p(crumpled wire) =
0.079 ± 0.005] + (prods = 0.106) = 0.185 ± 0.005 [Fig. 3(e)].
This is interesting and counterintuitive at first sight because
such a configuration suggests a less pronounced occupancy of
the cavity when compared, for instance, with Fig. 3(a). The
reason for this apparent discrepancy is that Fig. 3(a), for n = 9
rods, has a low fraction of the space occupied by the rods and
the fuzzy structure of the crumpled wire is efficient to spread
in the cavity along all directions, creating the impression that
it occupies almost entirely the interior of the cavity. Only as
a matter of comparison do we note that the packing densities
of the crumpled wire in the range 0.05–0.10 obtained in 9
of a total of 13 situations studied here correspond to the
packing densities of new snow and settling snow, respectively
[53].

It is known that percolation provides a very simple model
of random media with enough realism to make relevant predic-
tions [54]. Furthermore, percolation is a source of intuition for
studying more complicated critical phenomena. In this sense
a numerical comparison between percolation and packing of
wires is interesting in this paragraph and in the next one. Due
to the fact that percolation clusters and crumpled wires divide
some important geometrical characteristics, as the topological
dimension, the fractal dimension, and the diffusion exponent,
it was conjectured that both structures can belong to the same
universality class [31]. Within this context, it is interesting to
notice that the total occupation fraction found above (Pmax =
0.185 ± 0.005), for n = 121, is close within statistical uncer-
tainties to the percolation threshold for the bond-percolation
problem in a three-dimensional bcc lattice [pc(bond, bcc) =
0.180 287 5 ± 0.000 001 0 [55]. For n = 144 rods, with a
total occupation fraction of P = 0.180 ± 0.006, the agreement
is almost perfect. The remaining 11 configurations with n =
0–100 have an average total packing fraction of 0.12 ± 0.02,
a concentration that is equal within statistical fluctuations to
the bond-percolation threshold for the three-dimensional fcc
lattice [pc(bond, fcc) = 0.120 163 5 ± 0.000 001 0 [55]].
Of course, the periodic distributions of rods used in this
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FIG. 5. Same density p(n) as in Fig. 4, but for log-log scales. In
this case the packing density is described by the best fit p ∼ n−0.25

(p ∼ n−0.21) for n even (odd).

work do not define three-dimensional lattices with bcc or fcc
symmetry and the numerical comparisons discussed above
must be seen as giving merely effective values. Approximately
100 additional packing experiments with cavities of aspect
ratio 60 < L0/ζ < 180 were unable to surpass the maximum
average packing density Pmax = 0.185 ± 0.005 previously
reported, a result that suggests that the saturation value for the
packing fraction should have been reached.

Each averaged experimental packing fraction of the wire,
p(n), is associated with a typical fluctuation bar with mag-
nitude δ(n) and the relative fluctuation averaged over all n is
〈δ(n)/p(n)〉 = 0.078, or 7.8%. A simple way to try to derive
the dependence of p with n shown in Fig. 4 would be to
assume that the three-dimensional cavity has a fixed packing
capacity as given by the sum rule, [(packing density of the
plastic wire) ≡ p(n)] + [(packing density due to the n rods) ≡
prods(n)] = C = const, or in terms of the variables involved,
p(n) + πnζ 2/L2

0 = C, where in the last expression we have
used the fact that the rods have diameter 2ζ . Thus, in this
approximation, p(n) would decay linearly with n as p(n) =
C – πnζ 2/L2

0 ≈ C – 0.0009n. In this case we should expect
that C = p(n = 0) = 0.12 ± 0.01 as obtained directly from
the experiment and consequently p(n) = 0.12 − 0.0009n. The
straight line obtained with this argument of fixed maximum
capacity is shown in Fig. 4 (continuous line); it gives a
crude approximation to the experimental data, within typical
relative fluctuations of 12%, between n = 0 and 64. These
relative fluctuations are approximately 54% higher than the
value 〈δ(n)/p(n)〉 found for the typical fluctuations in the
measurement of the packing densities. In contrast, the linear
best fit to the experimental data as obtained for all values of n

from 0 to 144 gives p(n) = C0 – 0.0004n, with C0 = 0.110, and
a coefficient of correlation of 0.802 (dashed line in Fig. 4); i.e.,
it presents a decay rate close to the half of that predicted by the
argument of the constant capacity. This coefficient C0, which
corresponds to the packing fraction for the wire in a cavity free
of rods, is equal to the bond-percolation probability for the fcc
lattice within an uncertainty of 8%.

A nonlinear dependence of the packing fraction of the crum-
pled wire with the number of rods in the three-dimensional
case studied in the present paper seems more reasonable than
the linear dependence discussed in the previous paragraph. In
Fig. 5 we show a double logarithmic plot of the packing density

of the plastic wire with the associated power-law fits: This
quantity exhibits the scaling p = kn−α , with k = 0.17 (0.21)
and α = 0.25 (0.21) for n even (odd) within typical relative
uncertainties of these parameters of 5%–10%. The coefficients
of correlation are 0.982 (0.993) for the number of rods n even
(odd), respectively. Thus p scales approximately as p ∼ n−1/4,
although with different values of k depending on whether the
number of rods n is even or odd; i.e., the distribution of packing
densities p(n) in three dimensions has a heavy tail when
compared with the two-dimensional case. A rough estimate
of the exponent α can be made following the same heuristic
mean-field reasoning applied in the two-dimensional case [42].
Here the argument reads as follows: The expected maximum
packing density of the crumpled wire in the three-dimensional
cavity with rods obeys the dependence p ∼ Nλζ 2/L3

0, where N

is the corresponding number of loops of wire within the cavity
and λ is the typical size of these loops. A detailed examination
of all experimental configurations shown in Figs. 2 and 3 [more
clearly in Figs. 2(c)–2(e) and 3(c)–3(e)] suggests that each loop
spans a prismatic sector of the cavity whose typical smallest
length is of the order of the separation between contiguous rods
(�) and the remaining two transversal lengths define an area of
the order of L0 × L0. Taking λ as the geometric mean of these
three lengths �,L0, and L0 and using N ∼ (volume) ∼L3

0, we
get finally p ∼ λζ 2 ∼ (�L2

0)1/3ζ 2 ∼ (L3
0/n

1/2)1/3ζ 2∼n−1/6

or p ∼ n−0.17. This last result is reasonably close to the
experimental scaling p ∼ n−0.21 observed in Fig. 5 for n odd
within uncertainties of 10% in both exponents.

The corresponding packing density p(n) obtained in the
two-dimensional case for cavities and distributions of pins of
diversified symmetries [42] is given by p(n) ∼n−α , for packing
almost free of finite-size effects, with α close to 3

4 within
uncertainties of 10%. It can be noticed that in three dimensions
even for the configuration with the largest packing fraction
[Fig. 3(a)] the wire touches only marginally the boundaries
of the cavity, preferring to be accommodated mainly in the
interior of cavity and close to the injection axis. This last
aspect is particularly clear in Figs. 2(c)–2(f) and 3(c)–3(e). In
other words, the distribution of rods is quite efficient to screen
the outer faces of the cavity from contact with the crumpled
wire. This is reasonable because we know that crumpled wires
in three dimensions tend to distribute itself in space obeying
the mass M size R scaling M ∼ RD , with D close to 2.75
within uncertainties of 5% for different types of crumpling
procedures that not involve cavities with obstacles [26,38,40].
This means that as the size R increases, the average density of
the wire that is localized in the outer regions tends to zero as
ρ ∼ M/R3∼ RD−3∼ R−0.25. For comparison, the self-avoiding
random walk (SARW), with the same topology of the crumpled
wire and excluded-volume effects as well, obeys M ∼ R5/3

and consequently ρ ∼ R−4/3. Thus crumpled wires and the
SARW are in completely different universality classes.

A last intriguing aspect that we would like to comment on in
this section concerns a particular characteristic of the packing
density p(n) shown in Fig. 5: In contrast to what happens in the
two-dimensional case [42], p(n) does not present any abrupt
change as the number of pins n varies when a discontinuity
occurs in the first derivative of this function. We conjecture
that in the two-dimensional case the observed change in the
behavior of p(n) for n ≈ 16 (Figs. 3 and 4 in [42]) is somewhat
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analogous to a type of Kosterlitz-Thouless (KT) transition in
which there are two regimes of different elastic behavior [56].
When applied to the two-dimensional crumpled states of a
wire in a cavity with pins, we observe that for a small number
of pins n < 16 we have a less rigid or softer structure with
loops of several sizes distributed in a highly heterogeneous or
disordered configuration through the cavity [Figs. 1(a)–1(c) in
Ref. [42]]; this corresponds to the high-temperature disordered
phase [42]. However, for a large number of pins n > 16 the
structure of loops is clearly much more rigid and the disorder
decreases. In this last case the configurations are characterized
by a stack of loops along the injection channel with a not too
large variation in size [Figs. 1(e)–1(i) in [42]]; this corresponds
to the low-temperature quasiordered phase [42]. We know that
a true KT transition does not occur in three dimensions and it
is just this absence of transition that is observed in the problem
of the crumpled states of a wire in a cavity with rods studied
in the present paper. This is reflected in the behavior of p(n),
which decreases in a well behaved way as shown in Fig. 5.

IV. MEAN-FIELD MODEL

In this section we present a straightforward discussion of
several aspects of our experiment using ideas from statistical
thermodynamics and mean-field arguments. Before we go
into the details of the mean-field model we can ask why this
model is introduced here and why it is expected to work. Our
justification is that crumpled wires have formal analogies with
nonbranched polymers such as the one-dimensional topology,
the existence of entropic aspects, and also the occurrence of
self-avoiding interactions. We know that mean-field models
belong to the simplest class of models successfully used in
polymeric systems [43]. Furthermore, the use of a mean-field
model for the problem of the two-dimensional packing of a
wire in a cavity with pins [42] has led to some interesting
insight into this problem. In contrast, we know that mean-field
theories work better in higher dimensions than in lower and
thus we should expect that the application of such arguments in
our three-dimensional system can also be successful. Formal
analogies between nonthermal crumpling and thermodynam-
ics are explored in this article within the same theoretical
framework introduced in [42] for the two-dimensional case.
In that case, for a sufficiently large concentration of pins
there is a jamming (equilibrium) state characterized by the
simple morphology of a linear wire perfectly stretched along
the two injection channels, with a packing concentration
pmin. As a consequence, the number of states accessible to
the wire is 
(pmin) = 1 and the entropy of those states
satisfies S(pmin) ∼ ln
(pmin) = 0, with pmin = ζ/L0 →
0 in the thermodynamic limit, i.e., for a cavity of infinite
size L0 → ∞. This situation corresponds to an effective
temperature T = 0. In three dimensions the exact limit T = 0
is impossible because if the separation between the centers
of the nearest-neighbor rods is 3ζ , the extreme condition
that allows the introduction of the wire within the cavity,
a complex morphology of the crumpled wire of the type
discussed in [29,30] can again be obtained. This structure
is restricted to a quasi-two-dimensional slice of the cavity
limited by two adjacent parallel planes of rods separated by a
free distance ζ and close to the symmetry plane of the cavity

containing the injection axis. As a consequence we expect that
the minimum temperature in the three-dimensional case could
never reach zero. A second expectation is the existence of two
branches for the entropy function S(p) or, equivalently, of two
branches for the number of accessible states 
(p) depending
on whether the number of rods is even or odd. We should
expect that 
(p; n odd) > 
(p; n even) due to the existence
of the row of rods along the injection channels for n odd as
described in Secs. II and III. If n is odd, 
 tends to be larger
for two reasons. First, in this case the number of initial states
of the wire in the beginning of the packing process increases
because now a left-right symmetry associated with the initial
positioning of the wire in the cavity appears. Of course, in
this case many more complex initial states are possible, e.g.,
meandering states of the wire along the different units of the
central row of rods. Second, as noted in the beginning of
Sec. III, the distributions of rods with n odd are more efficient
in increasing the number of possibilities for the wire to be
distributed within the cavity.

In contrast, if the number of rods decreases in general,
i.e., for n even or odd, the constraints on the motion of the
wire within the cavity decrease as well and more equivalent
configurations are accessible to the wire. In this case we expect
that the entropy increases as a consequence. This reasoning
suggests that we can associate with our nonthermal system
an effective temperature that decreases when the number of
rods increases. In the nonthermal packing of a wire studied
here the fluctuations are induced by the driving force of
injection in several equivalent experiments and do not arise
obviously from random thermal motion. For simply connected
cavities free of rods we get the high- (infinite-) temperature
limit of the system. However, for a finite density of rods,
for both branches of p(n) shown in Fig. 5, in the interval
4 < n < 144, we reach progressively the low-temperature
limit of the system if n increases. For a very high number of
rods, the temperature T approaches a minimum value different
from zero, as will be quantified below. Many recent works
have proposed that nonequilibrium systems experiencing
jamming or structural arrest could be described by equilibrium
thermodynamic concepts and an effective disorder temperature
could be introduced to characterize the properties of such
systems [57,58].

Using simple heuristic mean-field arguments as done in
[42], we now introduce an effective internal energy per unit of
volume E for a wire confined in a cavity with n fixed rods and
an effective Helmholtz free energy F = E – TS. Evidently, for
E two contributions are important:

E = Ewire-wire + Ewire-rods, (1)

where the first term Ewire-wire is a repulsive energy due to
excluded-volume interactions between different parts of the
crumpled wire, as long as we can neglect the elastic energy of
curvature for a plastic wire. The second term Ewire-rods can be
neglected in the two-dimensional case: It is a repulsive energy
due to excluded-volume interactions between different parts of
the crumpled wire and the rods. As the packing fraction of wire,
p = πζ 2L/4L3

0, is a measure of the mean local concentration
of mass of the wire, the average repulsive energy per unit
volume Ewire-wire is assumed to be a two-body interaction
proportional to the number of pairs of interacting pieces of the
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wire, i.e., to p2: Ewire-wire = εp2. In contrast, for interactions
between the wire and rods, we adopt Ewire-rods = ξ pprods,
where prods = πζ 2nL0/L

3
0 = πζ 2n/L2

0 is the density of rods
(whose diameter, as previously explained in Sec. II, is 2ζ =
2 mm). The constants ε and ξ are expected to have similar
numerical values. From these definitions we can see easily
that the energy term Ewire-rods could be neglected in Eq. (1)
if 4nL0/L � 1. This limit is not satisfied in our experiment,
where this ratio averaged over all n is 〈4nL0/L〉 ≈ 3.4.

Furthermore, as observed in [42], the entropy S per unit
volume of the wire within the cavity must, of course, be an
extensive function, i.e., it depends linearly on the total length
of the wire S ∼ L ∼ p. That is, the entropy S is proportional
to the (jammed) packing fraction of the plastic wire within the
cavity and decays smoothly with the number of rods within
the cavity: S = σp, where σ is a constant. Moreover, there
are two branches for the entropy S depending on whether
the number of rods n is even or odd, with S(n even) < S(n
odd), as expected from the discussion in the beginning of this
section. Consequently, the free energy of the crumpled wire in
a three-dimensional cavity with rods reads

F = E − T S = εp2 + ζpprods − T σp, (2)

where the effective temperature T will be found. In the
minimization of F , when p varies, the first and second terms,
due to self-exclusion, favor small values of p or L, while
the second term, due to entropy − T S, favors naturally large
values of p or L. Thus ∂F/∂p = 0 leads to the equilibrium
(jamming) condition

p = (T σ − ζprods)/2ε. (3)

After substitution of (3) in (1) we get for the internal energy
at equilibrium a quadratic function of the temperature, in
agreement with the two-dimensional case [42]:

E = (
σ 2T 2 − ζ 2p2

rods

)/
4ε. (4)

From the last results the expressions for the entropy and the
specific heat at equilibrium can be obtained as usual through
S = −(∂F/∂T )V and CV = (∂E/∂T )V , i.e., they are both
linear functions in T as found in [42] for the two-dimensional
case. The definition of the effective temperature emerges from
(3) after substitution of the experimental result p = kn−1/4

discussed in the previous section:

T = (2εp + ζprods)/σ = Aδ−1/4 + Bδ, (5)

with A = (2εk/L
1/2
0 σ ), B = ξπζ 2/σ , and δ = n/L2

0 the
number of rods per unit area. Thus, in the limit ζ → 0 the
effective temperature T always increases as the number of
rods per unit area decreases, T ∼ Aδ−1/4, with T → ∞ when
the density of rods goes to zero, as expected on the basis of
Ref. [42]. In contrast, if the interaction between the wire and
rods can be neglected (i.e., if ξ → 0) and ζ and L0 are finite,
T and n (or δ) are equally related through the same power-
law dependence, i.e., T ∼ δ−1/4. The effective temperature
measures the disorder of the wire in the cavity: As long as
the density of rods increases, the average heterogeneity in the
packing decreases and more regular structures appear as in the
typical configurations shown in Figs. 2 and 3, especially in
Figs. 2(f) and 3(e).

In summary, the results obtained here for the internal
energy, entropy, and specific heat for the crumpled wire in
the jamming state are analogous to those found in [42], i.e.,
they are analogous to the results known for a Fermi gas with
two-body interactions at low temperature as derived from the
Hartree-Fock theory [59]. Thus, as obtained with this type of
gas, if the dimensionality varies, the temperature dependence
of the basic thermodynamic quantities associated with our
system remains the same.

V. CONCLUSION

We studied experimentally a complex packing problem in
three dimensions. It involves crumpled structures formed when
a plastic wire is injected into cubic cavities with different
topologies formed by different distributions of n rods localized
on square lattices. This article extends a previous work on
the packing of a crumpled wire in a two-dimensional cavity
with fixed pins [42]. It was found that the packing density
p of the wire obeys different scaling functions (depending
on n being even or odd): p ∼ n−α , with α typically in the
interval 0.20–0.25; a heuristic estimation of the value of this
exponent was also discussed. Simple mean-field arguments
suggest a relation between the topology of the cavity as given
by the number of rods with an effective absolute temperature
for this nonthermal system. Additionally, we have confirmed
that the analogy with the Fermi gas with two-body forces at
finite temperature, developed in [42] for a two-dimensional
version of the packing problem, maintains its validity in three
dimensions. Another interesting subject is the existence of
similarities between crumpled wires and the bond-percolation
problem [31]; several aspects of these two problems were
discussed.

We conjecture that the phenomenon reported in the present
paper is essentially independent of the details of the geometry
of the distribution of rods within the cavity as well as of
the symmetry of the cavity as already observed in the two-
dimensional problem discussed in [42]; i.e. the results would
be dependent only on the topology or the number of rods within
the cavity. Our focus was on the basic physical (geometrical)
properties of crumpled structures. However, beyond this
intrinsic interest, the packing of a wire in a confined space
presents multiple interests including connections with the
statistical properties of a polymer or a self-avoiding walk in
a medium with obstacles [43–45] and the packing of DNA
in many biological situations [46–50]. From a technological
point of view, crumpled wires confined in cavities could find
applications as, e.g., chemical filters, heat exchangers, catalytic
converters, and targeted drug delivery units.

We believe that an additional effort in terms of theory
and numerical simulations must be made to investigate the
experimental scaling behaviors reported here as well as to
refine the possible connections of the problem discussed in this
article at a heuristic level with other fundamental problems
in physics including percolation and self-avoiding walks.
Furthermore, investigation of other versions of the problem
studied here with different distributions of rods defining
different symmetries is also a very important matter in order
to test universality in this class of systems.
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