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Tight-binding approach to overdamped Brownian motion on
a multidimensional tilted periodic potential
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We present a theoretical treatment of overdamped Brownian motion on a multidimensional tilted periodic
potential that is analogous to the tight-binding model of quantum mechanics. In our approach, we expand the
continuous Smoluchowski equation in the localized Wannier states of the periodic potential to derive a discrete
master equation. This master equation can be interpreted in terms of hopping within and between Bloch bands,
and for weak tilting and long times we show that a single-band description is valid. In the limit of deep potential
wells, we derive a simple functional dependence of the hopping rates and the lowest band eigenvalues on the tilt.
We also derive formal expressions for the drift and diffusion in terms of the lowest band eigenvalues.
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I. INTRODUCTION

Brownian motion on a periodic potential has been used to
describe a wide range of nonequilibrium transport phenomena
where there are significant thermal fluctuations [1,2]. For
example, this arises in Josephson junction arrays [3], surface
diffusion [4], particle sorting experiments [5–7], and the
mechanochemical coupling of molecular motors [8–13]. The
standard theoretical description of these systems is based on
a continuous diffusion equation that governs the dynamics
of the probability density and can be used to determine the
average of macroscopic observables [1]. In the limit of deep
potential wells, it is physically intuitive that this continu-
ous diffusion equation can be approximated by a discrete
equation describing infrequent hopping transitions between
potential wells. Discrete treatments have been employed in
the theory of chemical reactions [14,15] and molecular motors
[10,11,16,17] and represent a significant simplification of the
system dynamics. In this paper, we begin with the continuous
diffusion equation and systematically transform to a discrete
master equation for the case of overdamped Brownian motion
on a multidimensional tilted periodic potential.

There have been previous attempts to discretize the con-
tinuous diffusion equation for Brownian motion on a tilted
periodic potential. In these treatments, each cell of the periodic
potential is identified with a discrete state and a master
equation describes intercell hopping. It has been suggested
that these discrete equations can be made consistent with the
continuous theory by matching the dynamic structure factor
[18,19], the eigenvalues [20], or the ratio between backward
and forward hopping [21]. Alternatively, a discrete model can
be derived by connecting each spatial region via appropriate
absorbing boundary conditions and source terms [22], or by
integrating the continuous probability density over a specific
spatial region in the vicinity of each cell [10,23,24]. In contrast
to these treatments, we implement the classical analog of the
tight-binding model of a quantum particle in a periodic po-
tential [25–28]. This is achieved by expanding the continuous
diffusion equation in a complete basis of Wannier states to
derive a discrete master equation. In the limit of deep potential
wells, the Wannier states are localized in the minima of the
periodic potential and the master equation is consistent with the
physically intuitive interpretation of hopping between wells.

In the multidimensional case, Brownian motion on a tilted
periodic potential is not tractable analytically in general
and instead has been investigated numerically [29–32]. For
nonseparable potentials, the tilt in one degree of freedom
can induce drift in another and this coupling has important
consequences in particle sorting experiments and molecular
motors [8,13,30]. The tight-binding approach presented in this
paper provides an analytic tool for treating multidimensional
nonseparable tilted periodic potentials.

This paper is organized as follows. In Sec. II, we introduce
the Smoluchowski equation in our notation. In Sec. III, we
expand the probability density for the system in the Bloch
eigenfunction basis for the periodic potential and consider the
time evolution of the Bloch bands. In Sec. IV, we transform
to the localized Wannier states of the periodic potential
and derive a discrete master equation for the system. In
Sec. V, we consider the limit of deep potential wells where
the tilt dependence of the hopping rates can be determined
analytically and hopping transitions occur predominantly
between nearest-neighbor wells. In Sec. VI, we derive formal
expressions for the drift and diffusion. We conclude in
Sec. VII.

II. SMOLUCHOWSKI EQUATION

We consider Brownian motion of a particle in the over-
damped limit of negligible inertia as described by the Smolu-
chowski equation [1,15]

∂P (r,t)
∂t

= LP (r,t), (1)

where P (r,t) is the probability density of finding the particle
at position r at time t . The evolution operator for the
Smoluchowski equation is

L =
∑

j

1

γj

∂

∂rj

[
�

∂

∂rj

+ ∂V (r)

∂rj

]
, (2)

where V (r) is the external potential, � = kBT , kB is the
Boltzmann constant, T is the temperature, and j is the
coordinate index. The friction coefficient γ may be different
for each degree of freedom.
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The external potential V (r) is the tilted periodic potential

V (r) = V0(r) − f · r, (3)

where V0(r) is periodic with period a, i.e.,

V0(r) = V0(r + aj r̂j ) = V0(r + a), (4)

and the linear potential represents a constant macroscopic
force that drives the system out of thermal equilibrium and
induces transport through the periodic potential. We impose
periodic boundary conditions with a period given by Na where
N is a diagonal matrix of integers. We consider an infinite
spatial extent by taking the limit Njj → ∞, although a similar
approach is possible for Njj finite.

III. BLOCH EIGENFUNCTION EXPANSION

The Smoluchowski equation (1) has separable solutions

Pk(r,t) = φk(r)e−λk t , (5)

where the eigenfunctions φk(r) and eigenvalues λk satisfy the
eigenequation

Lφk(r) = −λkφk(r). (6)

Due to the periodicity of L, the eigenfunctions φk(r) can be
chosen with the Bloch form [1,28]

φα,k(r) = eik·ruα,k(r), (7)

where uα,k(r) has the same periodicity as the potential V0(r),
α is the band index, and k is continuous1 and restricted to the
first Brillouin zone, i.e.,

− π

aj

� kj � π

aj

. (8)

The evolution operator L can be transformed to the self-
adjoint operator [1]

H = eV f (r)/2�Le−V f (r)/2� (9)

=
∑

j

1

γj

[
�

∂2

∂r2
j

− Uj (r)

]
, (10)

where

Uj (r) = 1

4�

[
∂V (r)

∂rj

]2

− 1

2

∂2V (r)

∂r2
j

. (11)

The operator H is not Hermitian in general. However,
denoting quantities for the f = 0 case by a zero subscript
(or superscript), the operator H0 is Hermitian and the untilted
Bloch eigenfunctions φ0

α,k(r) form a complete orthonormal
basis (see Appendix A). The untilted Bloch eigenfunctions
satisfy the orthonormality relation∫

d r eV0(r)/�φ0∗
α,k(r)φ0

α′,k′(r) = δαα′δ(k − k′) (12)

and the completeness relation

eV0(r)/�
∑

α

∫
B

dk φ0∗
α,k(r)φ0

α,k(r ′) = δ(r − r ′), (13)

1For a finite spatial extent, Njj is finite and k is quantized.

where the integral in Eq. (13) is denoted by B to indicate that
it is over a single Brillouin zone [see Eq. (8)]. The eigenvalues
λ0

α,k are real and exist in bands separated by forbidden band
gaps (see Appendix A).

Smoluchowski equation solutions satisfying periodic
boundary conditions at infinity can be expanded without loss
of generality in the untilted Bloch eigenfunction basis. The
expanded probability density is

P (r,t) =
∑

α

∫
B

dk cα,k(t)φ0
α,k(r), (14)

where

cα,k(t) =
∫

d r eV0(r)/�φ0∗
α,kP (r,t). (15)

Transforming the Smoluchowski equation (1), the coefficients
cα,k(t) evolve according to

dcα,k(t)

dt
=

∑
α′

∫
B

dk′ μα,α′,k,k′cα′,k′(t), (16)

where

μα,α′,k,k′ =
∫

d r eV0(r)/�φ0∗
α,k(r)Lφ0

α′,k′(r). (17)

In the f = 0 case,

μ0
α,α′,k,k′ = −λ0

α,kδαα′δ(k − k′), (18)

and the evolution equation (16) becomes

dc0
α,k(t)

dt
= −λ0

α,kc
0
α,k(t). (19)

Equation (19) can be integrated directly to give

c0
α,k(t) = c0

α,k(0)e−λ0
α,k t . (20)

Equation (20) shows that each eigenfunction coefficient c0
α,k(t)

decays in time with a rate given by its eigenvalue λ0
α,k � 0

(see Appendix B). The band gap between the lowest and first
Bloch bands enables a separation of time scales so that, for
t � 1/ min(λ0

1,k), all bands with α > 0 are damped out and
only the lowest α = 0 band remains occupied.

In the tilted periodic potential,

μα,α′,k,k′ = −λ0
α,kδαα′δ(k − k′) − να,α′,kδ(k − k′), (21)

and the evolution equation (16) becomes

dcα,k(t)

dt
= −λ0

α,kcα,k(t) −
∑
α′

να,α′,kcα′,k(t). (22)

The first term on the right-hand side of Eq. (22) is due to the
untilted periodic potential V0(r) and leads to decay of the
coefficients cα,k(t) at the rate λ0

α,k [see Eq. (20)]. The second
term is due to the linear potential and couples different
Bloch bands of the untilted periodic potential. If the tilt f is
sufficiently small that the band gaps in the decay rates λ0

α,k
are large compared to the coupling να,α′,k, i.e.,

|να,α′,k| � ∣∣λ0
α,k − λ0

α′,k

∣∣, (23)
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interband coupling can be neglected. In this weak-tilting
regime, the evolution equation (22) can be approximated by

dcα,k(t)

dt
= −[

λ0
α,k + να,α,k

]
cα,k(t). (24)

Equation (24) can be integrated analytically and reduces to
Eq. (19) for f = 0 where να,α,k = 0.

IV. WANNIER BASIS

In the case where the periodic potential V0(r) creates deep
potential wells that localize the particle, the untilted Bloch
eigenfunctions φ0

α,k(r) are not a natural basis because they are
delocalized over the entire spatial extent of the system. It is
more convenient to transform to the Wannier states that are
localized around the potential wells of the periodic potential.
The Wannier states for the eigenfunctions φ0

α,k(r) are

wα,n(r) = D

∫
B

dk φ0
α,k(r)e−ik·An, (25)

where A is a diagonal matrix with Ajj = aj , n is a vector of
integers, the constant D is

D =
∏
j

(
aj

2π

)
, (26)

and for brevity we have omitted the zero superscript on the
untilted Wannier states (25). Taking the complex conjugate
of the eigenequation (6) with f = 0, the untilted Bloch
eigenfunctions are found to satisfy φ0∗

α,k(r) = φ0
α,−k(r) so the

Wannier states (25) are real. The untilted Wannier states form
a complete orthonormal basis. They satisfy the orthonormality
relation

1

D

∫
d r eV0(r)/�wα,n(r)wα′,n′(r) = δαα′δnn′ (27)

and the completeness relation

1

D
eV0(r)/�

∑
α,n

wα,n(r)wα,n(r ′) = δ(r − r ′). (28)

The probability density P (r,t) can be expanded in the
untilted Wannier states as

P (r,t) = 1

D

∑
α,n

pα,n(t)wα,n(r), (29)

where

pα,n(t) =
∫

d r eV0(r)/�wα,n(r)P (r,t). (30)

The coefficients pα,n(t) are real and their amplitude can be
interpreted as the probability that the Brownian parti-
cle occupies the Wannier state wα,n(r). Transforming the
Smoluchowski equation (1), the evolution of the system can
be described by the master equation [15]

dpα,n(t)

dt
=

∑
α′,n′

σα,α′,n,n′pα′,n′(t), (31)

where

σα,α′,n,n′ = 1

D

∫
d r eV0(r)/�wα,n(r)Lwα′,n′(r). (32)

The coupling matrix defined by Eq. (32) is real and, recogniz-
ing that the Wannier states satisfy

wα,n(r) = wα,0(r − An), (33)

we find that

σα,α′,n,n′ = σα,α′,n−n′,0 = σα,α′,0,n′−n. (34)

In the f = 0 case, the coupling matrix becomes

σ 0
α,α′,n,n′ = 1

D

∫
d r eV0(r)/�wα,n(r)L0wα′,n′ (r) (35)

= κ0
α,n−n′δαα′ , (36)

where κ0
α,n are the Fourier components of the L0 eigenvalues

λ0
α,k, i.e.,

κ0
α,n = −D

∫
B

dk λ0
α,ke

ik·An. (37)

The master equation (31) becomes

dp0
α,n(t)

dt
=

∑
n′

κ0
α,n−n′p

0
α,n′(t), (38)

and each band α evolves independently. The eigenvalues λ0
α,k

are real (see Appendix A) and symmetric in k (due to the
Bloch form), so by Eq. (37) the hopping rates κ0

α,n are real and
symmetric in n, i.e.,

κ0
α,n = κ0

α,−n = κ0∗
α,n. (39)

Equation (39) shows that the forward and backward rates
of thermally activated hopping transitions between potential
wells are equal. This is consistent with detailed balance [15].

In the tilted periodic potential, the coupling matrix is

σα,α′,n,n′ = κ0
α,n−n′δαα′ + α,α′,n−n′ (40)

= κα,n−n′δαα′ + α,α′,n−n′ (1 − δαα′ ), (41)

and the master equation (31) becomes

dpα,n(t)

dt
=

∑
n′

κ0
α,n−n′pα,n′(t) +

∑
α′,n′

α,α′,n−n′pα′,n′(t). (42)

The contribution α,α′,n from the linear potential both mod-
ifies the intraband hopping rates and gives rise to coupling
between the untilted Bloch bands. For strongly tilted periodic
potentials, the potential wells created by the periodic potential
V0(r) are substantially modified by the tilt and coupling
between the untilted Bloch bands may be significant. The
strong tilting regime has been considered previously by other
authors, in both one [33–35] and two dimensions [30].

A. Weak-tilting regime

The Wannier basis is particularly useful when the force
f is not strong enough to significantly modify the potential
wells of the periodic potential V0(r) and interband coupling
is negligible. This weak-tilting regime is defined by Eq. (23)
and, while interband coupling is negligible, the linear potential
modifies the intraband hopping rates. In the weak-tilting
regime, the master equation (42) can be well approximated
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by

dpα,n(t)

dt
=

∑
n′

κα,n−n′pα,n′ (t), (43)

where the intraband hopping rates are

κα,n = 1

D

∫
d r eV0(r)/�wα,n(r)Lwα,0(r) (44)

= κ0
α,n + α,α,n. (45)

Neglecting interband coupling, the hopping rates κα,n are
the Fourier components of the L eigenvalues λα,k (see
Appendix C), i.e.,

κα,n ≈ −D

∫
B

dk λα,ke
ik·An. (46)

The intraband hopping rates are real, i.e.,

κα,n = κ∗
α,n, (47)

but the linear potential breaks the symmetry so that λα,k is
imaginary in general (see Appendix A) and κα,n 	= κα,−n. In
the f = 0 case, Eqs. (43) and (46) become Eqs. (38) and (37),
respectively.

In the weak-tilting regime, coupling between the untilted
Bloch bands is negligible and each band evolves indepen-
dently. For t � 1/λ0

1,0, the system evolution is dominated
by damping of the α 	= 0 Bloch bands, as described in
Sec. III. After this time, the higher Bloch bands are barely
occupied and the dynamics of the Brownian particle is
dominated by intraband hopping within the α = 0 band.
This α = 0 band preserves normalization under the evolution
operator L (see Appendix D). Retaining only the stable α = 0
band and dropping the α subscript, the evolution of the
Brownian particle can be described by the single-band master
equation

dpn(t)

dt
=

∑
n′

κn−n′pn′(t). (48)

Inverting Eq. (46) gives the eigenvalues

λα,k ≈ −
∑

n

κα,ne
−ik·An. (49)

Taking k = 0 gives ∑
n

κα,n ≈ −λα,0, (50)

and, using that λ0,0 = 0 (see Appendix D), the master equation
(48) preserves normalization and can be cast into the more
familiar form [1,15]

dpn(t)

dt
=

∑
n′

[κn−n′pn′(t) − κn′−npn(t)]. (51)

Equation (51) describes hopping between Wannier states
within the α = 0 Bloch band. With the hopping rates (46),
Eq. (51) is a single-band discrete master equation describing
Brownian motion on a weakly tilted periodic potential and is
the key result of this paper.

The master equation (51) represents a significant simplifi-
cation of the system dynamics and is valid for weak tilting [see

Eq. (23)] and long times (t � 1/λ0
1,0). For shallow potentials,

i.e., when the amplitude of the periodic potential is small
compared to the thermal energy �, the Wannier states extend
beyond the periodicity a of the periodic potential allowing for
long-range hopping described by κn with |nj | > 1. Conversely,
in the case of deep potential wells, the Wannier states are
strongly localized compared to a and the hopping rates κn

with small |n| dominate.
In general, the master equation (51) can be solved by

transforming to the diagonal form

dck(t)

dt
= −λkck(t), (52)

where the eigenstates

ck(t) =
∑

n

pn(t)e−ik·An, (53)

are the expansion coefficients of the probability density in
the untilted Bloch eigenfunction basis [see Eq. (14)] and λk

are the eigenvalues of the evolution operator L [20], in the
weak-tilting regime where interband coupling is negligible.
Equation (52) can be integrated analytically.

B. Current

The Smoluchowski equation (1) can be written as

∂P (r,t)
∂t

= −∇ · J(r,t), (54)

where the coordinates of the current density are

Jj (r,t) = − 1

γj

[
�

∂

∂rj

+ ∂V f (r)

∂rj

]
P (r,t). (55)

The current density can be expanded in the Wannier basis as

J(r,t) = 1

D

∑
α,n

jα,n(t)wα,n(r), (56)

with the expansion coefficients

jα,n(t) =
∫

d r eV0(r)/�wα,n(r) J(r,t). (57)

The current for the Brownian particle is

I =
∫

d r J(r,t) =
∑
α,n

jα,n(t)ξα. (58)

Equation (58) is equal to the particle drift (see Sec. VI) when
the current density vanishes at the system boundary [2].

In the weak-tilting regime, retaining only the α = 0 band,
the current density expansion coefficients can be determined
to be

j n(t) = −�

γ

∑
n′

pn′(t)
1

D

∫
d r wn(r)∇eV0(r)/�wn′(r)

+ f
γ

pn(t), (59)

where the vector division is taken elementwise. Taking the
sum over n and using the Bloch form for the eigenstates with
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the ground state φ0
0,0(r) ∝ e−V0(r)/�, the contribution to the

current (58) from the first term in Eq. (59) can be shown to
vanish. Therefore,

I = N f
γ

, (60)

i.e., for weak tilting and long times, the steady-state current is
proportional to the tilt.

V. TIGHT-BINDING LIMIT

We consider the tight-binding limit where the Wannier
states are strongly localized around a single period of the
potential V0(r) and the linear potential is sufficiently slowly
varying that it changes negligibly across the spatial extent of
any given Wannier state. With these conditions satisfied, it is
possible to analytically derive the functional dependence of
the hopping rates κα,n and the eigenvalues λα,k on the force
f and to further explore the dynamic behavior of the system
without specific knowledge of the periodic potential.

The validity criteria for the tight-binding limit can be
determined formally as follows. The Wannier states are well
localized if the periodic potential has deep potential wells, i.e.,
when the amplitude of the periodic potential is large compared
to the thermal energy �. With this condition satisfied, the
shape of the Wannier states (particularly in the lowest Bloch
band) depends predominantly on the curvature of the periodic
potential at its extrema. Approximating the periodic potential
in the vicinity of its extrema by a harmonic potential (see
Appendix E), the linear potential is a small perturbation near
these extrema when

|f̃j | � ãj

∣∣∣∣∂2V0(r̃)

∂r̃2
j

∣∣∣∣
r̃=r̃ext

, (61)

where r̃ext are the positions of extrema in the periodic potential
and the tilde denotes rotated coordinates that diagonalize the
potential to second order. Equation (61) ensures that the tilt
varies slowly across the extent of the Wannier states and that
coupling between Bloch bands is negligible (see Sec. IV A).

In general, the coupling matrix σα,α′,n,n′ of Eq. (32) can be
expressed in terms of the self-adjoint operator H [see Eq. (9)]
as

σα,α′,n,n′ = 1

D

∫
d r eV0(r)/�e−V (r)/2�wα,n(r)

×HeV (r)/2�wα′,n′(r). (62)

To evaluate Eq. (62) in the tight-binding limit, we insert
the completeness relation (28) and take the first term in the
Taylor expansion of ± f · r/2� around the position An of the
appropriate Wannier state, i.e.,

1

D

∫
d r eV0(r)/�e± f ·r/2�wα,n(r)wα′,n′ (r)

≈ e± f ·An/2�δαα′δnn′ . (63)

This gives

σα,α′,n,n′ ≈ e− f ·A(n′−n)/2� 1

D

∫
d r eV0(r)/2�wα,n(r)

×HeV0(r)/2�wα′,n′(r). (64)

The dominant contribution to the integral (64) comes from the
spatial regions around the extrema of the periodic potential
where the Wannier states are finite and the potential is
approximately harmonic [38]. In these regions, the operator
H can be approximated by H0 and

σα,α′,n,n′ ≈ e− f ·A(n′−n)/2� 1

D

∫
d r eV0(r)/2�wα,n(r)

×H0e
V0(r)/2�wα′,n′(r) (65)

= e f ·A(n−n′)/2�κ0
α,n−n′δαα′ (66)

≈ κα,n−n′δαα′ , (67)

with

κα,n = e f ·An/2�κ0
α,n. (68)

Equation (66) shows that, in the tight-binding limit, the
coupling matrix is diagonal in the band index and the bands
decouple in the same way that they decouple in the weak-tilting
regime (see Sec. IV A). Equation (68) provides a simple
functional dependence of the hopping rates on the tilt. This
can be used to derive the ratio of forward to backward hopping
rates, i.e.,

κα,n

κα,−n
= e f ·An/�. (69)

Equation (69) is consistent with generalized detailed balance
for a tilted periodic potential [6,21,23,24]. It is independent of
the exact form of the periodic potential and the band index α.
However, the Wannier states become increasingly delocalized
with increasing band index so Eq. (69) can be expected to
become less accurate with increasing α.

In the tight-binding limit, the tilt dependence of the Bloch
eigenvalues λα,k can be determined by inserting the tilt
dependence (68) of the hopping rates into Eq. (49). This yields

λα,k ≈ −
∑

n

κ0
α,ne

f ·An/2�e−ik·An. (70)

In the case of tight-binding, nearest-neighbor hopping dom-
inates [27]. This means that higher-order hopping across
multiple wells can be neglected and the summation in Eq. (70)
need only be extended over small |n|.

For long times t � 1/λ0
1,0, the system dynamics is domi-

nated by hopping within the α = 0 band and can be described
by the single-band master equation (51) (see Sec. IV A).
In the tight-binding limit, λ0

1,0 can be approximated by the
splitting of the two lowest eigenvalues of the harmonic
approximation to the minima of the periodic potential, i.e.,
λ0

1,0 ∼ ∑
j ∂2V0(r̃)/∂r̃2

j |r̃=r̃min/γ̃j , where r̃min are the positions
of the minima in the periodic potential and again the tilde
denotes rotated coordinates that diagonalize the potential to
second order.

In the tight-binding limit, nearest-neighbor hopping domi-
nates and the summation in the master equation (51) need only
be extended over nearest neighbors. The physical interpreta-
tion of the master equation can then be made more explicit by
assuming that the Wannier states in the lowest band are the
Gaussian harmonic oscillator states of the potential minima.
With that assumption, the coefficients pn(t) are non-negative
according to Eq. (30), provided that the Wannier states are
chosen positive. The coefficients pn(t) can then be interpreted
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as the probability of the particle being localized in the nth
potential well and the master equation (51) describes particle
hopping between nearest-neighbor wells.

A. More general potentials

In the tight-binding limit, the physical arguments used to
derive the tilt dependence of the hopping rates κα,n can be
used to better understand Brownian particle dynamics in more
general potentials. For example, consider the external potential

V (r) = V0(r) + W (r), (71)

where V0(r) is the periodic potential defined previously and
the potential W (r) is slowly varying on the scale of a. In this
case, the coupling matrix σα,α′,n,n′ for the potential (71) can be
approximated by taking the first term in the Taylor expansion
of W (r) around the position An of the appropriate Wannier
state, i.e.,

1

D

∫
d r eV0(r)/�eW (r)/2�wα,n(r)wα′,n′(r)

≈ eW (An)/2�δαα′δnn′ . (72)

Approximating the operator H by H0 yields

σα,α′,n,n′ ≈ eW (An′)/2�e−W (An)/2�κ0
α,n−n′δαα′ , (73)

and considering only nearest-neighbor hopping, Eq. (73) can
be approximated as

σα,α′,n,n′ ≈ e−∇W (An)·A(n−n′)/2�κ0
α,n−n′δαα′ . (74)

To lowest order, ∇W (An) is independent of n and the
dynamics is described using the tilted periodic potential
already discussed. However, to higher orders, Eq. (74) provides
access to the dynamics for systems with external potentials of
the form of Eq. (71).

VI. MACROSCOPIC OBSERVABLES

Macroscopic properties of the system can be calculated
directly from the probability density P (r,t) or by using either
the untilted Bloch eigenfunction basis or the Wannier state
basis. We focus on the weak-tilting regime defined by Eq. (23)
for long times (t � 1/λ0

1,0). In this case, the Wannier state
basis is appropriate and the system is well described by
the single-band master equation (51). In the tight-binding
limit, the f dependence of the hopping rates is given by
Eq. (68).

A. Drift

The mean position can be calculated in the Wannier basis as

〈r〉(t) =
∫

d r rP (r,t) =
∑
α,n

pα,n(t)(Rα + Anξα), (75)

where

Rα = 1

D

∫
d r rwα,0(r). (76)

In the weak-tilting regime, retaining only the α = 0 band,
the time derivative of Eq. (75) can be found by inserting the

master equation (51). This yields

d〈r〉(t)
dt

= N
∑

n

Anκn (77)

= −iN∇kλk|k=0 (78)

= N∇kIm(λk)|k=0, (79)

where N is the normalization. Integrating Eq. (79) gives

〈r〉(t) = 〈r〉(0) + N t∇kIm(λk)|k=0, (80)

and the drift is

〈ṙ〉st = lim
t→∞

〈r〉(t)
t

= N∇kIm(λk)|k=0. (81)

Equation (81) shows that the drift is proportional to the
gradient of the imaginary part of the lowest Bloch band
eigenvalues [20]. For the untilted case, ∇kλ

0
k vanishes at k = 0

[see Eqs. (37) and (39)]. Therefore, 〈r0〉(t) = 〈r0〉(0) and the
drift vanishes. This is a consequence of detailed balance for a
periodic potential.

In the tight-binding limit, the tilt dependence of the hopping
rates and the eigenvalues λk are known analytically (see
Sec. V) and we find that

d〈r〉(t)
dt

= N
∑

n

Anκ0
ne f ·An/2�, (82)

where the sum is taken over nearest neighbors. Considering
only one dimension labeled x, the net rate of nearest-neighbor
hopping is

κ1 − κ−1 = 2κ0
1 sinh

(
fxax

2�

)
, (83)

and the eigenvalues of L in the α = 0 band are approximately
given by

λkx
= 4κ0

1 sin

(
kxax

2

)
sin

(
kxax

2
+ i

fxax

2�

)
, (84)

where we have used that
∑

n κn = 0 and, taking the sum only
over nearest neighbors, κ0

0 = −2κ0
1 cosh fxax/2�. Differenti-

ating Eq. (84), the drift is

〈ẋ〉st = 2Nκ0
1 ax sinh

(
fxax

2�

)
. (85)

Equation (85) is consistent with previous one-dimensional
treatments [2,33]. In two or more dimensions, Eq. (82) shows
that a tilt in one dimension can induce drift in another, provided
that the potential is not separable [13].

B. Diffusion

The second moment can be calculated to be

〈r2〉(t) =
∫

d r r2P (r,t) (86)

=
∑
α,n

pα,n(t)[Sα + 2An · Rα + (An)2ξα], (87)

where

Sα = 1

D

∫
d r r2wα,0(r). (88)
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In the weak-tilting regime, retaining only the α = 0 band,
the time derivative of Eq. (87) can be found to be

d〈r2〉
dt

(t) = 1

N
d〈r〉2(t)

dt
+ N

∑
n

(An)2κn (89)

= 1

N
d〈r〉2(t)

dt
+ N∇2

kλk|k=0 (90)

= 1

N
d〈r〉2(t)

dt
+ N∇2

kRe(λk)|k=0. (91)

It is convenient to define the variance

var(t) = 〈r2〉(t) − 1

N 〈r〉2(t), (92)

which evolves according to

d var(t)

dt
= N∇2

kRe(λk)|k=0. (93)

Integrating Eq. (93) gives

var(t) = var(0) + N t∇2
kRe(λk)|k=0, (94)

and the diffusion coefficient

D = lim
t→∞

var(t)

2t
= 1

2
N∇2

kRe(λk)|k=0. (95)

Equation (95) shows that the diffusion is proportional to the
curvature of the real part of the lowest Bloch band eigenvalues
[20]. In the tight-binding limit, the diffusion in one dimension
is

D = Nκ0
1 a2

x cosh

(
fxax

2�

)
. (96)

VII. CONCLUSION

We have presented a systematic transformation from the
continuous Smoluchowski equation to a discrete master
equation using a Wannier basis expansion analogous to the
tight-binding model of a quantum particle in a periodic
potential. The discrete master equation can be interpreted in
terms of intraband and interband hopping and, in the regime
of weak tilting and long times, reduces to a single-band
master equation consistent with the idea that the system
relaxes rapidly within potential wells and is then dominated
by comparatively slow hopping transitions between wells
[36–39].

In the tight-binding limit, we have derived simple analytic
expressions for the tilt dependence of the hopping rates and
eigenvalues of the lowest Bloch band. These expressions have
been used to determine the tilt dependence of the drift and
diffusion in the long-time limit. The tilt dependence of the ratio
between forward and backward hopping rates is consistent
with generalized detailed balance.

We have demonstrated that the tight-binding approach can
be used to derive analytic solutions to Fokker-Planck equations
with periodic potentials. This is particularly valuable for
nonseparable multidimensional potentials. The implications

of this work for energy transfer in molecular motors are
highlighted elsewhere [13].

APPENDIX A: ORTHONORMALITY OF
EIGENFUNCTIONS

The self-adjoint operator H [see Eq. (10)] has the eigen-
value problem

Hψk(r) = −λkψk(r), (A1)

where the eigenfunctions are

ψk(r) = eV (r)/2�φk(r), (A2)

and λk and φk(r) are, respectively, the eigenvalues and
eigenfunctions of the operator L [see Eq. (6)]. Equation (A2)
shows that, when the eigenfunctions φk(r) are chosen with
periodic boundary conditions, the eigenfunctions ψk(r) are
not periodic. This means that for the tilted periodic potential,
the operator H is in general not Hermitian, the eigenvalues
λk may be imaginary, and the eigenfunctions ψk(r) and
φk(r) do not necessarily form a complete orthonormal basis
[1].

For the untilted periodic potential with f = 0, the operator
L0 can be transformed to the self-adjoint operator H0 with
eigenfunctions

ψ0
k (r) = eV0(r)/2�φ0

k(r). (A3)

Equation (A3) shows that both the eigenfunctions φ0
k(r) and

ψ0
k (r) can simultaneously have periodic boundary conditions.

For periodic boundary conditions with a period given by Na,
the operator H0 is Hermitian. This means that the eigenvalues
λ0

k are real and exist in continuous bands separated by finite
forbidden band gaps [28]. The eigenfunctions ψ0

k (r) form
a complete orthonormal basis [1]. For an infinite spatial
extent, the eigenfunctions ψ0

k (r) satisfy the orthonormality
relation ∫

d r ψ0∗
k (r)ψ0

k′(r) = δ(k − k′), (A4)

and the completeness relation∫
dk ψ0∗

k (r)ψ0
k (r ′) = δ(r − r ′). (A5)

In the L0 operator basis, the orthonormality
relation becomes∫

d r eV0(r)/�φ0∗
k (r)φ0

k′(r) = δ(k − k′), (A6)

and the completeness relation becomes

eV0(r)/�

∫
dk φ0∗

k (r)φ0
k(r ′) = δ(r − r ′). (A7)

APPENDIX B: POSITIVITY OF EIGENVALUES

Following the methodology presented in Ref. [1], the
operator L0 can be written as

L0 =
∑

j

�

γj

∂

∂rj

e−V0(r)/� ∂

∂rj

eV0(r)/�. (B1)
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Using Eq. (6) with f = 0 and Eq. (A6),∫
d r eV0(r)/�φ0∗

k (r)L0φ
0
k′(r)

= −λ0
kδ(k − k′) (B2)

= −
∫

d r e−V0(r)/�
∑

j

�

γj

∣∣∣∣ ∂

∂rj

eV0(r)/�φ0
k(r)

∣∣∣∣
2

, (B3)

where the left-hand side of Eq. (B2) has been integrated by
parts using Eq. (B1). Equation (B3) is less than or equal to
zero so the eigenvalues λ0

k are greater than or equal to zero. In
particular, the ground state is

φ0
0(r) ∝ e−V0(r)/�, (B4)

with the eigenvalue λ0
0 = 0.

APPENDIX C: EIGENVALUES FOR THE WEAKLY TILTED
PERIODIC POTENTIAL

The eigenfunctions φα,k(r) of the tilted periodic potential
can be expanded in the Wannier basis as

φα,k(r) =
∑
α′,n′

�α,α′,k,n′wα′,n′(r). (C1)

Substituting expansion (C1) into Eq. (6), multiplying by
eV0(r)/�wα,n(r), and integrating gives

−λα,k�α,α,k,n =
∑
α′,n′

�α,α′,k,n′σα,α′,n,n′ . (C2)

Using the Bloch form for φα,k(r), it can be shown that

�α,α,k,n = �α,α′,k,0e
ik·An. (C3)

Substituting Eq. (C3) into (C2) and neglecting interband
coupling yields

λα,k = −
∑

n

κα,ne
−ik·An, (C4)

which can be inverted to derive Eq. (46).

APPENDIX D: NORMALIZATION OF THE LOWEST
UNTILTED BLOCH BAND

The normalization of the probability density P (r,t) can be
calculated in the Wannier state basis as

N (t) =
∫

d r P (r,t) =
∑
α,n

pα,n(t)ξα, (D1)

where

ξα = 1

D

∫
d r wα,0(r). (D2)

In the f = 0 case, the normalization can be determined by
taking the sum over n of Eq. (38) and integrating to give

N0(t) =
∑
α,n

p0
α,n(0)e−λ0

α,0t ξα. (D3)

Equation (D3) shows that the band α decays in time with a
rate given by λ0

α,0 � 0 (see Appendix B). Only the α = 0 band
with λ0

0,0 = 0 is stable. This is consistent with the separation
of time-scales argument presented in Sec. III [see Eq. (20)].

For the tilted periodic potential, taking the time derivative
of Eq. (D1) and inserting the master equation (42), the time
derivative of the normalization can be found to be

dN (t)

dt
=

∑
α,n,n′

[
κ0

α,n′pα,n(t) +
∑
α′

α,α′,n′pα′,n(t)

]
ξα.

(D4)

The contribution from the lowest α = 0 band is given by the
α = 0 contribution to the sum in Eq. (D4). The first term is
due to the periodic potential and vanishes because

∑
n κ0

0,n =
−λ0

0,0 = 0 [see Eq. (37) and Appendix B]. The second term is
proportional to

∑
n 0,α,n = ν0,α,0 and

ν0,α,0 ∝
∫

dr eV0(r)/�φ0∗
0,0(r)

∑
j

fj

γj

∂

∂rj

φ0
α,0(r) (D5)

=
∫

dr
∑

j

fj

γj

∂

∂rj

φ0
α,0(r) (D6)

= 0, (D7)

where we have used that the untilted Bloch ground state
φ0

0,0(r) ∝ e−V0(r)/� [see Eq. (B4)] is periodic at the boundary.
This shows that the untilted α = 0 Bloch band is stable when
evolved by the operator L, even for a finite tilt.

APPENDIX E: VALIDITY OF THE TIGHT-BINDING LIMIT

In the tight-binding limit, the shape of the Wannier states
depends on the curvature of the periodic potential at its extrema
and in the vicinity of these extrema the linear potential is a
small perturbation. To derive the regime of validity for the
tight-binding limit, the periodic potential in the vicinity of its
extrema at r = rext can be approximated, in a rotated frame,
by the harmonic form

V0(r) ≈ V0(rext) + 1

2

∑
j

(rj − rextj )2 ∂2V0(r ′)
∂r ′2

j

∣∣∣∣
r ′=rext

. (E1)

The components of the potential U 0(r) of the Hermitian
operator H0 [see Eq. (11)] can then be approximated by

U 0
j (r) ≈

[
1

4�
(rj − rextj )2 − 1

2

]
∂2V0(r ′)

∂r ′2
j

∣∣∣∣
r ′=rext

. (E2)

With the addition of the linear potential, the components of
the potential U (r) become

Uj (r) ≈
[

1

4�
(rj − r̄extj )2 − 1

2

]
∂2V0(r ′)

∂r ′2
j

∣∣∣∣
r ′=rext

, (E3)

where the tilt shifts the extrema from r = rext to r = r̄ext with

r̄extj = rextj + fj

∂2V0(r)/∂r2
j

∣∣
r=rext

. (E4)

The tight-binding limit corresponds to the regime where the
shift |r̄extj − rextj | is significantly smaller than the period aj of
the periodic potential, i.e.,

|fj | � aj

∣∣∣∣∂2V0(r)

∂r2
j

∣∣∣∣
r=rext

. (E5)
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