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Microscopic origins of first-order Sm-A–Sm-C phase behavior in de Vries smectic liquid crystals
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We explore the phase behavior of tilted hard rods as a model of de Vries smectic behavior and the first order
smectic-C (Sm-C) to smectic-A (Sm-A) phase transition. The free energy cost of azimuthal rotation of a molecule
away from the local tilt direction is calculated via umbrella sampling. This calculation is used to map the hard
rod system onto a lattice spin system which shows a cross-over from a continuous to first-order phase transition
as the tilt of the rods is increased. This analysis offers a natural explanation of the first-order Sm-A–Sm-C phase
transition common to de Vries smectics.
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In 1977, de Vries reported a new type of liquid-crystal Sm-A
phase that showed a set of qualitatively different features from
the conventional Sm-A phase [1–3]. Initially this phase was
distinguished from other smectics by a first-order Sm-A–Sm-C
phase transition with an anomalously small reduction in layer
spacing [4]. Subsequent work showed the characteristics of
the de Vries Sm-A phase also includes large electroclinic
responses [5], large field-driven changes in birefringence in
chiral materials [6], and a lack of a nematic phase in the
phase sequence. One of de Vries’ early models, now called the
hollow cone model, proposed that these phases are smectics
with a molecular orientational distribution which is uniform
in azimuthal angle φ but has a preferred tilt away from the
layer normal, θA, sweeping out the surface of a cone, Fig. 1.
While this model remains controversial, it neatly explains the
electro-optic response of chiral de Vries systems as well as
the small layer contraction as the effects of averaging the
molecular properties over azimuthal angle [7].

Although many of the features of the de Vries Sm-A
phase can be explained by applying the hollow cone model,
the observations of a first-order Sm-A–Sm-C transition [1,5]
remain unexplained despite substantial study of these systems.
In this paper we show using simulations and mean-field theory
that much like the anomalous layer spacing and electro-optic
response, the first-order Sm-A–Sm-C phase transition seen in
de Vries smectics can be understood as a direct result of the
hollow cone model.

Materials exhibiting de Vries phases sparked interest for
use in ferroelectric liquid-crystal displays [8]. The small
change in layer spacing makes these good candidates for
ferroelectric liquid-crystal (FLC) displays where large changes
to that spacing can cause the formation of “zig-zag” defects
during manufacturing [9]. In addition, the large electroclinic
effect of de Vries Sm-A phases is well suited for sensitive
chirality detection [5]. These potential applications have led to
substantial research attempting to characterize and understand
de Vries behavior which in turn has led to empirical exploration
of the properties of de Vries materials. For instance, liquid
crystal chemists discovered that chemical and structural motifs
that promote layering, such as polyphilic or bulky tails,
tend to produce de Vries–like behavior. This has given us
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some degree of predictive power in the design of de Vries
mesogens [10]. The correlation between strong layering and
de Vries materials also manifests as a direct isotropic to
Sm-A phase transition, bypassing the nematic phase entirely.
Meanwhile, high-resolution x-ray studies of the Sm-A–Sm-C
phase transition have directly observed a discontinuous change
in layer spacing in several materials [5,11]. Exploration
of the electro-optic behavior reveals a distinct sigmoidal
polarization response, or double-peaked polarization current
response [7,12–15] in a broad range of de Vries materials,
also indicative of a first-order Sm-A–Sm-C phase transition.
This first-order phase transition is in sharp contrast to the
second-order Sm-A–Sm-C transition common in conventional
smectics [1,16].

Several groups have performed theoretical studies of the
de Vries Sm-A phase and the Sm-A–Sm-C transition at a
phenomenological level. Bahr et al. used a simple Landau
theory to model de Vries–like electroclinic response seen
in material C7 [12]. The mean-field theory developed by
Saunders et al. shows that coupling between tilt and biaxiality
in smectics can produce a first-order Sm-A–Sm-C phase
transition, but does not point to a microscopic origin for this
coupling [17,18]. In a similar vein, work by Gorkunov et al.
shows that the addition of higher order coupling terms into a
mean-field theory recreates the anomalously small change in
layer spacing through the Sm-A–Sm-C phase transition, and
shows how these couplings might arise based on a model of
intermolecular interaction [19,20]. At the microscopic level,
Lagerwall et al. have proposed an alternative to the hollow
cone model based on a conventional Sm-A with abnormally
low nematic order [21].

Our work starts from the microscopic foundation of the
hollow cone model and explores the implications of this model
for de Vries smectics using Monte Carlo simulations, umbrella
sampling, coarse-graining, and mean-field techniques. This
bottom-up analysis culminates in the realization that the
first-order Sm-A–Sm-C transition can be viewed as a con-
sequence of the hollow cone model via a defect condensation
mechanism.

We begin by considering the behavior of a hollow cone
fluid of a single smectic layer of hard spherocylinders.
We performed NPT Monte Carlo simulations of a fluid of
spherocylinders which are confined to the z = 0 plane and
tilted from the layer normal by fixed cone angle θA, but

050502-11539-3755/2013/87(5)/050502(5) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.87.050502


RAPID COMMUNICATIONS

KOST-SMITH, BEALE, CLARK, AND GLASER PHYSICAL REVIEW E 87, 050502(R) (2013)

FIG. 1. (Color online) Snapshot from a Monte Carlo simulation
of a single-layer hard spherocylinder smectic with the hollow
cone orientation distribution (color represents azimuthal orientation).
This NPT simulation was performed with cone angle θA = 45◦

and spherocylinder length L/D = 5 in the Sm-A phase near the
Sm-A–Sm-C phase transition. Molecules in the hollow cone model
have the orientation distribution in tilt θ and azimuthal angle φ of the
form f (θ,φ) = (2π )−1g(θ ). The distribution is uniform in φ while
g(θ ) is narrowly peaked around the cone angle θA, which we take as
the delta function δ(θ − θA). Hollow cone smectics show no global
polar order in the Sm-A phase but produce finite correlated regions.
Macroscopic tilt ψ is the result of global bias of molecules to one
side of the φ distribution.

allowed to freely rotate in azimuthal angle φ. This rigid
realization of the hollow cone model where the distribution of
spherocylinders in z and θA are explicitly δ functions is chosen
to reduce the number of free parameters in the model. A more
realistic model would include out-of-layer fluctuations and a
finite distribution in angle θ centered around the cone angle,
but such generalizations should not change the qualitative
conclusions of the analysis.

The pressure in the simulation is equivalent to an effective
mean attraction between the spherocylinders, mapping the
hard core system onto a thermotropic system with tem-
perature inversely proportional to pressure. At sufficiently
large cone angles, simulations of this idealized system show
a first-order phase transition between a quasi-long-ranged
Sm-C–like phase at high pressure (low temperature) and a
disordered phase at low pressure (high temperature) where
finite φ-correlated domains average to Sm-A symmetry as
demonstrated in Fig. 1. These domains occur in hollow cone
smectics due to the effective potential experienced by tilted
spherocylinders interacting with their neighbors. The existence
of these correlated domains predicts very different behavior
from conventional Sm-A phases. Specifically, whereas fields
on conventional Sm-A phases act on single molecules resulting
in weak electroclinic coupling, the electroclinic effect due
to reorienting the φ value of correlated domains around the
cone is much larger. This is particularly noticeable near
the Sm-A–Sm-C phase transition, which is consistent with
experimental measurements of de Vries systems [5].

We measure the effective azimuthal potential by computing
the Gibbs free energy cost of rotating a single spherocylinder
by angle �φ away from the local azimuthal order averaged
over a domain of radius a in the fluid layer, G(�φ). An
umbrella sampling scheme ensures proper sampling over
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FIG. 2. (Color online) Umbrella sampling calculations of the
Gibbs free energy of azimuthal rotation within a smectic layer of
a single spherocylinder relative to the polarization vector averaged
among surrounding spherocylinders within radius a = 5σ where σ is
the spherocylinder diameter. These calculations are performed within
the Sm-C phase near the Sm-A–Sm-C phase transition at different
cone angles θA. At larger cone angles a secondary minimum appears
at φ = π . Superimposed are fits of the γ potential, Eq. (1), where the
secondary minimum is excluded from the fitting procedure if present
by separately fitting Gmax as demonstrated in the 50◦ fit. As the cone
angle is increased the width of the well is reduced, or equivalently, γ

increases.

the full range of the rotational potential. We make iterative
approximations to G(�φ) in order to bias the system away
from well-sampled regions. Each iteration improves the
approximation by using the sampled histogram ρ(i)(�φ) via
the equation

G(i)(�φ) = −kBT ln[ρ(i−1)(�φ)],

where the superscripts denote the iteration. The free energy
profile, demonstrated in Fig. 2 for various cone angles in the
Sm-C phase near the Sm-A–Sm-C transition, shows a narrow
minimum at �φ = 0 whose width decreases with increasing
cone angle. This result is robust to changes in the hollow cone
θ distribution. For instance, defining a diffuse hollow cone via
a harmonic potential in the θ coordinate produces qualitatively
similar results.

Using the free energy profile and our observation that this
system is well represented as a collection of φ-correlated
domains, we define a coarse graining transformation which
maps our off-lattice hollow cone smectic onto a generalized
XY spin model with lattice constant a, the coarse-graining
length scale. The average φ coordinate of the correlated
domains within the smectic layer maps to the spin orientations
in the XY model and the free energy profile maps to the in-
layer nearest-neighbor interaction. Motivated by this measured
azimuthal free energy curve, we choose an in-layer potential
of the form

Uij = −Jxy

[
1
2 [cos(φi − φj ) + 1]

]γ
. (1)

This potential, which we call the γ potential, features an energy
minimum at �φ = 0 whose width is tuned via parameter
γ . The γ potential fits well to the free energy profile at
small to moderate cone angles near the Sm-A–Sm-C phase

050502-2



RAPID COMMUNICATIONS

MICROSCOPIC ORIGINS OF FIRST-ORDER Sm-A–. . . PHYSICAL REVIEW E 87, 050502(R) (2013)

3

4

5

1 2 3 4 5

50°
45°
40°
35°
30°
20°

4

8

12

FIG. 3. (Color online) Mapping between the hard spherocylinder
hollow cone system and the γ -potential XY model when using
a = 5σ as the coarse-graining length scale where σ is the diam-
eter of the spherocylinders. Spin coupling strength Jxy increases
approximately linearly with pressure, while the γ values are nearly
independent of pressure but increase with larger cone angles θA. While
the specific values of Jxy and γ depend on a, these trends do not.

transition as shown in Fig. 2. At larger cone angles we observe
a secondary minimum at �φ = π which we choose to exclude
from the fitting procedure because our analysis suggests that
the width of the minimum at �φ = 0 is the essential feature
of the interaction. At sufficiently large cone angles, however,
we predict that de Vries systems might additionally exhibit
a smectic phase with two-dimensional nematic order of the
c-director analogous to the phase reported in spin systems
with a secondary minimum [22].

These fits provide us with a map, summarized in Fig. 3,
between our hard spherocylinder system governed by pressure,
spherocylinder length, and cone angle to a spin system of
lattice constant a governed by the angular width of the
minimum in the neighbor interaction potential (encoded in γ )
and the dimensionless energy ratio βJxy . With respect to pres-
sure, the map reveals a roughly linear increase of the coupling
strength Jxy and approximately constant γ independent of cone
angle. We note that while the energy ratio βJxy corresponding
to the transition shows no real trend with respect to cone angle,
the value of γ shows a distinct increase as the angle increases.

The γ potential can be viewed as a continuous version of
the Potts model interaction u(φi,φj ) = −Jδφi ,φj

, where δφi ,φj

is the Kronecker delta over possible discrete φ states. Previous
work by Domany et al. on two-dimensional spin systems
used the γ potential to explore the cross-over between the
continuous Kosterlitz-Thouless phase transition of the planar
rotor XY model with interaction u(φi,φj ) = −J cos(φi − φj )
at γ = 1 and the first-order phase transition of the n-state
standard Potts model where n > 4 [23].

Our de Vries system is composed of smectic layers which,
like the two-dimensional spin systems of Domany et al., are
represented as planes of spin coupled by the γ potential of
strength Jxy in the x and y directions. The spins in these layers
interact with adjacent layers in the z direction via a planar

rotor style coupling of strength Jz. The Hamiltonian for this
anisotropic cubic XY model is given by Eq. (2) where we have
assumed integer γ , expressed the γ potential as a finite Fourier
sum with known coefficients bk , and sum the last term over all
in-layer neighbors.

H = −pE
∑

i

cos(φi) − Jz

∑
i

cos(φi − φi+1)

− Jxy

∑
(i,j )

γ∑
k=1

bk cos[k(φi − φj )]. (2)

We characterize the phase behavior of our related system
using self-consistent variational mean-field theory [24]. In the
mean-field approximation we absorb the lattice’s geometric
factors into our coupling constants and combine the planar
rotor interlayer coupling with the first term of the in-layer
coupling. We assume that the N -spin matrix can be written as
the product of single-spin density matrices, Eqs. (3) and (4).
Sets of order parameters ck are found that satisfy the γ different
self-consistency constraints in Eq. (5). The stable phase is
parametrized by the set of order parameters minimizing the
mean free energy, Eq. (6).

ρ1 = 1

Z1
exp

[
β

(
pE +

∑
k

Jkck cos(kφ)

)]
, (3)

Z1 =
∫ 2π

0
exp

[
β

(
pE +

∑
k

Jkck cos(kφ)

)]
dφ, (4)

ck =
∫ 2π

0
ρ(φ) cos(kφ) dφ, (5)

F = 1

2
N

∑
k

Jkc
2
k − N

β
ln(Z1). (6)

The system shows a transition between the paramagnetic
(Sm-A) phase and ferromagnetic (Sm-C) phase as shown
in the γ -T phase diagram in Fig. 4. Much like Domany
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FIG. 4. (Color online) γ -T phase diagram of the γ -potential
spin system showing tricritical behavior. The dashed and solid
phase boundaries denote second- and first-order phase transitions,
respectively. In the two-dimensional system ( ) and systems with
weak interlayer coupling, Jz/Jxy < 0.1, the phase transition crosses
over from continuous to first order between γ = 4 and γ = 5. At
stronger couplings, we see a sharp shift to larger values of γ as the
cumulative potential begins to resemble the planar rotor.
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et al. we see a continuous phase transition at small γ

and a first-order transition at large γ . [23] Comparing with
our parameter mapping, systems corresponding to smectics
with large cone angles show first-order Sm-A–Sm-C phase
transitions, while values of γ corresponding to small cone
angles show continuous behavior. Our analysis locates the tri-
critical point in the two-dimensional system between the γ

values of 4 and 5 which corresponds to a cone angle of
approximately 40◦, though this is dependent on the coarse-
graining length scale. The phase behavior proves to be robust
to weak interlayer planar rotor interactions. To first order,
the interlayer coupling stabilizes the Sm-C phase to higher
temperatures but does not significantly change the location of
the tricritical point.

The first-order phase transition within the spin system,
and thus the spherocylinder system, can be understood in
the context of defect or vacancy condensation much like
phase transition in the standard Potts model [25]. The system
free energy is reduced by overlapping disordered regions,
producing a depletion-style attraction between disordered
domains. This suggests that the first-order phase transition
seen in de Vries smectics also originates from a disorder
condensation mechanism.

In addition to exploring the phase behavior of the system,
we examined the polarization field response of the model. Fig-
ure 5 demonstrates the qualitative agreement between the spin
model and a series of polarization response curves for de Vries
material W530 measured via the polarization reversal current
[13,26]. These fits capture the basic sigmoidal behavior over
a substantial range of temperatures above the Sm-A–Sm-C
phase transition using only three free parameters.

In summary, we have shown that the implications of a
hollow cone smectic go further than the layer spacing and
electro-optics to which it has been previously applied. The
steric interactions inherent in a hollow cone smectic imply
φ-correlated domains and, at sufficiently large cone angles,
a first-order Sm-A–Sm-C phase transition which leads to the
observed sigmoidal field response.

Further simulation studies, for example, an atomistic level
investigation, are needed to understand the microscopic origins
of hollow cone behavior itself. Our work, however, has
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FIG. 5. (Color online) Comparison of the polarization density
response of de Vries material W530 (symbols) when an electric field
is applied across a liquid-crystal cell with bookshelf alignment [13]
and the model’s predictions for γ = 6 (curves). The model’s energy
units at a given value of γ are set by equating the model’s Sm-A–
Sm-C transition temperature TAC to the transition temperature for
W530, 39◦C. The polarization density saturation and susceptibility
is scaled to demonstrate simultaneous qualitative agreement with
several polarization curves near the Sm-A–Sm-C transition. At lower
temperatures we predict a discontinuous change in P which is not
seen experimentally. The continuous experimental behavior may be
due to quenched surface disorder in the cell.

shown that once hollow cone behavior is present, first-order
behavior emerges naturally as a consequence of excluded
volume effects. Even without features such as out-of-layer
fluctuations and an atomistic molecular model, we find that
our minimal hollow cone model is a microscopic picture of de
Vries smectics that encompasses most of the experimentally
observed characteristics of the phase including the common
first-order phase transition and qualitative agreement with the
electro-optics.
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DMR 1008300.
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