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Braid group and topological phase transitions in nonequilibrium stochastic dynamics
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We show that distinct topological phases of the band structure of a non-Hermitian Hamiltonian can be
classified with elements of the braid group. As the proof of principle, we consider the non-Hermitian evolution of
the statistics of nonequilibrium stochastic currents. We show that topologically nontrivial phases have detectable
properties, including the emergence of decaying oscillations of parity and state probabilities, and discontinuities

in the steady state statistics of currents.
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Numerous physical systems are described by Hermitian
Hamiltonians H(x), which periodically depend on a vector
of parameters x with a period 2mw. As functions of x, the
eigenvalues A;(x) of H (x) represent the band structure of
the system. Well known examples include Bloch bands for
electrons and phonons in periodic crystal potentials [1] or
Floquet bands for periodic-driven quantum dynamical systems
[2,3]. If we trace the dependence of initially nondegenerate
eigenvalues of a Hermitian Hamiltonian on ¥, it is possible
that, at some x, a pair of bands A;(x) and A ;(x) goes through
an exact crossing point. Such events correspond to guantum
phase transitions [4] that indicate, for example, a change of
topological order of Floquet bands in periodic momentum
space [3], or electronic Bloch bands in periodic position
space [5,6] and their phononic and magnonic counterparts [7].

Dissipative open systems described by non-Hermitian
H (x) also possess the band structures [8,9], once they
have periodic dependence on position, momentum, or others.
Investigation of these topological band structures is currently
an active research field [10—13]. In this Rapid Communication,
we demonstrate that topological properties of the band struc-
ture of a non-Hermitian Hamiltonian can be classified with
elements of the braid group. In topologically nontrivial phases
such systems can undergo a spontaneous symmetry breaking
and show specific detectable effects.

Consider first a Hermitian Hamiltonian with a periodicity
H( X) = H( X + 2m) along one of the parameters y, and with
nondegenerate eigenspectrum A;(x), i = 1,...,N. Such real
eigenvalues of A (x) must have the 2 periodicity: A;(x) =
Ai(x 4 27). In this Rapid Communication, we will explore
consequences of the observation that in the non-Hermitian case
the latter restriction generally does not hold: Eigenvalues of a
non-Hermitian Hamiltonian are generally complex. Hence, the
periodicity of H(x) only implies the periodicity of the whole
nondegenerate complex eigenspectrum but does not mean that
a single eigenvalue has such a periodicity. For example, one
may encounter a situation when

Mlx +2m) =200, Aj(x +2m)=x(x) G #j), (1)

i.e., two complex eigenvalues, A; and A;, twist in a braid so
that the 27 periodicity for an individual eigenvalue is lost. This
situation cannot be met by nondegenerate real A;(x) because
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FIG. 1. (Color online) Two band structures. In order to satisty
Egs. (1), bands should either (a) cross or (b) create a braid pattern.
The latter is possible only when eigenvalues are allowed to be complex
(for the non-Hermitian case).

such a case would inevitably lead to exact crossing of two
eigenvalues at some y, as illustrated in Fig. 1(a). In contrast,
Fig. 1(b) demonstrates that complex eigenvalues can avoid
each other when y changes continuously while satisfying
Egs. (1). It is straightforward to generalize this observation,
namely, the twisting pattern of N band of a non-Hermitian
N x N Hamiltonian as functions of the parameter x can
be generally mapped to some braid diagram of the braid
group By.

Two band structures are topologically equivalent if all their
N bands can be continuously deformed into each other without
encountering an exact eigenvalue crossing. Different elements
of the braid group cannot be continuously deformed into
each other. This means that topologically equivalent bands
are described by the same diagram of the braid group, i.e.,
the braid group provides a natural classification of different
patterns of the band structure in systems with non-Hermitian
Hamiltonians. Varying parameters of the Hamiltonian, the
topology of the band structure can only change at a crossing
of a degeneracy of eigenvalues. We will call such topological
phase transitions the braid phase transition (BPT).

The fact that a specific band in a topologically nontrivial
phase may not possess the periodicity of the Hamiltonian pro-
vides the means for the spontaneous symmetry breaking (SSB)
phenomenon [14], i.e., given a symmetry of the equations of
motion, a physical system can prefer certain solutions that
are not invariant under this symmetry. The full symmetry is
preserved only in the ensemble of all solutions. The SSB is
a general principle that underlies a vast number of physical
phenomena, ranging from ferromagnets and superconductors
to the origin of masses in elementary particle physics [15]. We
will show that BPTs can lead to an unusual mechanism of the
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phase transition that is in some sense opposite to SSB, namely,
while individual bands in a nontrivial phase do not respect the
symmetry of the Hamiltonian, the observable characteristics,
such as the moment generating function of currents, may keep
the original symmetry. In such a case, the system may, for
physical reasons, choose different solutions at different values
of the periodic parameter x, which results in discontinuity of
such observables as functions of x. We will also show that,
similar to Goldstone modes in SSB phases, nontrivial braid
phases correspond to the appearance of certain modes with
new properties.

Non-Hermitian Hamiltonian generally appears in both
quantum and classical open systems, once the couplings
to external environments and dissipations are involved. For
example, complex-valued self-energies that account for those
coupling to leads inevitably appear in Green functions which
when unperturbed are just based on bare Bloch band Hamil-
tonians. In such non-Hermitian systems, complex eigenvalues
are ubiquitous, so will be the BPTs. As the proof of principle,
we will explore the band structure of the operator H(x) that
describes the transport statistics in two elementary stochastic
kinetic models. H (x) plays the role of non-Hermitian Hamil-
tonian [16]. The so-called counting parameter x conjugates to
the discrete transport quantities of interest, e.g., the particle
number, and thus leads to the 27 periodicity of H(x), which
is just similar to the periodic Brillouin zone resulting from the
discrete lattice spacing in solid state physics.

We first consider a Markovian stochastic transport of
particles between two reservoirs through an intermediate bin
[see Fig. 2(a)]. When the bin is empty, a particle can jump
from the left (right) reservoir into the bin with kinetic rate
ki (k4). When the bin has a particle inside it, the particle in
the bin escapes to the left (right) reservoir with rate k3 (k).
This model is known in biochemistry as the Michaeils-Menten
model [17,18], of which the rare event statistics have been
measured in [19]. Similar stochastic models also appear in
description of quantum transports through nanoscale electric
circuits [20] and phononic devices [21].

Let us introduce two sets of joint probabilities: po(n,t)
and pi(n,t) of that during time interval [0,7]; there will be
exactly n particles transferred into the right reservoir, while at
time 7 the bin is, respectively, empty or filled with a particle.
The master equations for pos(n,t) are given by po(n,t) =
—(k1 + k9 po(n,t) + kapi(n — 1,t) + kapi(n,t), pi(n,t) =
—(kz2 + k3)p1(n,1) + ki po(n,1) + kapo(n + 1,r).  Upon a
Fourier transform, they translate into %(zo,m)T =

H(x)(z0,21)7, where zo/1(x,1) = Y oe_ . poj1(n,t)e’™™ with
the effective Hamiltonian H () given by

—k; — k4

kaet & k3) 2)
ki + k4e_iX ’

H(X)=< ey — ks

To describe the full counting statistics of currents into the right
reservoir, the moment generating function (MGF) Z(x,t) =
zo(x,t) + z1(x,t) can be obtained as

Z(x.1) = (1 exp (H()N|p), 3)
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FIG. 2. (Color online) (a) The Michaelis-Menten-like model of
a bin coupled to two particle reservoirs. The wavy line indicates
that transitions related to the right reservoir are monitored. (b) Braid
phases of the counting statistics behavior of the kinetic model at
ki = k, = 1. The dashed line indicates the detailed balance condition
kiky = k3ky. (c) Braid diagrams of band structures for different phase
regions, with (cl) phase I (k3 = 1.5, ks = 0), (c2) phase II (k3 =
0.5, k4 = 0), and (c3) phase I1I (k3 = 1.5, ky = 1.5).

where (1] = (1,1), and |p) = (po,p1)” Ais the vector of the
initial probabilities. The eigenvalues of H () are given by

—K + /K2 + dkikyey + dkskye_

Ax(x) = > )

“)

where K = ki + ky + k3 + k4, eL = e X — 1. BPTs corre-
spond to exact crossing of two eigenvalues, which can be found
by equating the expression in the square root in (4) to zero.
This corresponds to the condition y = m, and constraint on
kinetic rates: (k; + k + k3 + k4)?> — 8k k, — 8k3ks = 0. This
equality describes the phase boundaries, which divide the
space of positive k3 and k4 into several phase regions, as shown
in Fig. 2(b).

In order to show that the phase transition corresponds to the
topology change of the braid diagram of the band structure, we
plot eigenvalues (4) as a function of x € [0,27) in Fig. 2(c).
Fig. 2(c1) corresponds to phase I with a trivial 27 periodicity.
Figure 2(c2) corresponds to phase II with eigenvalues that
are not periodic but rather twisting around into each other
during a continuous change of x from 0 to 27 and satisfying
Egs. (1). Figure 2(c3) corresponds to phase III, whose braid
has a reversed chirality compared to phase II.

The steady state current of the stochastic transport is given
by 05 A+ (X)|y=0, from which we see that different chiralities
of the braid diagram correspond to different directions of
transports. In phase II in Fig. 2(c2), the particle current flows
from left to right, while in phase III in Fig. 2(c3), the particle
current flows from right to left as a consequence of the
reversed chirality of the braid diagram. The detailed balance
case k1k, = ksk4 always belongs to the topologically trivial
phase. It describes the equilibrium condition with zero current,
which splits the phase diagram in Fig. 2(b) into two parts with
opposite current directions.
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Across the phase boundaries between phases I, II, and
I1I, the topology of the braid diagram will experience abrupt
change via transitions through the degeneracy of bands. The
fact that the degeneracy point is encountered at a finite value
of the counting parameter y = m means that it influences
properties of the full counting statistics rather than the lowest
cumulants of a current distribution. In fact, at x = & the matrix
H (7r) has all real entries and the corresponding MGF (we will
call it the parity probability)

Z@ny= Y Y [pj@nn—pien+1n0]  (5)

n=—00 j=0,1

has a simple physical meaning [22], namely, it is the difference
of the probabilities to observe an even and an odd number of
transitions into the right reservoir during [0,7].

The BPT directly influences the time-dependent behavior
of Z(m): Let (vy| and |u) be, respectively, the left and the
right eigenstates of the matrix H (rr), corresponding to eigen-
values e+ = A4 (7). Equation (3) gives then Z(r) = C e+ +
C_e*', where C+ = (1|uy){v+|p). Since both eigenvalues &,
have negative real parts, the absolute value of Z(;r) decays
exponentially with time. In phase I, both eigenvalues are pure
real and &, > ¢_. Hence the term C_e®*" quickly becomes
exponentially suppressed in comparison with Ce®+'. At time
scales larger than 1/(e; — ¢_) the behavior of Z(;r) is then
totally described by a single exponent, as we illustrate in Fig. 3.

Consider next the case of parameters in phase II. Two
eigenvalues, €1, are now complex conjugate to each other.
They have the same real part, which means that it is impossible
to disregard one solution in favor of another one. Moreover,
it is easy to see that C_ = C7 and the time evolution of the
parity probability becomes oscillating

Z(w) = Ae”¥"*cos [Im(e; )t + o] , (6)

with some constants A and ¢, that depend on initial conditions.
In Fig. 3, we show numerical results of the evolution of the
parity probability in phase II, which confirm that the BPT to
the topologically nontrivial phase corresponds to oscillations
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FIG. 3. (Color online) Manifestation of BPT by the different time
evolving patterns of the parity probability Z(sr) in different phases.
Phase I (k3 = 1.5, k4 = 0) shows monotonic decay, while phase II
(ks = k4 = 0) exhibits oscillatory decay. To expose oscillations of
phase II, Z(x) was multiplied by exp(K¢/2) in the inset. The initial
condition is | p) = (0,1)7.
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FIG. 4. (Color online) (a) Scheme of three-state cyclic kinetics.
(b) The phase diagram of the transport statistics of the three-state
model. The dashed line indicates the detailed balance condition
kikaks = kykske at equilibrium [23]. (c) Braid diagrams of band
structures for different phases: (c1) I with k; =2, k, = 0.1; (c2)
Il (ki =1,k =3); (c3) Il (ky =1, ky = 1), and (c4) IV (k) = 2,
k2 = 2)

of Z(sr). This also implies that the conventional assumption of
sufficiency of only one eigenvalue to estimate the full counting
statistics at long times cannot be used in the nontrivial braid
phase II. Phase III shares similar behaviors.

As amore complex example, we consider next a Markovian
three-state kinetic model shown in Fig. 4(a). It is widely used
as a model for cyclic enzyme reactions [24], molecular motors
[25], and charge currents through quantum dots [26]. With
transitions between states 1 and 2 being monitored, the evolu-
tion of the counting statistics is described by %(Zl ,22,23) =

HA(x)(z1,22,23)" , where the effective Hamiltonian H(x) is

—ki — ks k4€7ix k3
Ho)=| ke* —ka—ki ke NG
k5 k >9 —k3 — k6

pj(n,t) is the joint probability for a system to be in state j
while there are already n transitions from state 1 to 2 observed
by time ¢.

The system now has three bands A;_; > 3(x) and a richer
braid phase diagram. For the sake of simplicity, we fix
ks =2.1, ks =2, ks = 0.1, k¢ = 0.1 and only plot the phase
diagram in the space of (kj,k;) in Fig. 4(b). There are four
braid phase regions [27]. Phase I is the trivial braid with each
band keeping the 27 period [see Fig. 4(c1)]. Phase II can be
developed from phase [ by crossing A1(x) and A(x)at x = 7.
The two new bands twist and transfer into each other after a
continuous change of x by 27, with the third band keeping its
periodicity intact [see Fig. 4(c2)]. The nontrivial topology of
bands is manifested by the decaying oscillation of the parity

probability Z() = Y3_, z;(x).
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In phase III, the situation is different. The first band
remains intact, while the second and third bands are twisting
so that Ay(x 4+ 27m) = A3(x) and Az(x 4+ 27w) = Ay(x) [see
Fig. 4(c3)]. This braid phase can be reached from phase I via
the degeneracy of X,(x) and A3(x) at x = 0, which then splits
into a conjugate eigenvalue pair. Since at x =0, z;(x =0)
denotes the conventional probability of the system to be in state
J, this new topological phase corresponds to the emergence
of decaying oscillations of conventional state probabilities to
their steady states.

Phase IV is a combination of phases II and III, in which
three bands are twisted around each other. Each band becomes
periodic in x with a period equal to 67 [see Fig. 4(c4)]. The
observable effect of this braid phase is also a combination of
decaying oscillations of both the conventional state probabili-
ties and the parity probability Z ().

Therefore, oscillating modes for the parity and state prob-
ability can be used to identify the nontrivial braid topology.
Opposite flux directions can be further used to distinguish
different braid phases with different chirality. Combinations of
the different transport directions and the oscillating behaviors
of different probabilities are able to reveal the different braid
phases. When beyond the three-band model, the strategies
are similar and the phenomena are combinations of opposite
flux directions, oscillating modes of the conventional state
probabilities and the parity probabilities. They are fortunately
detectable by today’s measuring techniques [19,26,28,29].

Finally, we would like to discuss the nonanalytic behavior
of the MGF near y = 7, which has also been encountered in
other contexts previously [22,30-33]. In particular, in quantum
one-dimensional electron systems it was observed that the
analytical continuations of generating functions at x = 0 and
2m do not coincide near x = & [31]. It was proved recently
[33] that near y = & the generating function should be given
by a sum of solutions. In our model, this fact has a simple
explanation. The parity probability in phase II is, indeed,
given by a sum of two equal in absolute value contributions
because two eigenvalues of H (i) have equal real part in this
phase. In phase II, an individual eigenvalue near y = 0 cannot
be uniquely continued to the point x = & because the square
root in (4) is doubly valued. At the steady state and at x # m,
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the system chooses the state with the largest real part of the
eigenvalue, which is a part of one band at x € [0,7) and a
part of another band at x € (;,27], and thus leads to the
discontinuity at x = m. By summing the two band branches,
the MGF restores the broken symmetry.

In equilibrium statistical physics, a phase transition can
be identified by the nonanalytic singularity of free energy,
e.g., Lee-Yang zeros [34]. In nonequilibrium transports, the
MGF Z(x,t) of dynamical observables is the counterpart of
the partition function and In Z () is the counterpart of the free
energy. Thus, the zeros in Z(x) and their time dependence
play a similar role to the Lee-Yang zeros and can be used
to explore the dynamical phase transitions [35-39]. Indeed,
as shown by Eq. (6), in the nontrivial braid phase region the
parity probability Z(xr) oscillates and its zeros as functions
of time are one-to-one mapped to the Lee-Yang zeros of the
stochastic transport system.

In summary, we have shown that, when parameters change,
the band structures of non-Hermitian Hamiltonians may
encounter topological phase transitions that can be classified
by the elements of the braid group. In application to the full
counting statistics of currents, we found that topologically
nontrivial phases correspond to oscillating behavior of parity
and state probabilities. They also correspond to discontinuities
of the MGF of currents induced via selection of different band
branches in the limit of long time evolution.

For bands of evolution operator of a periodically driven
quantum or classical system, the eigenvalues are generally
complex and can possess cyclic permutations as a function
of Bloch-Floquet vectors. The BPTs can be implicated in
such time-dependent driven systems and play a crucial role in
understanding their dynamical behaviors and related dynam-
ical phase transitions. Open problems include generalizations
of BPTs to Hamiltonians that depend on a multicomponent
Bloch vector and other manifestations of BPTs in quantum
mechanical full counting statistics.
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