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Scaling laws and accurate small-amplitude stationary solution for the motion of a planar vortex
filament in the Cartesian form of the local induction approximation
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We provide a formulation of the local induction approximation (LIA) for the motion of a vortex filament in the
Cartesian reference frame (the extrinsic coordinate system) which allows for scaling of the reference coordinate.
For general monotone scalings of the reference coordinate, we derive an equation for the planar solution to the
derivative nonlinear Schrödinger equation governing the LIA. We proceed to solve this equation perturbatively
in small amplitude through an application of multiple-scales analysis, which allows for accurate computation
of the period of the planar vortex filament. The perturbation result is shown to agree strongly with numerical
simulations, and we also relate this solution back to the solution obtained in the arclength reference frame
(the intrinsic coordinate system). Finally, we discuss nonmonotone coordinate scalings and their application for
finding self-intersections of vortex filaments. These self-intersecting vortex filaments are likely unstable and
collapse into other structures or dissipate completely.
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I. INTRODUCTION

The self-induced velocity of a vortex filament has been
described by the local induction approximation (LIA) v =
γ κt × n [1–3], where t and n are unit tangent and unit
normal vectors to the vortex filament, respectively, κ is the
curvature, and γ is the strength of the vortex filament. A
number of methods have been employed to study the LIA.
Exact stationary solutions to the LIA in extrinsic coordinate
space have been found by Kida [4] in the case of torus knots,
and these solutions were given in terms of elliptic integrals. By
rewriting the LIA in cylindrical-polar coordinates, Ricca also
obtained torus knot solutions—which were asymptotically
equivalent to Kida’s solutions—in explicit analytic form and
derived a stability criterion [5]. Static solutions to the LIA have
also been found by Lipniacki [6]. Physical invariants obtained
under LIA are discussed by Ricca in Ref. [7].

The fully nonlinear Schrödinger (NLS) equation govern-
ing the self-induced motion of a vortex filament in the
LIA was previously derived by Van Gorder [8,9] in the
Cartesian coordinate space. Dmitriyev [10] considered a
linear approximation of the LIA, while Shivamoggi and van
Heijst [11] considered a more sophisticated approximation,
obtaining a cubic derivative NLS equation. The full nonlinear
equation was obtained in Ref. [8]. Some existence results
for space-periodic planar vortex filaments will be given in
a forthcoming work. In particular, it has been shown that
there exists a maximal amplitude beyond which space-periodic
planar vortex filament solutions do not exist. We should
remark that the aforementioned studies have considered the
Cartesian form of the LIA. Umeki [12] obtained an alternate
formulation, applying an arclength-based coordinate system as
opposed to a Cartesian coordinate system. While the Cartesian
and arclength formulations are obtained through different
derivations, both formulations are equivalent to the LIA. Van
Gorder [13] obtained exact stationary solutions for this model
in terms of elliptic functions.
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In the present paper, we provide a formulation of the LIA for
the motion of a vortex filament in the Cartesian reference frame
(the extrinsic coordinate system) which allows for scaling
of the reference coordinate. For general monotone scalings
of the reference coordinate, we derive an equation for the
planar solution to the derivative NLS equation governing the
LIA. We proceed to solve this equation perturbatively in small
amplitude through an application of multiple-scales analysis,
which allows for accurate computation of the period of the
planar vortex filament. The perturbation result is shown to
agree strongly with numerical simulations, and we also relate
this solution back to the solution obtained in the arclength
reference frame (the intrinsic coordinate system). Finally, we
discuss nonmonotone coordinate scalings and their application
for finding self-intersections of vortex filaments. These self-
intersecting vortex filaments are unstable and collapse into
other structures or dissipate completely.

II. FORMULATION AND SCALING OF THE LIA

Alternate scaling of the LIA can be useful both for physical
analysis and for computational reasons. For instance, the
infinite domain due to x ∈ R can be mapped into a closed
and bounded interval, which can assist with analytical and
numerical analyses. We first determine the influence of such
transforms. Let us consider the scaled position vector

r = f (x)ix + y(x,t)iy + z(x,t)iz, (1)

where f (x) denotes a general scaling of the x coordinate. This
is one of two possible equivalent such scalings, with the other
being

r = xix + y(f −1(x),t)iy + z[f −1(x),t]iz (2)

provided f −1, the inverse map of f , exists. For this reason,
we will often be interested in monotone scalings f so that the
inversion f −1 is well-defined. We chose to work with Eq. (1)
as opposed to Eq. (2) since it gives more computationally
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tractable results. From Eq. (1), we compute

t = dr
ds

= dr
dx

dx

ds
= (f ′,yx,zx)

dx

ds

and v = (0,yt ,zt ) , where

dx

ds
= 1√

f ′2 + y2
x + z2

x

.

We then have κn = dt
ds

= dt
dx

dx
ds

, giving

κn = [
f ′′(y2

x + z2
x

) − f ′(yxyxx + zxzxx)
]dx

ds
ix

+ [yxxzx − yxzxzxx + yxxf
′2 − f ′f ′′yx]

dx

ds
iy

+ [
zxxy

2
x − zxyxyxx + zxxf

′2 − f ′f ′′zx

]dx

ds
iz,

so that v = γ κt × n = γ t × (κn) becomes

v = γ (yxzxx − zxyxx)

(
dx

ds

)3

ix

− γ (f ′zxx − f ′′zx)

(
dx

ds

)3

iy

+ γ (f ′yxx − f ′′yx)

(
dx

ds

)3

iz .

Matching the two representations of v, we obtain the constraint
yxzxx − zxyxx = 0 and the real-valued system

yt = −γ (f ′zxx − f ′′zx)

(
dx

ds

)3

,

zt = γ (f ′yxx − f ′′yx)

(
dx

ds

)3

.

Introducing the complex potential function

�(x,t) = y(x,t) + iz(x,t),

the PDE system reduces to

i�t + γ (f ′�xx − f ′′�x)(f ′2 + |�x |2)−3/2 = 0. (3)

Note that Eq. (3) is a complicated NLS equation with variable
coefficients (f ′ and f ′′ in general depend on x). However, with
the scaling �(x,t) = �(μ,t), where μ = f (x), we can reduce
Eq. (3) to

i�t + γ (1 + |�μ|2)−3/2�μμ = 0, (4)

for nondegenerate f . Hence, Eq. (3) yields solutions of
the LIA. The transformed equation (4) matches exactly that
studied in Refs. [8,9].

The form of Eq. (3) [and hence Eq. (4)] is U (1) invariant,
just like many of its derivative NLS relatives; hence it makes
sense to consider stationary solutions of the form �(x,t) =
e−iγ tφ(x) to Eq. (3) [and �(μ,t) = e−iγ tψ(μ) to Eq. (4)].

To summarize, the permitted scalings are those for which
(1) the LIA is invariant under monotone scalings of the x

coordinate and
(2) the LIA is invariant under scalings of the form e−iγ t .

Together, these conditions guarantee the existence of planar
vortex filaments described by �(x,t) = e−iγ tψ(μ(x)). In the

FIG. 1. Plot of the spatial geometry. The curve represents the
planar vortex filament described by �(x,t) = e−iγ tφ(μ(x)) for
periodic ψ(μ(x)). As time increases, the structure rotates about
the x axis.

extrinsic three-dimensional Cartesian frame, the position of
the planar vortex filament at any time t is then given by

r = μ(x)ix + cos(γ t)ψ(μ(x))iy − sin(γ t)ψ(μ(x))iz. (5)

To better visualize such vortex filaments, see Fig. 1, where
we consider a periodic function, ψ(μ(x)). The vortex filament
rotates about the x axis as time increases. So, by determining
ψ(μ(x)), we determine the spatial structure of the planar vortex
filament completely, the inclusion of the factor e−iγ t providing
the motion of such a filament in time.

III. ACCURATE PERTURBATION APPROACH FOR THE
STATIONARY SOLUTION

Let us consider the stationary solution �(μ,t) =
Ae−iγ tψ(μ) to the scaled equation (4), where we let the
parameter A > 0 hold the amplitude and normalize max ψ =
1. Then, we obtain the ordinary differential equation

ψ + (1 + A2ψ ′2)−3/2ψ ′′ = 0. (6)

The simplest nonlinear approximation of the equation takes
the form

ψ + (
1 − 3

2A2ψ ′2)ψ ′′ = 0. (7)

As discussed in a forthcoming work, Eq. (7) has periodic
real-valued solutions for A < 1/

√
3 ≈ 0.577. For small A,

Eq. (7) is a good approximation of Eq. (6). It then makes
sense to consider a perturbation solution, in terms of small
parameter A2. However, standard perturbation will yield
inaccurate solutions which fall out of resonance with the true
solution due to the appearance of secular terms. Hence, we are
interested in applying the method of multiple scales to Eq. (7).
To proceed, assume there exists the parameter δ(A2) such that
d/dμ = δ(A2)(d/dη), where η = δ(A2)μ. Then, we consider
the perturbation solution ψ(μ) = ψ̂(η; A2) = ψ0(η; A2) +
A2ψ1(η; A2) + O(A4), δ(A2) = δ0 + A2δ1 + O(A4).
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Equation (7) becomes

ψ̂ + δ2
(
1 − 3

2A2δ2ψ̂2
η

)
ψ̂ηη = 0, (8)

giving

δ2
0ψ0,ηη + ψ0 = 0, ψ0(0) = 1, ψ0,η(0) = 0, (9)

δ2
0ψ1,ηη + ψ1 = 3

2δ4
0ψ

2
0,η(ψ0)ηη − 2δ0δ1ψ0,ηη,

ψ1(0) = 0 = (ψ1)η(0). (10)

The quantities at η = 0 follow from the fact that we desire
space-periodic ψ with amplitude A. As we assume the
solution � = Aψ exp(−iγ t), it follows that the amplitude of
ψ must be 1 (then the amplitude of � is A). Without loss of
generality, we take η = 0 to correspond to a peak (this can
be translated by η− > η′ + η0 if need be). Thus, ψη(x) = 0.
Assuming ψ = ψ0 + A2ψ1 + · · · , it follows that ψ0(0) = 1,
ψ0,η(0) = 0, ψ1(0) = 1, and ψ1,η(0) = 0.

Normalizing to get 2π -periodic solutions, we pick δ0 = 1,
obtaining ψ0(η) = cos(η). From here, we have

(ψ1)ηη + ψ1 = (
2δ1 − 3

8

)
cos(η) + 3

8 cos(3η), (11)

so picking δ1 = 3/16 prevents any secular terms. We then
obtain

ψ1(η) = 3
64 [cos(η) − cos(3η)] = 3

16 sin2(η) cos(η). (12)

FIG. 2. (Color online) Plot of the perturbation solutions (13)
for ψ(x) obtained through the method of multiple scales against
numerical solutions obtained via the Runge-Kutta-Fehlberg method
(RKF45) [14]. The valid region for the approximation (7) is A <

1/
√

3 ≈ 0.577, and in this region the results agree nicely. For larger
A, the agreement breaks down as the solutions fall out of resonance
with the true solutions.

FIG. 3. (Color online) Plot of the absolute error between the
perturbation solutions (13) for ψ(x) obtained through the method
of multiple scales and the numerical solutions obtained via the
Runge-Kutta-Fehlberg method (RKF45) [14]. The agreement is
strong for small-amplitude solutions, while the agreement gradually
breaks down for larger amplitudes.

Therefore, we have obtained the perturbation solution

ψ(μ) = cos
([

1 + 3
16A2

]
μ

)
+ 3

16A2 sin2
([

1 + 3
16A2

]
μ

)
× cos

([
1 + 3

16A2] μ
)
. (13)

Consider the standard case μ(x) = x. From Eq. (13), we
see that the approximate period of small-amplitude solutions
satisfies

T (A) ≈ 2π

[
1 + 3

16
A2

]−1

≈ 2π − 3π

8
A2 + 9π

128
A4. (14)

In order to demonstrate the agreement between the solution
(13) and the true solution, we plot the numerical solution along
with the perturbation solution in Fig. 2. Since the perturbation
and numerical results agree so nicely, the difference between
the two is not easily ascertainable, so we plot their errors
separately, in Fig. 3.

IV. CONNECTION WITH ARCLENGTH SOLUTION AND
IMPLICIT SOLUTION

In this section, take μ(x) = x, so that �(x,t) = �(μ,t). In
Van Gorder [13], an exact stationary solution for the arclength
formulation of the LIA was given by

v(s,t) = e−it q(s) = Be−itsn

(
s − ŝ√
1 − B2

,Bi

)
, (15)

where B is the amplitude (in the arclength frame), ŝ is a
constant, and s is the arclength element. It was shown in
Ref. [12] that the Cartesian quantity �(x,t) and the arclength
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quantity v(s,t) are related by

|�x |2 = 2|v|2
(1 − |v|2)2

,
dx

ds
= 1 − |v|2

1 + |v|2 . (16)

Noting that |�x | = φ′(x) and |v| = q(s), we have that φ′2 =
2q2(1 − q2)−2. Separating variables, and using the form of
dx/ds given in Eq. (16), we obtain

φ(x) =
√

2
∫ s(x)

ŝ

Bsn
(

s−ŝ√
1−B2 ,Bi

)
1 + B2sn2

(
s−ŝ√
1−B2 ,Bi

)ds. (17)

Performing the integration exactly is not possible (in closed
form). And then, one must still contend with the arclength
variable s(x). So, while this formula offers a connection
between the exact arclength solution to the planar vortex
filament problem and that of the Cartesian problem, it is not
very practical. We can compare this formula to the direct
solution for φ(x). A first integral of Eq. (6) [when μ = x

and hence ψ(μ) = φ(x)] is

φ2 − 2

A2
√

1 + A2φ′2
= −E . (18)

If φ(0) = 1 and φ′(0) = 0, then E = (2 − A2)/A2 > 0 since
|A| <

√
2 for any periodic solution. Solving Eq. (18) for φ′

and separating variables as needed,

x = ±
∫ 1

φ

A3(ζ 2 + E)√
4 − A4(ζ 2 + E)2

dζ. (19)

Changing variables to ξ = ζ 2 + E ,

x = ±A3

2

∫ 2/A2

φ2+E

ξdξ√
(ξ − E)(2 − A2ξ )(2 + A2ξ )

. (20)

Equation (20) is an implicit solution which is not easily
inverted. However, we may still extract information out of this
relation more easily than is the case when dealing with Eq. (17).
In the previous section, we approximated the period of a
space-periodic planar vortex filament using perturbation. We
shall now be interested in comparing that approximation with
a true exact relation between the period T and the amplitude
A for a space-periodic solution to the vortex filament problem.

If we consider the phase portrait, a quarter-period T (A)/4
occurs when φ goes from φ = 0 to φ = 1, so from Eq. (20)
we obtain the exact yet implicit relation

T (A) = 2A3
∫ 2/A2

E

ξdξ√
(ξ − E)(2 − A2ξ )(2 + A2ξ )

. (21)

Now, in the valid region 0 < A <
√

2, the definite integral
(21) can be evaluated in terms of elliptic integrals to give the
relation

T (A) = 8E (A/2) − 4K (A/2) , (22)

where K is the complete elliptic integral of the first kind and E

is the complete elliptic integral of the second kind. Recall that
the period of the solutions in the arclength representation [13],
the period of the space-periodic solution, was a bit simpler,
involving only the elliptic integral K .

FIG. 4. (Color online) Plot of the x-period T (A) for the stationary
solution x-dependence function φ(x). In addition to the exact value
(22), we plot two approximate quantities, namely, the approximation
found through multiple scales (14) and the asymptotic approximation
(25) of the true result (22). We consider A ∈ [0,

√
2].

In order to extract more information from Eq. (22), we turn
to the small-θ asymptotics

K(θ ) = π

2

(
1 + 1

4

θ2

1 − θ2
− 1

8

θ4

1 − θ2

)
, (23)

E(θ ) = π

2

(
1 − 1

4
θ2 − 3

64
θ4

)
. (24)

Using Eqs. (23) and (24) in Eq. (22), and approximating where
needed,

T (A) ≈ 2π − 3π

8
A2 − 7π

256
A4. (25)

Note that the approximation (25) of the period T (A) obtained
through the fully nonlinear relation (20) for φ is in extremely
good agreement with the approximation obtained through the
method of multiple scales (14) for the period T (A). In Fig. 4,
we plot the exact period T (A) found in Eq. (22), along with
the approximations shown in Eqs. (14) and (25). In Fig. 5,
we plot the relative error between the approximations and the
exact values.

V. NONMONOTONE SPACE SCALES AND NUMERICAL
SELF-INTERSECTION OF FILAMENTS

Up to this point we have considered only monotone scalings
f (x) in Eq. (1), since these permit well-behaved solutions to
Eq. (4). As we have shown, such solutions can be studied
analytically, and in some cases exactly. However, in situations
where f (x) is nonmonotone, we may still assume a stationary
solution of the form �(x,t) = e−iγ tφ(x). While ψ(μ) from
Eq. (6) was defined on the real μ axis in the case of
monotone μ = f (x), for nonmonotone f (x) it is possible that
the domain of φ(x) will be restricted. Assuming the solution
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FIG. 5. (Color online) We demonstrate the relative error between
the approximations of the period T (A) and the true solution (22). Both
are extremely accurate for small A, and gradually lose accuracy for
larger A, though the asymptotic approximation (25) outperforms the
multiple-scale approximation (14) nicely. That said, in its region of
validity (A < 1/

√
3), the multiple-scale approximation (14) is rather

accurate for only a first-order perturbation result.

�(x,t) = e−iγ tφ(x), Eq. (3) reduces to

φ + f ′φ′′ − f ′′φ′

(f ′2 + φ′2)3/2
= 0. (26)

The ordinary differential equation (26) is degenerate when f

is not strictly monotone, i.e., if there exists a point x = a at
which f ′(a) = 0. In order for a planar vortex filament to have
self-intersections, there should exist points x∗ < x∗ such that
f (x∗) = f (x∗) and φ(x∗) = φ(x∗), but for x∗ < x1 < x2 < x∗,
f (x1) = f (x2) and φ(x1) = φ(x2) cannot hold simultaneously.
If such x1 and x2 exist, then there can be a loop (if not, then
we just have a constant valued function). Then from Eq. (1)
we must have r(x∗,t) = r(x∗,t) for all t � 0. If we have such
points x∗ < x1 < x2 < x∗, there is at least one loop formed.
This loop is parametrized by θ ∈ [x∗,x∗] as

r(θ,t) = f (θ )ix + cos(γ t)φ(θ )iy − sin(γ t)φ(θ )iz, (27)

with the loop closing since r(x∗,t) = r(x∗,t). In Fig. 6 we
provide a schematic of the planar loop vortex filament. Now
that we have some conditions on parametrized crossings and
loop strictures on a vortex filament, we provide some examples
to show that these structures can actually occur as solutions to
the equation governing a vortex filament of planar type.

A. Single-loop case

As our first numerical case, we consider an example of a
parametrized single loop on a vortex filament. Let us consider

FIG. 6. (Color online) Schematic of a self-intersection for the
planar vortex filament governed by a solution φ(x) to Eq. (26). Self-
intersection occurs at spatial coordinate f (x∗) where the parametriza-
tion x attains the value x∗ such that f (x∗) = f (x∗) and φ(x∗) = φ(x∗).
It is necessary for φ(x1) �= φ(x2) for all x∗ < x1 < x2 < x∗ in order to
have a single loop. For multiple loops, similar yet more complicated
conditions must hold.

the scaling f (x) = x2/2. We then have

φ + xφ′′ − φ′

(x2 + φ′2)3/2
= 0. (28)

Unlike in the simpler case of monotone f , here we cannot
easily solve the differential equation (28) analytically. So,
we resort to numerical solutions. It is useful to assign a
specific xN as a numerical initial point. Picking xN = 0 is
problematic, since Eq. (28) is degenerate at that point. So,
we shall take xN to be small yet positive. We find that
loops are not obtained for many parameter values. However,
they can occur for our choice of f . Taking, for instance,
xN = 0.1, φ(xN ) = 0.6, and φ′(xN ) = −0.1, we find that
φ(2.059) = φ(−2.059) while f (x) = f (−x) by the form of
f selected, so we pick x∗ = −2.059 and x∗ = 2.059. To make
sure the loop is closed, the derivatives should differ at each
point. We calculate φ′(x∗) = 3.589 while φ′(x∗) = 0.857, so
the loop does close. So, in the prescribed geometry, we have
found a closed filament loop. As mentioned above, the loop
must remain closed for all t � 0. The resulting single-loop
planar vortex filament is displayed in Fig. 7.

B. Double-loop case

Let us now consider a double-loop structure on a vortex
filament. Let us take the scaling f (x) = cos(x). We then have

φ + − sin(x)φ′′ + cos(x)φ′

( sin2(x) + φ′2)3/2 = 0. (29)

Taking xN = 0.1, φ(xN ) = 0.5, and φ′(xN ) = −0.095, we
numerically solve Eq. (29). Defining −x[1]

∗ = 2.35 = x∗[1],
x[2]

∗ = −3.89, and x∗[2] = 2.395, we have that φ(x[1]
∗ ) =

φ(x∗[1]) and φ(x[2]
∗ ) = φ(x∗[2]). Yet, since f (x) = cos(x),

we have f (x[1]
∗ ) = f (x∗[1]) and f (x[2]

∗ ) = f (x∗[2]). So, the
conditions for crossing are satisfied at spatial coordinates
cos(x[1]

∗ ) = −0.70 and cos(x[2]
∗ ) = −0.73. We verify that the
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FIG. 7. (Color online) Plot of the numerical solution for a single-
loop vortex filament described by φ(x) when φ(x) satisfies Eq. (28),
φ(0.1) = 0.6, and φ′(0.1) = −0.1. The x scaling is f (x) = x2/2. The
space coordinate is parametrized by x ∈ [−2.12,3.00].

derivatives differ at each point, so the loop structures close
off at the required points. (If the derivatives do not differ,
then the filament may become tangent to itself, and therefore
not close to form a loop, at the required point.) Hence, we
have obtained a double-loop structure on a vortex filament.
The resulting double-loop planar vortex filament is displayed
in Fig. 8.

One may continue with multiloop structures, but these get
progressively harder to construct, since one must guess an
appropriate transform of the space variable f (x) and deduce
values of the crossings. Further, since this is done numerically

FIG. 8. (Color online) Plot of the numerical solution for a double-
loop vortex filament described by φ(x) when φ(x) satisfies Eq. (29),
φ(0.1) = 0.5, and φ′(0.1) = −0.095. The x scaling is f (x) = cos(x).
The space coordinate is parametrized by x ∈ [−4.0,2.5].

(such analytical constructions are very challenging), there is
a bit of guess work involved in the initial conditions which
permit solutions φ(x) which allow for the crossings.

While these loop structures have been shown to exist
numerically for appropriate scales f and planar components
φ, in practice one would not expect these structures to persist.
A more physically relevant situation would be for a vortex
filament to cross (or come close to crossing, since physically
the vortex core has a nontrivial diameter), a loop structure
is momentarily formed, and then the filament is disrupted.
Depending on the ambient fluid, one could have that (i) the
vortex filament sheds the loop and realigns as a noncrossing
well-defined curve; (ii) the loop collapses, with the filament
stretching laterally to realign as a nonintersecting curve; or (iii)
the loop dominates, with the “tails” decaying, resulting in a
vortex ring. While the present results point toward any of those
outcomes, note that one would need to retain more structure
than the LIA permits in order to fully model the dynamics
of such vortex filament crossings. In order to study such
complicated dynamics, the full integral form of the Biot-Savart
law would be required. At best, the LIA provides a sort of
first-order approximation of such behavior, though it fails
to pick up on the complicated dynamics of these situations,
which would lead from a vortex filament crossing to one of
the possible outcomes listed. That the LIA can pick up on the
occurrence of such interactions, given it’s simplicity relative
to the full Biot-Savart law, is still beneficial.

C. Analytical calculation

While numerical results are easiest for the case of self-
intersections, we remark that analytical approximations can
be obtained, at a cost. Indeed, when f ′(x0) = 0 for some
x0, then Eq. (26) degenerates (the coefficient of φ′′ vanishes,
decreasing the order of the equation). To counter this, we must
have two solution branches, which we match at x0. However,
while the matching preserves continuity, it cannot preserve
continuity of the first derivative (on each side of x0, that is,
x < x0 and x > x0, the slope of the branches must differ).
Without loss of generality, take x0 = 0. Then, in order to
match a positive branch and a negative branch, we consider
the following piecewise defined solution:

φ(x) =

⎧⎪⎨
⎪⎩

−ψ(f (x)), x∗ < x < 0,

0, x = 0 ,

ψ(f (x)), 0 < x < x∗,
(30)

where ψ(μ) is a solution as was found in the monotone case
and x∗ < 0 < x∗ such that f (x∗) = f (x∗) = T/2, where T is
the period of ψ . From the form of Eq. (26), if ψ is a solution,
then so is −ψ . Hence, each branch is a solution (when f ′ �= 0).
This representation is not unique, as we could have reversed the
signs in Eq. (30). To get both functions to match at x = 0, we
use a modified form of Eq. (13) where ψ(0) = 0 and ψ ′(0) = 1
(which gives a sine, as opposed to cosine, representation).
This is equivalent to translation of the solution in Eq. (13)
by −π/2 on the x axis. So, to lowest order (one can add
higher-order corrections, but we suppress them for brevity)
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Eq. (30) becomes

φ(x) =

⎧⎪⎨
⎪⎩

− sin
{[

1 + 3
16A2

]
f (x)

}
, x∗ < x < 0,

0, x = 0,

sin
{[

1 + 3
16A2

]
f (x)

}
, 0 < x < x∗.

(31)

Note that φ(x∗) = −ψ(f (x∗)) = −ψ(T/2) = 0 = ψ(T/2) =
ψ(f (x∗)) = φ(x∗) by construction, so φ(x∗) = φ(x∗).

For example, consider again the f (x) = x2/2 case. We pick

x∗(A) = −
√

2π

[
1 + 3

16
A2

]−1

,

x∗(A) =
√

2π

[
1 + 3

16
A2

]−1

.

We then get (to lowest order)

φ(x) =
⎧⎨
⎩

− sin
( [

1 + 3
16A2

]
x2

2

)
, x∗(A) < x < 0,

0, x = 0,

sin
( [

1 + 3
16A2

]
x2

2

)
, 0 < x < x∗(A).

(32)

Note that φ(x∗(A)) = − sin(π ) = 0 = sin(π ) = φ(x∗(A)).
Furthermore, let

x1(A) = −
√

π

[
1 + 3

16
A2

]−1

,

x2(A) =
√

π

[
1 + 3

16
A2

]−1

.

Then φ(x1(A)) = − sin(π/2) = −1 �= 1 = sin(π/2) =
φ(x2(A)). So, there exist x1(A) and x2(A) such that
x∗(A) < x1(A) < x2(A) < x∗(A), φ(x∗(A)) = φ(x∗(A)),
and φ(x1(A)) �= φ(x2(A)); so a loop is indeed formed. The
solution (32) is shown in Fig. 9, in the case of A = 0.25. The
single-loop structure is prominent.

FIG. 9. (Color online) Plot of the analytical solution for a single-
loop vortex filament described by φ(x) when φ(x) satisfies Eq. (32).
The x scaling is f (x) = x2/2, while the amplitude of the solution
is taken to be A = 0.25. The space coordinate is parametrized by
x ∈ [x∗(A),x∗(A)] while on the loop.

We remark that since φ is continuous on x ∈ [−√
π,

√
π ],

yet φ′ has a discontinuity at a single point x = 0, the matched
solution is a class of “weak” solution.

VI. CONCLUSIONS

We have derived the fully nonlinear form of the LIA
governing the motion of a vortex filament. Permitting a scaling
of the free coordinate along which the vortex is aligned (x, in
our case) permits us to have greater flexibility in computing
solutions, both analytically and numerically. Such vortex
solutions are a variation on the theme of planar vortex filaments
and take the form

r = [f (x), cos(γ t)φ(x),− sin(γ t)φ(x)].

The main analytical benefit is that such a solution form can
capture a greater range of physical behaviors (particularly
when the scale is nonmonotone), while numerical simulations
can be made easier by taking the scale f : R → I, where I is
a compact interval (numerical integration on such a compact
interval can often be simpler than on an unbounded domain
such as the real line).

In the case of monotone scalings f (x) = μ, we have
a very elegant way to determine the planar contribution
φ(x) = ψ(μ) to the vortex filament structure, obtaining a
nonlinear ordinary differential equation (ODE) governing ψ

[see Eq. (6)]. For monotone scalings, we therefore find that
ψ is a strict function of μ and therefore the ODE (6) has
only constant coefficients, making its solution possible. The
planar solution is equivalent to a stationary solution of the
form � = e−γ tψ(μ). The main stationary solution of interest
is periodic for small amplitudes A, so this is the solution we
focus on in Sec. III. While numerical solutions can be obtained,
we compute a perturbation solution, scaling both the function
and the variable by the amplitude A of solutions through
a multiple-scales approach. We compare the perturbation
solution to numerical solutions, finding that the perturbation
solution accurately captures the structure of the planar vortex
filament (in particular, the spacial period of oscillation for such
solutions). We find that the spatial period T (A) is given by the
approximation

T (A) ≈ 2π
(
1 + 3

16A2)−1
,

for small A.
Properties of the planar vortex filament in the arclength

system (the intrinsic coordinate frame) are considered in
Ref. [13], and in Sec. IV we have compared the two
formulations. The primary benefit of the arclength frame is that
it allows for exact solutions, in terms of elliptic sn functions.
The Cartesian framework, however, gives us a clearer view
of exactly what is going on with the structure of the vortex
filament. While there is no exact solution, the perturbation
result does work nicely for small-amplitude periodic solutions.
Despite the fact that there is no exact closed-form solution for
ψ(μ), we are able to derive an exact relation for the period
T (A) in terms of elliptic integrals, obtaining

T (A) = 8E (A/2) − 4K (A/2) ,

which agrees nicely with the approximation found through
perturbation for small A (see Fig. 4). This is also reminiscent
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of the period for the arclength representation of the planar
solution discussed in Ref. [13]. Note that there is a bound A <√

2 on the amplitude A of the space-periodic function ψ(μ),
which will be discussed in a forthcoming work. As such, the
maximal period occurs with amplitude A = 0 and is T (0) =
2π , while the minimal period solution occurs with amplitude
A = √

2 and is T (
√

2) = 3.3886. Hence, the period T (A) of a
space-periodic solution is related in an inverse manner to the
amplitude A of such a solution.

For monotone scalings f we were able to obtain the
nice analytical results discussed above. We also discuss
nonmonotone coordinate scalings f and their application
for finding self-intersections of vortex filaments. An equa-
tion governing the stationary solution φ(x) is given in
Eq. (26). This equation becomes singular at points where
monotonicity of f fails, yielding solutions which, in some
cases, permit self-intersection of the curve r given in Eq.
(1). Such a self-intersection results in a vortex filament
loop. While such a situation is not tractable analytically, we
provide numerical simulations to demonstrate that such results
are at the very least mathematically possible. We also outline
some general criteria which would permit a loop filament

structure. These self-intersecting vortex filaments essentially
“break” the LIA formulation, meaning that, once intersection
occurs, the LIA is not sufficient to study the dynamics of
the loop solutions. Such solutions are likely unstable and
collapse into other structures or dissipate completely. These
types of dynamics are quite interesting and certainly merit
future work. Analytical results, under weaker conditions
than monotonicity, yet stronger conditions than just arbitrary
nonmonotone transforms, could be possible, maybe in the
case of the specific examples considered here. Some analytical
results were given for the nonmonotone scalings, and it was
shown that such solutions may be constructed in a piecewise
manner. These analytical solutions are continuous, yet fail to
have a continuous derivative. In this sense, we may view such
solutions as weak solutions. Nevertheless, these analytical
results agree qualitatively with the numerical simulations.
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