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Exact relativistic expressions for wave refraction in a generally moving fluid
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1Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, via Musei 41, I-25121 Brescia, Italy

2Department of Earth and Atmospheric Sciences, Université du Québec à Montréal, 201 avenue Président-Kennedy,
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The law for the refraction of a wave when the two fluids and the interface are moving with relativistic velocities
is given in an exact form, at the same time correcting a first order error in a previous paper [Cavalleri and Tonni,
Phys. Rev. E 57, 3478 (1998)]. The treatment is then extended to a generally moving fluid with variable refractive
index, ready to be applied to the refraction of acoustic, electromagnetic, or magnetohydrodynamic waves in
the atmosphere of rapidly rotating stars. In the particular case of a gas cloud receding because of the universe
expansion, our result can be applied to predict observable micro- and mesolensings. The first order approximation
of our exact result for the deviation due to refraction of the light coming from a further quasar has a relativistic
dependence equal to the one obtained by Einsteins’ linearized theory of gravitation.
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I. INTRODUCTION

In 1975, Cavalleri and Spinelli [1] brought to a conclusion
an approach to gravity starting from the pseudo-Euclidean
space-time. Then, in 1990, Cavalleri and Mauri introduced
a new aspect to quantum theory and denoted the resulting
construct as “stochastic electrodynamics with spin (SEDS)”
[2]. Thereafter, in 1996, Cavalleri sought to merge these
approaches to gravitational theory with the concept of the
variable speed of light (VSL) [3]. In fact, the VSL theories
easily explain the gravitational deviation of light as an effect of
refraction, as was originally done by Einstein for the first order
deviation of a light beam grazing the Sun’s limb. It is difficult,
though, to explain gravitation as refraction for matter accord-
ing to the standard VSL. On the contrary, such an explanation
is natural in SEDS, the basis of which is the assumption that
all the particles constituting matter are practically point-like,
and endowed with a gyration (improperly called spin) at the
speed of light along a circular trajectory having the Compton
radius. Special relativity and quantum mechanics should not
be present at that level [otherwise both relativistic mass and
electromagnetic (e.m.) radiation would be infinite], but are
a consequence of such a gyration (see the last two papers of
Ref. [2]). Special relativity arises because one does not refer to
the real velocity of an elementary particle, but to the velocity of
its gyration center. The e.m. radiation of all the particles of the
universe (including those before the primorial recombination)
bring about the zero-point field (ZPF), whose spectrum is
proportional to the cube of the frequency, and it is the only one
to be invariant under Lorentz transformations. That property
completes special relativity and, together with spin, leads to
quantum mechanics. The spin (or, better, gyration) motion,
being at the speed of light, allows a connection with the
refraction of a light beam. Such a theory can overcome the
main drawback of Einstein’s theory. Actually, all the kinds of
stress-energy-momentum tensors have to be inserted into the
right-hand side of Einstein equations. However, if we include
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the ZPF of quantum electrodynamics (QED), an error by a
factor of 10120 appears. The universe, arisen from a point,
would have reached at maximum the size of an atom, and
then it would have collapsed. That huge error cannot be
eliminated by renormalizing the ZPF, as done in QED in
flat space, because the ZPF cannot be renormalized in the
Riemannian space-time. Not even the hope of resolving this
difficulty by quantizing gravitation is viable, because quantum
gravity has been recently disproved by the observation of the
phase coherence of light from an active galaxy at a distance of
1.2 Gpc [4].

In order to work out such a new theory, the laws of
refraction with media (or fluids) in motion are required. In
1996, Cavalleri, after an inquiry in the scientific literature, saw
that such laws were unknown even at the classical level. That
is why, together with Ascoli and Bernasconi, he published a
paper [5] in which nonrelativistic refraction was given in an
exact way. Precisely, the cosine of the refracted angle has been
expressed as a function of the cosine of the incident wave beam,
of the velocity V of the interface separating two fluids with
velocities u1 = u1û1 and u2 = u2û2, respectively, with both
u1 and u2 small compared with the speed c of light. Moreover,
the treatment was limited to the case of a single refraction.
The same limitation was kept in a subsequent paper (1998)
with Tonni [6], where the relativistic version was given in an
approximate way, claimed to be at the second order while, in
2000, they discovered that a first order error was present. The
aim of the present paper is to overcome both limitations, i.e., to
obtain the exact relativistic treatment (meanwhile correcting
the above error), and to extend it to the case of many successive
refractions. Toward that aim, in Sec. II A we revise what
was done in our previous paper [6] regarding the first step
of our treatment. At the same time, although the first step
was already exact, we add some clarifications, and use a more
compact formalism. The essential features of the problem are
the velocities u1 and u2 of the two fluids, the velocity c1 of
the beam of light before refraction, and the equation of the
interface σ locally moving with velocity V. All the above
quantities are given with respect to the laboratory frame S.
The first point is to find the unit normal n̂ to the interface σ
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FIG. 1. The local reference system S has been chosen so that the
x axis will be parallel to the local velocity u1 of the first medium. The
vectors rK , rN , and rP denote the positions of three nearby points
belonging to the interface σ having local velocity V. The unit vector
n̂ is perpendicular to the local element of σ (characterized by rK , rN ,
and rP ). The local velocity of the wave in medium 1 is denoted by c1

and forms the angle θ1 with the local normal n̂.

(see Fig. 1) so as to obtain the cosine of the incident angle θ1

as

cos θ1 = n̂ · ĉ1. (1)

If frame S is not at rest with the fluid under consideration,
then the wave is generally not transverse; i.e., its velocity c1

is not locally perpendicular to its equiphase surface. However,
as done in Refs. [5,6], and as we do in Sec. II B, we pass
to the frame S0 at rest with the first fluid, where any wave
is transverse (i.e., its wave front is perpendicular to the ray
ĉ01). Such a condition is necessary for the use of the Huygens
construction, which is the simplest and most certain method
to define refraction, because it is, in essence, just the principle
of the superposition of the effects, taking into account the
phases of the waves. The Huygens construction is particularly
important, or even necessary, when the interface is in motion
with respect to both S and S0. That is why not even a
nonrelativistic treatment was available until paper [5].

Afterwards, we transform all the above quantities, but n̂,
from S to S0. The exception for n̂ is due to the fact that both n̂
and n̂0 (measured in frame S0 at rest with the first fluid) are not
the transformed unit vectors of n̂σ , perpendicular to the local
interface σ in the frame Sσ at rest with σ . This fact does not
affect the final result because we are always concerned with
the direction of the beam of light in vector form. Consequently,
at the end we pass again to S, having found the direction ĉ2 of
the beam of light after refraction, so that

cos θ2 = n̂ · ĉ2, (2)

where n̂ is the same unit normal as in Eq. (1), measured in S.
The calculations of refraction are performed in Sec. II B

taking the second fluid at rest with the first fluid (i.e., as if
both fluids were at rest in S0), but leaving the interface in
motion with a velocity V0 (in S0). In the third and last step,
performed in Sec. II C, we consider that the real velocity of the
second fluid in S0 displaces the wave front parallel to itself.
Consequently, the Huygens construction maintains its validity,
and it is simply then a matter of relativistically adding the

velocity u02 (measured in S0) of the second fluid. Finally, the
transformation from S0 to S gives c2, hence the refraction angle
through Eq. (2). Notice that we have not taken two different
frames for the two different sides of the interface. The frame
is only S0, and in a first stage we suppose that the second
fluid is at rest with the first. In a second stage, we consider
that the second fluid has a velocity u02 with respect to the first
fluid. When the light beam enters the second fluid, there is
a process of absorption by part of the electrons, followed by
radiation and superposition of the effects, so that the original
wave is extinct after a short length λ (denoted as the extinction
length), and the new radiated wave propagates in the second
fluid with a velocity c02 depending on the refraction index.
In other words, after a distance λ there is complete drag. We
can therefore add c02 relativistically to the velocity u02 of the
second fluid, since the direction of the wave front does not
vary, because it is completely dragged by the second fluid. In
fact, it was the lack of the above considerations in Ref. [6]
that prevented an exact treatment and led to a first order error
in u2/c (and not to an approximation of the second order as
claimed in that paper), as shown in Appendix A . Section II C
is therefore radically different from the corresponding one of
Ref. [6].

In Sec. III, we check the exact correctness of our procedure,
by applying it to a particular case where the result can also
be obtained in a standard way. The particular case regards
the calculation of the deviation of an e.m. ray traversing
a uniform gas cloud that is spherical in its rest frame and
recedes with velocity V because of the expansion of the
universe. Surprisingly, we have not found in the literature such
a treatment, and that is why we have reported it in full detail.
The calculated deviation increases with the recession speed,
thus favoring the detection of protostellar atmospheres which
might give additional information on the early universe [7].
Our exact result is new even if we only consider the relativistic
dependence on β. Its first order approximation is formally
equal to the gravitational deviation calculated by the linearized
Einstein theory.

In Sec. IV, we extend the exact results to a series of
successive refractions. As above, the first refraction is obtained
in a frame here denoted by S01, and considering the second
fluid at rest with S01, so that it is possible to apply the Huygens
construction. When we relativistically add the refracted wave
velocity to the velocity of the second fluid measured in S01,
the wave propagation is no longer transverse in S01. However,
the second refraction is obtained in frame S02 at rest with the
second fluid, where the wave front and propagation velocity are
exactly equal to those observed in S01 after the first refraction.
As a matter of fact, we have first relativistically added the
velocity u02 of the second fluid in S01 and then relativistically
subtracted the same velocity to pass to S02. The process is
repeated at any successive refraction, so that the wave remains
always transverse up to the last frame S0n. Only at the end,
when we return to the laboratory frame S, is the wave no longer
transverse. At that point, however, we are only interested to
the velocity direction ĉn in order to obtain

cos θn = n̂ · ĉn, (3)

where θn denotes the angle after the nth refraction. The main
point of interest is the trajectory of a wave beam, rather than
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simply the refraction process. Up to S0n, the velocities c0j do
not depend on uj , whereas the trajectory does. The procedure is
applied to a moving fluid with velocity, density, and refraction
index that are functions of the position, as is the case of the
atmosphere of a rapidly rotating star. The results are put in
a recursive way, therefore ready for numerical simulations
by computer, so as to obtain the trajectory of a wave beam
traversing a rotating stellar atmosphere.

We conclude in Sec. V commenting on our result and
emphasizing the importance of the paper for astrophysical
applications.

II. DERIVATION OF THE EXACT EXPRESSION
FOR RELATIVISTIC REFRACTION

We first summarize the results of Ref. [6], deprived of
an additional term that gave an error of first order (see
Appendix A). Then, by an exact composition of velocities,
we obtain the exact relativistic version of Ref. [5].

We premise a list of symbols. In the laboratory frame S we
denote

(i) êx, êy, êz the unit vectors of the x, y, and z axes,
respectively;

(ii) u1 and u2 the velocities of fluids 1 and 2, respectively;
(iii) V the velocity of the interface σ ;
(iv) c1 and c2 the velocities of the light beam in the two

fluids, respectively;
(v) n̂ = n̂x êx + n̂y êy + n̂zêz the unit normal to the interface

σ ;
(vi) θ1 and θ2 the angles of incidence and of refraction,

respectively.
In the frame S0 at rest with fluid 1 we denote
(i) u01 = 0 and u02 the velocities of fluids 1 and 2,

respectively;
(ii) V0 the velocity of the interface σ0;

(iii) c01 the velocity of the light beam in fluid 1;
(iv) c02 the velocity of the light beam in the second fluid

assumed at rest with fluid 1;
(v) c∗

02 the velocity of the light beam in the second fluid
with its real velocity with respect to fluid 1;

(vi) n̂0 the unit normal to the interface σ0;
(vii) σ̂0 the unit vector along the intersection of the interface

σ0 with the incidence plane;
(viii) θ01 and θ02 the angles of incidence and of refraction,
respectively;

(ix) ε = n − 1, where n denotes the index of refraction;
(x) n the absolute refractive index (i.e., nonrelative), de-

fined as the ratio between the speed of light in vacuum and
the speed of the wave in the considered fluid. In our case of
intergalactic gas, n depends only on the gas density, being
practically independent of frequency in the visible range.

At first sight, it might appear strange to have three
independent velocities, namely u1, u2, and V, since u2 − u1
must be tangential to the interface if the latter remains intact,
i.e., if it acts as an impenetrable barrier without sources, wells,
and pores. The general case of three independent velocities
arose during the elaboration of a new model of elementary
particles. The most similar macroscopic example is the one
of a cylinder in which a porous piston moves with velocity V
and keeps two different pressures in the two parts containing

the same gas. The densities, hence the speeds of sound, of the
two parts are different and the diffusion of the gas contained
in the part at higher pressure into the other part at a lower
pressure implies that u2 − u1 is perpendicular to the piston
surface (acting as an interface).

The familiar case of u2 − u1 tangential to the interface is a
particular case of the general one treated in this paper.

A still more particular case, where the results of the
present paper are applied to the predictions of micro- and
mesolensings, and to possible corrections to the gravitational
lens effect because of refraction [7], is that of a beam of light
traversing the atmospheres either of stars or of dense molecular
clouds in a state of star formation, contained in large numbers
in all galaxies. In this case the velocity V of the interface
(considered as an isodensity surface of a dense molecular
cloud or of a star) is equal to the velocity u2 of the second
fluid (which is the gas of the receding molecular cloud, or of a
star, producing the small deviations due to refraction). Another
astrophysical case of interest is the motion of waves (acoustic,
e.m., or magnetohydrodynamic) in the atmosphere of a rapidly
rotating star. In this case we consider two adjacent thin layers
with u2 − u1 tangential to the interface, the velocity V of the
interface being equal to the common transversal velocities
of the two layers, i.e., V = u2⊥ = u1⊥. In the astrophysical
context we have therefore five scalar components and not nine
(three vectors, each with three components).

A. Step one

In this section we find a convenient expression for the
unit normal n̂. Afterwards we pass from the laboratory
frame S to the frame S0 at rest with the first fluid. To
this aim, we must specify the kind of clock synchronization
we use, since, to each kind of synchronization, there is a
corresponding transformation [8]. For instance, if we use the
internal synchronization for both S and S0 (obtained either by
Einstein’s method or by slow clock transport) the correspond-
ing relativistic transformations are those of Lorentz. If we
use the external synchronization, the corresponding relativistic
transformations are those of Tangherlini [9]. The latter ones
have been used in the Appendix of Ref. [6] and in Ref. [10],
while here we use the Lorentz transformations, which are more
familiar. We express the normal n̂0 to the interface σ (measured
in S0) pointing out that n̂0 is not the transformed unit vector
of n̂ because of the longitudinal contractions (present in both
the Lorentz and the Tangherlini transformations) and also of
the nonconservation of simultaneity (only present with the
Lorentz transformations). On the other hand, the velocity c01

of the beam of light in S0 is the relativistic transform of c1

measured in S. Then the incident angle θ01 in S0 is derived
from

cos θ01 = n̂0 · ĉ01. (4)

To find convenient expressions for n̂ and n̂0, we choose a frame
S of Cartesian axes with the x axis parallel to the velocity u1

of fluid 1 (through which the incoming wave is propagating
before refraction). Let c1 be the wave velocity in S and n̂
be the unit vector perpendicular to the mobile interface σ

and directed from fluid 1 to fluid 2 (see Fig. 1). In frame
S, the angle θ1 of incidence is given by Eq. (1). Notice that
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n̂ is not the transformed unit vector of n̂σ perpendicular to
the interface σ in the system Sσ at rest with σ . Simply, n̂
is the unit vector locally perpendicular to σ (as seen by S),
which is a characteristic of the problem. To characterize n̂ we
choose three nearby points rK , rN , and rP on an element of σ

around the point where we consider n̂, which can therefore be
expressed as

n̂ = (rN − rK ) × (rP − rK )

|(rN − rK ) × (rP − rK )| . (5)

We use Cartesian axes with unit vectors êx , êy , êz, so that

ri = xi êx + yi êy + zi êz, for i = K,N,P. (6)

The nine scalar components are not free because each point
(N , K , P ) has to be in an element of σ around n̂, thus defining
the plane tangent to σ . It is therefore sufficient to give two
components (for instance along x and y) for each point to
satisfy the required condition, because the third component
(along z) is determined by its belonging to σ , whose equation
f (x,y) = z is known. We have, therefore, 3 × 3 − 2 × 3 = 3
free components and we exploit this fact to impose three
constraints that simplify the calculations. The three chosen
conditions are

xK = xP , yP = yN, zN = zK, (7)

as shown in Fig. 1.
We now pass from the laboratory frame S to the frame S0

at rest with fluid 1. We take frame S0 with the axes parallel to
those of frame S and with the x0 axis of S0 superimposed and
sliding on the x axis of S (the x and x0 axes are therefore
parallel to the velocity u1 of fluid 1 as observed by S).
Consequently, given the stated assumptions (i.e., the internal
synchronization that leads to the Lorentz transformations), and
denoting by the subscript 0 the quantities measured in S0, we
thus have ⎧⎪⎨

⎪⎩
x0 = γ1 (x − u1 t),

y0 = y, z0 = z,

t0 = γ1 (t − x u1/c
2),

(8)

where c is the speed of light in vacuum, and

γ1 = (
1 − u2

1

/
c2

)−1/2
(9)

is the usual relativistic factor.
Because of the longitudinal relativistic contractions, the

local interface (where the narrow wave beam impinges)
observed by S0 and denoted by σ0 is bent differently than the σ

observed by S. The unit vector n̂0 (locally perpendicular to the
interface σ0) can be expressed by the same three nearby points
used in S to characterize the local interface σ , now measured
in S0, denoted by r0K , r0N , and r0P , and taken simultaneous
for S0. Since rP − rK lies on a plane perpendicular to the x

axis, we derive from Eq. (8)

r0P − r0K = rP − rK. (10)

On the contrary, rN − rK , hence r0N − r0K , do not lie on
a plane perpendicular to x. If we required that those two
space-time events be the transformations of each other, from

t0N = t0K we would have tN �= tK . Consequently, n̂0 is not the
transformed of n̂, because, to obtain n̂, we take tN = tK .

The simplest way to obtain n̂0 is by means of the
Tangherlini transformations (that preserve simultaneity), as
done in Appendix A of Ref. [6] and in Ref. [10]. By the Lorentz
transformations, it is convenient to use auxiliary coordinates
x ′

i , with i = K,N , related to x0i and t0i through⎧⎪⎨
⎪⎩

x ′
i = γ1(x0i + u1t0i),

y ′
i = y0i ; z′

i = z0i ,

t0i = γ1(t ′i − u1x
′
i/c

2),

(11)

with t0K = t0N , whence{
x ′

N − x ′
K = γ1(x0N − x0K ),

t ′N − t ′K = u1(x ′
N − x ′

K )/c2.
(12)

During the time interval t ′N − t ′K , rN moves with the velocity
V of the local interface, thus reaching r′

N at time t ′N , so that

r′
N − r′

K = rN − rK + (t ′N − t ′K )V

= rN − rK + (x ′
N − x ′

K )Vu1/c
2. (13)

Projecting Eq. (13) on u1, i.e., on the x axis, gives

x ′
N − x ′

K = xN − xK + (x ′
N − x ′

K )Vxu1/c
2, (14)

from which

x ′
N − x ′

K = xN − xK

1 − Vx u1/c2
. (15)

Then we obtain by Eqs. (12) and (15)

x0N − x0K = γ −1
1

xN − xK

1 − Vxu1/c2
. (16)

Projecting Eq. (13) on the y and z axes, and using Eqs. (11)
and (15), yields

y0N − y0K = y ′
N − y ′

K = yN − yK + (xN − xK )Vx u1/c
2

1 − Vx u1/c2
.

(17)
We now have all the elements to define the unit vector n̂0

(measured in S0) by an expression similar to Eq. (5). We obtain

n̂0 = (r0N − r0K ) × (r0P − r0K )

|(r0N − r0K ) × (r0P − r0K )|
= n0x êx + n0y êy + n0z êz√

n2
0x + n2

0y + n2
0z

, (18)

with ⎧⎪⎨
⎪⎩

n0x = +(y0N − y0K )(z0P − z0K ),

n0y = −(x0N − x0K )(z0P − z0K ),

n0z = +(x0N − x0K )(y0N − y0K ),

(19)

and (x0N − x0K ), (y0N − y0K ), (z0P − z0K ) given by Eqs. (16),
(17), and (10), respectively.

Since u1 = u1 êx , the wave velocity c01 in S0 is given by

c01 = (c1x − u1) êx + γ −1
1 (c1y êy + c1z êz)

1 − u1 · c1/c2
= �(c1,u1),

(20)
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where γ1 is expressed by Eq. (9), and the vector function � is,
in general, defined as

�(a,b) = (1 − b2c−2)1/2(a − a · b̂b̂) + a · b̂b̂ − b
1 + c−2a · b

, (21)

for every (a,b) ∈ R3 × R3. Notice that the last step of Eq. (20)
is independent of the choice of the frame axes.

The incident angle θ01 in S0 is obtained by Eq. (4) with n̂0

expressed by Eq. (18). The vector differences of r0K , r0N , r0P

and their order in the vector product of Eq. (18) are chosen so
that n̂0 · ĉ01 = cos θ01 > 0.

In the slow velocity limit, n̂ and n̂0 coincide, and Eq. (20)
reduces to c01 = c1 − u1 (as in Ref. [5]).

B. Step two

In the frame S0 at rest with the first fluid, the velocity c01

of the beam of light is perpendicular to the equiphase plane
of propagation. If the second fluid was also at rest in S0, it
would be possible to use the Huygens construction to find the
refraction, even if the interface σ is in motion with a velocity
V0 derivable from V by means of Eq. (20) with V for c1. The
situation of two fluids at relative rest, in spite of the fact that
their boundary plane moves, can be achieved, in principle, by
a thin, porous piston in a cylinder (filled with a fluid) which
maintains two different pressures and densities in the two parts
of the closed cylinder just by moving. The piston can also be
substituted by a shock wave of pressure.

Let us suppose to have found the Huygens construction
and the equiphase plane after refraction in S0 with also the
second fluid at rest in S0. Then let us allow the second fluid
to have its velocity u02. If u02 is uniform (at least in the small
region of the wave beam), the equiphase plane is dragged, but
it remains parallel to the direction it had with u02 = 0. On
the contrary, c02 changes to c∗

02, but it is possible to obtain
c∗

02 by relativistically adding the drag velocity. That is why
in this section we calculate the refraction by the Huygens
construction and assuming the second fluid at rest in S0 as a
theoretical, intermediary step that is useful to find the final
solution. The interface is in motion with the velocity V0, and
its effective component along the normal n̂0 to the interface is

V0⊥ = V0 · n̂0. (22)

The unit vector n̂0 is drawn so that c01 · n̂0 > 0. Fluids 1
and 2 contain the incident and refracted wave, respectively.
If σ0 were at rest, there would be no ambiguity about which
one is the incident wave. However, if V0⊥ > c01 cos θ01, it is
the interface σ0 that reaches the fleeing wave and we have to
exchange fluid 1 for fluid 2. Consequently, fluid 1 is the one
not containing n̂0 (drawn starting from the interface) only if

s = (c01 − V0) · n̂0

|(c01 − V0) · n̂0| (23)

is positive. On the contrary, fluid 1 is that containing n̂0 if s is
negative.

We consider the case s = +1 in Fig. 2, where the Huygens
construction is plotted with respect to observer S0 (so that this
second step is the same as in the nonrelativistic case). We
denote AB the trace at time t of the equiphase front in fluid
1 at rest with S0, so that it is perpendicular to the velocity

FIG. 2. A wave has velocity c01 in medium 1 and equiphase
surface AB perpendicular to c01 if the observer S0 is at rest with
medium 1. An interface having velocity V0 separates medium 1 from
medium 2. n̂0 is the unit vector perpendicular (for S0) to the interface
and directed from 1 to 2. When a wave ray impinges on the interface at
A, the wave is refracted in medium 2 (considered at rest with S0) with
velocity c02. Point B of the wave front reaches the moving interface
in B ′ while point A reaches A′ in medium 2 at rest with S0, so that
the equiphase surface A′B ′ is still perpendicular to the refracted ray
AA′. This is the Huygens construction for media at rest but moving
interface, A′B ′ being the envelope of the spherical waves radiated
by the points of the interface successively reached by the impinging
wave front. In the general case of media moving with velocities u1

and u2, respectively, we add relativistically u1 to c01 and u2 to c02.
Moreover, H is the intersection of the ray refracted in A at time t with
the interface at time t + t0, while D is the geometrical intersection of
the ray crossing B with the interface at time t . The medium between
σ0 (t) and σ0 (t + t0) is fluid 2 for ray AA′ and fluid 1 for ray BB ′.

c01. The wave ray which impinges on the boundary plane at A

begins to travel in fluid 2 with the velocity c02 along AA′. At
time t + t0, when the phase front reaches A′, the same phase
started in B reaches the moving boundary plane in B ′ at time
t + t0. Since the ray section BB ′ has always been in fluid 1
and the ray section AA′ in fluid 2, it is

t0 = |AA′|/c02 = |BB ′|/c01. (24)

The refracted phase front A′B ′ is perpendicular to AA′ because
in this second step of our solution the fluid 2 is still considered
at rest with S0. This phase front is obtained as the envelope
of the spherical waves radiated by each point of the boundary
plane reached by the incoming wave.

We see from Fig. 2 that |BB ′| = c01 t0 may also be written
as

c01 t0 = |BD| + |DB ′| = |AD| sin θ01 + V0⊥ t0/ cos θ01.

(25)

Similarly, we may write |AA′| = c02 t0 as

c02 t0 = |A′H | + |HA| = |B ′H | sin θ02 + V0⊥t0/ cos θ02,

(26)

where

|B ′H | = |AD| + V0⊥ t0 (tan θ01 − tan θ02). (27)

Obtaining t0 from Eq. (25), and substituting it in Eq. (26) where
Eq. (27) is used, gives, after simplifying the factor |AD| that
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appears in both sides,

c02 sin θ01 = sin θ02

(
c01 − V0⊥

cos θ01

)
+ V0⊥ sin θ01 sin θ02

×
(

sin θ01

cos θ01
− sin θ02

cos θ02

)
+ V0⊥

sin θ01

cos θ02
. (28)

Simplifying Eq. (28) and denoting

m = V0⊥ sin θ01, p = c01 − V0⊥ cos θ01,

q = c02 sin θ01, (29)

we obtain

m cos θ02 + p sin θ02 = q. (30)

If V0⊥ = −|V0⊥|, all the preceding expressions keep their
validity.

In the second case (s = −1), Eq. (30) is again obtained,
as shown in Ref. [5], since this second step is the same in
both the relativistic and nonrelativistic treatments. The only
difference is given by the connection between V and V0 (which
in the nonrelativistic case reduces to V0 = V − u1). Taking
into account all the cases [s = ±1, with s given by Eq. (23)],
and subcases (s = −1, p > 0 and p < 0 as examined in
Ref. [5]), the solution of Eq. (30) becomes

cos θ02 = mq + s p (m2 + p2 − q2)1/2

m2 + p2
, (31)

with m, p, and q given by Eq. (29). We derive from Eq. (31)

sin θ02 = pq − s m (m2 + p2 − q2)1/2

m2 + p2
. (32)

Then

c02 = c02 (n̂0 cos θ02 + σ̂0 sin θ02), (33)

where cos θ02 and sin θ02 are given by Eqs. (31) and (32),
respectively, c02 denotes the known speed of the wave in fluid
2 if at rest, n̂0 is the normal to the local interface [given by
Eq. (18)], and σ̂0 is the normal to n̂0 lying in the refraction
plane, expressed by

σ̂0 =
(

n̂0 × ĉ01

sin θ01

)
× n̂0 = ĉ01 − n̂0 cos θ01

sin θ01
, (34)

c01 being given by Eq. (20).

C. Step three

We have obtained the velocity c02 [measured in the system
S0 at rest with fluid 1 and given by Eq. (33)] in fluid 2 assumed
at rest with fluid 1. We have to take into account that in frame
S0 the second fluid has a velocity u02 = �(u2,u1), where � is
given by Eq. (21). Now comes the most important and delicate
step. When the light beam enters the second fluid, there is a
process of absorption by part of the electrons, followed by
radiation and superposition of the effects, so that the original
wave is extinct after a short length λ (denoted as the extinction
length), and the new radiated wave propagates in the second
fluid with a velocity c02 depending on the refractive index. In
other words, after λ there is complete drag. We can therefore
add relativistically c02 to the velocity u02 of the second fluid,
since the direction of the wave front does not vary, because it

is completely dragged by the second fluid. It was just the lack
of the above considerations in Ref. [6] that prevented an exact
treatment and led to a first order error in u2/c (and not to an
approximation of the second order as claimed in that paper),
as shown in Appendix A.

If the velocity u02 is uniform in the considered region,
after λ the wave front is fully dragged by part of the second
fluid, but it does not change its direction (always in frame
S0). The velocity c∗

02 after refraction in the moving fluid
is c∗

02 = c02 + u02 in nonrelativistic kinematics, as done in
Ref. [5]. In relativistic kinematics we must operate a relativistic
composition of the velocities c02 and u02 in S0. In this way,
and without considering the extinction length, the Fizeau drag
coefficient can be obtained for monochromatic waves.1 We
therefore operate in the same way, first finding the expression
of u02 starting from its known value in the laboratory system S.

The relativistic composition of the velocities c02 and u02 in
S0 is given by c∗

02 = �(c02,u02), with � defined by Eq. (21).
To obtain c2, we transform c∗

02 from the frame S0 (at rest with
fluid 1) to the laboratory frame S, whence c2 = �(c∗

02, − u1).
Finally, the cosine of the refracted angle is given by Eq. (2).

The deviation ϑ between c1 and c2 can directly be obtained by
cos ϑ = ĉ1 · ĉ2.

III. RELATIVISTIC CALCULATION OF THE DEVIATION
OF AN E.M. RAY TRAVERSING A UNIFORM

GASEOUS SPHERE

To test the correctness of the above procedure, we apply it
to a particular case where the result can also be obtained in
a standard way. The particular case regards the calculation of
the deviation, due to refraction, of an e.m. ray whose source
is in vacuum, and which traverses a uniform gas cloud that
is spherical in its rest frame and recedes with velocity V.
The considered simple case has astrophysical interest when
the e.m. source is a distant quasar, and when the uniform
gas sphere is a dense gas cloud (or a protostar) contained in a
spiral galaxy intermediate between the quasar and Earth, which
recedes with relativistic velocity V because of the universe’s
expansion. We originally wanted to compare our result with
the one obtainable in the standard way that, in the considered
case, is valid and much simpler. Surprisingly, we have not
found it in the scientific literature. We therefore show in the
following the standard procedure (the one using the new, above
procedure requires five pages).

To assume a uniform spherical gas cloud with a sharp
interface is a convenient approximation in order to calculate
refraction. The consequent reflected light does not modify
the refracted angle. To have neglected the shading connection
changes slightly the trajectory of the light beam, but not the

1In the case where the wave beam consists of a superposition of
monochromatic components, we have to consider their dispersion.
For instance, in the case of white light, Lorentz found that there
is a correction to the Fizeau result due to dispersion, which was
later verified by Zeeman. Fortunately, our applications regard galactic
clouds and stellar atmospheres, for which there are no resonances, so
that the refraction index is practically insensitive to frequency, with
consequent absence of dispersion.
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refracted angle. The main application of the present case
regards the lens effect due to refraction, where the transverse
distance between the nondeviated light beam and the refracting
gas cloud is at least of the order of a galaxy radius. Even
dispersion can be neglected, because the average composition
of the galactic gas is roughly 78% hydrogen and 22% helium,
with resonances at ultraviolet frequencies. The refractive index
in the visible is practically insensitive to frequency from red
to violet light and only depends on the gas density. For our
treatment, it is as if light was monochromatic.

We take the origin of the Cartesian axes at the center of the
gas cloud for both the frame S0 at rest with the cloud and the
frame S at rest with Earth. With respect to the latter, the gas
cloud recedes with a velocity parallel to the x axis,

V =βcêx , (35)

and it is measured by S as an ellipsoid with the minor axis along
V. Its section with a plane containing the x axis is therefore an
ellipse expressed by

p(x,y) =
(

x

γ −1R

)2

+
(

y

R

)2

− 1 = 0, (36)

where R and γ −1R are the major and the minor semiaxes,
respectively, with

γ −1 = [1 − (V/c)2]1/2 = (1 − β2)1/2. (37)

Let c1 be the initial velocity of the ray of light emitted by the
quasar Q. Its speed c1 is practically equal to the one of light in
vacuum, i.e., to c. Its direction ĉ1 forms a small angle ξ with
the line joining Earth with the considered quasar (see Fig. 3).
Since ξ < 10−5 rad (it is at maximum of the order of 1′′ arc),
we can write |ĉ1 × êx | = sin ξ � ξ , whence

c1 = c(− cos ξ êx + sin ξ êy) � c(− êx + ξ êy). (38)

When the beam of light impinges at A on the gas cloud, it
undergoes refraction and then traverses the gas cloud. In order
to find the point B where the beam of light exits, it is more
convenient to use frame S0 for which the gas cloud is at rest
and spherical. Consequently, it is much simpler to start at the
beginning with S0, for which the velocity of the same beam of
light becomes

c(0)
1 = c

(
−êx

cos ξ + β

1 + β cos ξ
+ êy

γ −1 sin ξ

1 + β cos ξ

)

� c

(
−êx + êyξ

√
1 − β

1 + β

)
, (39)

the third side having the same approximation as the third side
of Eq. (38).

The sine of the incident angle is expressed by

sin θ
(0)
1i = ∣∣ĉ(0)

1 × n̂(0)
∣∣, (40)

where n̂(0) denotes the unit vector normal to the gas cloud
observed in S0, derivable from the gas cloud profile p(x,y)
given by Eq. (36) with γ = 1, as a plane scalar field whose
gradient (in the xy plane) gives the outward normal. Since we
need the inward normal, as shown in Fig. 3, we have

n̂(0) = n̂(0)(x,y) = − ∇p(x,y)

|∇p(x,y)| = −x êx + y êy

R
. (41)

FIG. 3. A light beam coming from a quasar Q, for instance
receding with β = 0.9, impinges at A on an uniform gaseous sphere
(spherical in its rest system), for instance receding with β = 0.6. The
light beam is refracted in A and comes out at B. If ξ and δ are the
angles of the light beam with the straight line x joining Earth E with
Q, the deviation of the light beam is given by |−δ − ξ | = | − δ| + ξ .
The proportions and the deviations are strongly altered for clarity,
since ξ and δ are of the order of 0.1′′ of an arc.

At the incidence point A, characterized by yA = h, we derive
from Eqs. (36) with γ = 1 and (41)

n̂(0)
A = −

√
1 − h2

R2
êx − h

R
êy , (42)

and from Eqs. (39), (40), and (42)

sin θ
(0)
1i = h

R
+ ξ

√
1 − h2

R2

√
1 − β

1 + β
. (43)

The speed of light c02 in fluid 2 has a value a bit smaller than
in fluid 1 (vacuum); i.e.,

c02 = c

n
= c

1 + ε
� c(1 − ε), with ε 	 1. (44)

The sine of the refracted angle is obtainable by Snell’s law,

sin θ
(0)
1r = sin θ

(0)
1i

1 + ε
, (45)

from which

cos θ
(0)
1r � cos θ

(0)
1i + ε

sin2 θ
(0)
1i

cos θ
(0)
1i

. (46)
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In the last two equations, the first order approximation in ε 	 1
has been used.

With the aid of Eq. (44), the velocity c02 in fluid 2 can be
written as

c02 � c(1 − ε)
[
n̂(0)

A cos θ
(0)
1r + σ̂

(0)
A sin θ

(0)
1r

]
, (47)

where σ̂
(0)
A denotes the normal to n̂(0)

A lying in the refraction
plane, expressed, similarly to Eq. (34), by

σ̂
(0)
A =

[
n̂(0)

A × ĉ(0)
1

sin θ
(0)
1i

]
× n̂(0)

A = ĉ(0)
1 − n̂(0)

A cos θ
(0)
1i

sin θ
(0)
1i

. (48)

We derive from Eqs. (39), (42), and (45)–(48)

ĉ02 = c02

c
(1 + ε) � ĉ(0)

1 (1 + ε) + εn̂(0)
A

cos θ
(0)
1i

− 2εêx

= ĉ(0)
1 − ε h êy√

R2 − h2
, (49)

where, in the last side, we have inserted the explicit expression
of cos θ

(0)
1i derivable from

cos θ
(0)
1i = ĉ(0)

1 · n̂(0)
A =

√
1 − h2

R2
− ξ

h

R

√
1 − β

1 + β
, (50)

having used Eqs. (39) and (42) in the last side. We now find the
point B of Fig. 3 where the light beam impinges again on the
cloud profile with a second refraction, passing from fluid 2 to
fluid 3, which is again the vacuum. Point B is the intersection
between the cloud profile defined by Eq. (36) with γ = 1, and
the straight line parallel to c2, expressed by

x − xA

y − yA

= c02 · êx

c02 · êy

. (51)

Solving the system of two equations (ellipse and straight line),
we obtain

xB = −
√

R2 − h2 + 2h

[
ξ

√
1 − β

1 + β
− ε h√

R2 − h2

]
, (52)

yB = h + 2
√

R2 − h2

[
ξ

√
1 − β

1 + β
− ε h√

R2 − h2

]
. (53)

The unit normal at B to the gas sphere is expressed by Eq. (41)
with the opposite sign (it is an outward normal), thus yielding

n̂(0)
B = xB êx + yB êy

R
, (54)

where xB and yB are given by Eqs. (52) and (53), respectively.
Similarly to Eq. (48), we obtain

σ̂
(0)
B = ĉ02 − n̂(0)

B cos θ
(0)
2i

sin θ
(0)
2i

, (55)

where, as derivable from Eqs. (40), (49), and (52)–(54),

sin θ
(0)
2i = ∣∣ĉ02 × n̂(0)

B

∣∣ = h

R
(1 − ε)

+
√

1 − h2

R2
ξ

√
1 − β

1 + β
, (56)

and

cos θ
(0)
2i = ĉ02 · n̂(0)

B =
√

1 − h2

R2
− h

R

×
[
ξ

√
1 − β

1 + β
− ε h√

R2 − h2

]
. (57)

After the second refraction, again because of Snell’s law, it is

sin θ
(0)
2r = (1 + ε) sin θ

(0)
2i , (58)

whence

cos θ
(0)
2r � cos θ

(0)
2i − ε

sin2 θ
(0)
2i

cos θ
(0)
2i

. (59)

The refracted velocity, being now in vacuum, is expressed,
with the use of Eqs. (49) and (52)–(59), by

ĉ02r = c02r

c
� n̂(0)

B cos θ
(0)
2r + σ̂

(0)
B sin θ

(0)
2r

= −êx + êy

[
ξ

√
1 − β

1 + β
− 2ε h√

R2 − h2

]
, (60)

where the divergence for h tending to R is due to the
expansions, performed in Eqs. (59) and (60), which are no
longer valid when the denominator of the last term vanish, thus
rendering such term no longer infinitesimal. On the contrary,
the above expansions are excellent when h 	 R, so that the
denominator can be expanded as

(R2 − h2)−1/2 � R−1(1 − h2/2R2). (61)

In the following, we keep the above expansion that, together
with the approximation used in Eqs. (59) and (60), leads to
a result for the deviation that is very close to the exact result
even for h → R.

The direction ĉ3 of the emerging velocity c3 measured in
Earth’s frame can be obtained by a relativistic composition of
velocities, and reads, with the use of Eq. (61),

ĉ3 = −êx +
√

1 + β

1 − β

[
ξ

√
1 − β

1 + β

− 2ε h

R

(
1 − h2

2R2

)
êy

]
. (62)

The deviation � is obtained by

� � sin � = |ĉ1 × ĉ3| = �β=0

√
1 + β

1 − β
, (63)

where

�β=0 = 2ε h

R

(
1 − h2

2R2

)
. (64)

The divergence of the last side of Eq. (63) for β → 1 is due
to the first order approximation in ξ . Had we taken the exact
expression for the ξ dependence, given by the second side of
Eq. (39), we would have obtained

�ex = �β=0

√
1 − β2

1 − β cos ξ
, (65)
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which vanishes for β → 1 and reduces to Eq. (64) for ξ → 0.
At the same time, when β is very close to unity, the inequality

1 − β 	 ξ 	 1 (66)

has to be satisfied in order to obtain the approximate Eq. (64).
Equating the derivative with respect to β of �ex to zero

leads to the value

βM = cos ξ � 1 − 1
2ξ 2, (67)

at which the exact deviation is maximum,

�ex(βM ) = �β=0

sin ξ
� �β=0

ξ
. (68)

The corresponding approximate expression then becomes

�(βM ) = �β=0
1 + cos ξ

sin ξ
� 2

�β=0

ξ
. (69)

Since ξ is of the order of 10−5, βM is far beyond any possible
observation with telescopes. The earliest dense clouds, pro-
tostars, and quasars will have been brought into existence at
about ∼108 yr after the big bang, corresponding to

1 − βl � 108

1.5 × 1010
= 6.67 × 10−3. (70)

The relevant increase of the deviation with respect to the static
case (β = 0) is by a factor 17.3 as given by Eq. (65), which
differs from the corresponding value given by Eq. (64) after
the sixth decimal figure.

The fact that the calculated deviation increases with the
recession speed favors the observation of the atmosphere of
protostars that can give additional information on the early
universe. The new result can also give some small corrections,
due to refraction, to the gravitational lens effect. With regard
to the latter, we have also found a surprising analogy, with
interesting theoretical suggestions. Our exact result (65) is
new even if we only consider the relativistic dependence on
β. Under the same limitation, its first order approximation
(64) is formally equal to the gravitational deviation calculated
by Wucknitz and Sperhake [11] using the linearized Einstein
theory. Obviously, the static expression is completely different,
since the gravitational deviation due to a spherical body of
mass M is the classical expression

�
grav
β=0 = 4GM

Rc2
, (71)

where G denotes the gravitational constant, and R the
minimum distance of the light beam from the center of the
spherical body. Already Einstein showed that the static result
can be obtained by refraction, using the Huygens’ principle,
and treating the appropriate ratio of the metric coefficients as
an index of refraction whose value turned out to be

n = 1 + ε = 1 + 2GM

rc2
, (72)

where r denotes the distance of a generic point of the light
beam from the center of the spherical body. In Appendix B, we
derive the following general expression that gives the deviation

when n depends on r (and not of r),

�β=0 = 2
∫ +∞

1

dx

x

[(
x

n(x)

n(1)

)2

− 1

]−1/2

− π . (73)

where x = r/R. Using x in Eq. (72), and substituting the result
into Eq. (73), we obtain Eq. (71).

In a future paper, we will apply Eq. (73) to the case of the
dense clouds with a King’ profile [7], where n depends on
r in a way more complicated than the simple r−1. Another
future development takes its basis in the two above results,
namely, (i) the equality of the relativistic first order deviation
obtained either by refraction or by the first order approximation
of Einstein theory; and (ii) the equality of the static deviations
(71) provided n be given by Eq. (72). The relevant application
will be a new gravitational theory starting from the flat
pseudo-Euclidean space-time, of the kind of a previous paper
[1], but with the local speed of light depending on the local
scalar gravitational potential and also with the aid of stochastic
electrodynamics with spin [2].

IV. APPLICATION TO INHOMOGENEOUS,
GENERALLY MOVING FLUIDS

Let us extend our exact results relevant to a single refraction
(found in Sec. II) to a regularly moving inhomogeneous fluid
in a steady-state condition, such as the atmosphere of a rapidly
rotating star. We know the velocity cen of the impinging wave
at the entrance point and the velocity vstar of the center of
mass of the considered star, both with respect to the laboratory
system S. Moreover, the velocity uM (rM ) of the fluid with
respect to the inertial system SM at rest with the center-of-mass
of the rotating star is known. If in the considered region the
star atmosphere behaves as a rigid body rotating with angular
velocity �, the local fluid velocity is given by

uM (rM ) = � × rM. (74)

We consider as the entrance point rM en (of the ray of light
in the star atmosphere) the one where the refraction index
differs from unity by a value half that leading to an appreciable
deviation for the wave beam.

The entrance velocity with respect to the system S at rest
with Earth is given by uen = �(uM en,vstar), where � is defined
by Eq. (21), and uM en is the fluid velocity at the entrance point
rM en, with respect to the star’s center of mass. At rM en the
velocity of the wave ray in the system S0 at rest with the local
fluid is given by c0 en = �(cen,uen). Consequently, using the
last two expressions, we obtain

c0 en = �[cen,�(uM en,vstar)]. (75)

Once we are inside the star, we can translate into a recursive
way that done in Sec. II, in order to find the trajectory of the
beam of light in SM . We make some preliminary clarifications.
Our aim is to find relativistic refraction, so that we could
consider monochromatic waves in order to avoid dispersion.
There is no need of that limitation, though, because the
refractive index is practically independent of frequency in
the case of stellar atmospheres, as already said in footnote
1, in the last entry of the list of symbols, and, in a more
detailed way, four paragraphs after the beginning of Sec. III
[and before Eq. (35)]. Another clarification regards our
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subdivision in many successive layers, so that, at first sight, we
should take into account the reflected beam after each layer,
with consequent interference, a well-known phenomenon
in the theory of thin films. However, even with modest
computation, the fractional variation of the refractive index
from one layer to the successive one is of the order of 10−7.
The Fresnel reflection coefficient is therefore ∼10−7 times the
transmission coefficient. The intensity of the second reflection,
after the first backreflection, is ∼10−14 times the transmitted
beam, thus has a negligible effect. Moreover, the problem is
purely instrumental, because the thickness of each layer can
be reduced as needed. Physically, in a regularly varying fluid
the internal reflection is simply zero.

We denote rM en the initial (or entrance) position, and then r
a generic point, as convenient notations to obtain expressions
to be used in a recursive computation. Notice that we want
the trajectory of the wave beam in SM , so that r is referred to
the center of the star. However, the calculation of refraction
is performed, for each point, in the frame S0 at rest with the
local fluid, as done in Sec. II B. That is why we denote c0 (r)
the velocity of light in S0. What matters is the trajectory of the
wave ray and, in particular, its exit direction ĉ0 ex. Then, by a
relativistic transformation, we obtain ĉex and therefore the an-
gle of deviation �ϑ = arccos (ĉen · ĉex). The trajectory can be
obtained numerically, calculating small displacements starting
from the entrance point ren (hereafter denoted r because it can
be a generic, subsequent point), where we know c0 (r). We first
perform a virtual (or extrapolated) displacement in SM ,

δr∗ = cMδt, (76)

with

cM = �(c0,u). (77)

We denote fluid 1 the local one at r, fluid 2 the local one at

r∗
δ = r + δr∗, (78)

and the interface σ as the isodensity surface passing through

r∗
δ/2 = r + δr∗/2. (79)

The unit normal n̂0 to σ at rδ/2, such that c0 (r) · n̂0 > 0, is
given by

n̂0 = ∇c0(r∗
δ/2)

|∇c0(r∗
δ/2)|

c0(r) · ∇c0(r∗
δ/2)

|c0(r) · ∇c0(r∗
δ/2)| . (80)

To obtain the real displacement δr, we should know
c0(r + δr), i.e., the wave speed of the previously termed
“fluid 2,” in order to calculate the refraction. Since δr is
considered as a first order infinitesimal, so is the variation
of c0. Consequently, the deviation δϑ of ĉ0 is a first order
infinitesimal, so that the displacement |δr − δr∗| � δrδϑ is
a second order infinitesimal. The direction ĉ0(r + δr) is thus
derived by the law of refraction. Precisely, it is

c0(r∗
δ ) = c0(r∗

δ )(n̂0 cos θ02 + σ̂0 sin θ02), (81)

cosθ02, σ̂0, and n̂0 being given by Eqs. (31), (34), and (80),
respectively.

A simplification can be done in the considered case of a
steady-state star rotating around its center-of-mass axis, with
angular velocity �. In the frame SM (at rest with the star

center of mass) the velocity of the fluid in rM = r is given
by Eq. (74). The velocity uM can be high, but not relativistic,
so that we can limit to first order approximation in uM/c.
Within this approximation, in the system S0 (locally at rest
with the fluid in r) the interface has an infinitesimal veloc-
ity V0 = � × δr∗/2 [however, we cannot reduce Eqs. (20)
and (21) to their corresponding Galilean expression, because
their denominators differ from unity by first order terms].
Fortunately, V0 is tangential to σ0, so that V0⊥ = 0. Conse-
quently, the coefficients m, p, and q, appearing in Eq. (29),
simplify drastically. They become, translated for the contin-
uum,

m = 0; p = c0(r); q = c0(r∗
δ )

√
1 − [ĉ0(r) · n̂0(r∗

δ/2)]2,

(82)

where r∗
δ and r∗

δ/2 are given by Eqs. (78) and (79), respectively.
Using the first order expansion

c0(r∗
δ ) � c0(r) + δr∗ · ∇c0(r), (83)

the cosine of the refracted angle, expressed by Eq. (31), now
becomes, with s = 1,

cos θ02 � ĉ0(r) · n̂0(r∗
δ/2) − δr∗ · ∇c0(r)

c0(r) · n̂0(r∗
δ/2)

× [1 − ĉ0(r) · n̂0(r∗
δ/2)]1/2. (84)

We have now all the elements to calculate the real displacement
δr. The best approximation for δr is given by a half sum of the
initial and final (i.e., after refraction) velocities,

δr = [cM (r) + cM (r∗
δ )]δt/2. (85)

In fact, we obtain two segments tangent to the real trajectory,
the first at the beginning of each step and the second at the end
of each step.

One can therefore obtain the trajectory of a wave beam
by computation, since ustar(r + δr) and c0(r + δr) become the
initial known values of the subsequent step. As noted before
Eq. (3), c0(r + δr) remains the same in the new S0(r + δr) at
rest with the local fluid at r + δr, because we first add, and
then subtract, the velocity of the fluid at r + δr with respect
to the fluid at r. Finally, step by step, the computations yield
the whole trajectory with respect to SM , that can easily be
visualized.

What matters is the value of ĉM (rex) at the point rex where
the beam of light emerges from the star atmosphere. The
deviation of the light ray in the star system SM is given by

cos ϑM = ĉM (ren) · ĉM (rex), (86)

where ĉM (ren) and ĉM (rex) are derivable from Eq. (81), with
the entrance ren and exit position rex, respectively, for r. The
total deviation for Earth observer S is finally given by

cos ϑ = ĉen · ĉex, (87)

with ĉen being the known initial (or entrance) datum, and ĉex =
cex/cex, where cex = �(cM ex,uM ex), always with � given by
Eq. (21).

By our recursive procedure, we can also find the trajectory
of a wave beam, which is often more interesting than the angle
of refraction.
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V. CONCLUSIONS

The exact expressions for wave refraction have been
found in the case where the two fluids and the interface
have three different relativistic velocities. That result is the
relativistic extension of a previous, nonrelativistic paper [5].
The procedure is then extended to many successive refractions,
so as to be applied also to a continuum, where the refraction
index n and the local fluid velocity u are functions of the
position r. The result is put in a recursive way, ready to be
implemented by a numerical computation. Each refraction is
obtained by the Huygens construction in frame S0(r) at rest
with the local fluid, so as to have a transverse wave, i.e., a
wave whose local c0(r) is perpendicular to the local equiphase
surface. The interface has a velocity V0(r) with respect to
frame S0(r), while the fluid in r + δr is considered at rest with
S0(r), so that the wave after refraction remains transverse.
Then we relativistically add c0(r + δr) to u0(r + δr), while
u0(r) = 0. At this point, the wave is no longer transverse in
S0(r), although it becomes such again in S0(r + δr). It was just
the lack of those considerations that implied a first order error
in our previous paper [6] (see Appendix A). For nonrelativistic
velocities, the present exact expressions reduce exactly to those
of Ref. [5].

In the case of a generally moving fluid, it is less convenient
to obtain the trajectory of a beam of light in moving fluids
by a standard method, for instance by Hamilton’s equations
[12]. Actually, at any step we must perform a (relativistic)
composition of velocities, which is equivalent to changing the
frame after each step. That is why our treatment is useful since
it gives the possibility to obtain the trajectory of a light beam
by means of a recursive computational method. Our results are
interesting for the refraction of a quasar light by part of the
atmosphere of a star in rapid differential rotation belonging to
a relativistic receding galaxy. They are also important for the
refraction of waves (e.m., magnetohydrodynamic, or acoustic)
in the atmosphere of a rapidly rotating star whose center of
mass is at rest with the observer, so that a nonrelativistic
treatment is sufficient. As a matter of fact, such treatment
has not been performed in Ref. [5].

The most important result of the present paper is the
expression of the deviation of light coming from a distant
quasar, and refracted by a gas cloud in a galaxy receding at
relativistic speed. The result is given in exact form by Eq. (65)
of Sec. III, which reduces to Eq. (64) when the angle ξ

formed by the considered light beam with the x axis is much
smaller than unity, but much larger than 1 − β [see Eq. (66)].
Notice that relativity increases the deviation in an inversely
proportional way to the decrease of the frequencies, thus
enhancing the possibility of observing deviations due to
refraction in receding gas clouds. Equation (64) will be applied
in Ref. [7] to inquire into possible additional contributions to
the gravitational lens effect. Another application (performed
in Ref. [7]) regards the prediction of micro- and mesolensings
due to the refraction of the light coming from a quasar and
traversing dense clouds in the stage of star formation (DCSF).
Such lensings, observable in the infrared by large telescopes
with active and adaptive optics, can give information on the
star formation and even on the early universe. In fact, yellow
light (λ � 0.6 μm), refracted by a DCSF at a redshift z � 3,

is observed at λ � 2.4 μm. If observed in a mesolensing,
it implies the absence of dust produced by supernovas. The
DCSFs detected through microlensing are therefore a window
on the production of the first generation of stars.

The relativistic dependence on β of the first order Eq. (64) is
made identical to the one obtained by Wucknitz and Sperhake
[11] by applying the first order (linearized) Einstein equation to
the gravitational lens effect. Actually, those authors obtained
the inverse relativistic correction because they considered a
galaxy moving towards the observer. The equality of the
results is another step in favor of the new gravitational theory
mentioned at the beginning of the Introduction. Such a theory,
which will be developed in the near future, much depends on
the results of the present paper, in particular on the recursive
method of Sec. IV and on the result of Sec. III. As a hint,
it starts from the flat, pseudo-Euclidean space-time of special
relativity [1], but with the local speed of light depending on
the local scalar gravitational potential [3] and also with the
aid of stochastic electrodynamics with spin [2]. As said at
the start of the Introduction, it will avoid the main drawback
of Einstein theory, i.e., an error by a factor of 10120 if the
ZPF is introduced, as it must be, into the source term (the
stress-energy-momentum tensor) of Einstein’s gravitational
theory.
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APPENDIX A: THE ORIGIN OF THE FIRST
ORDER ERROR IN A PREVIOUS PAPER

It is instructive to see how the first order error in Ref. [6]
arose. The method used in Ref. [6] is shown in Fig. 4, which
is very different from the present one shown in Fig. 2. The
Huygens construction is performed considering the spherical
wave emitted by point F , which denotes the position reached
by point A if dragged along by the second fluid, and at
time t0 when point B reaches the second fluid at B ′. What
is done is equivalent to performing the Huygens construction
in the frame S2 at rest with the second fluid, thus avoiding
the double composition of velocities done in Sec. II C of
the present paper. The error is due to the fact that Huygens
construction is valid only in frame S0 at rest with the fluid,
where the wave front is perpendicular to the wave rays. In
frame S2, the front of the wave moving in the first fluid is seen
to be oblique with respect to the propagation velocity.

The procedure used in Ref. [6] was considered as being
nonexact in that paper. However, the approximation, or error,
was thought to be of the second order in u02/c. To show that
the error is of the first order, consider the case of u02 = 0 for
S0, find the direction of the refracted ray and the corresponding
wave front. Then consider another observer S for which u02 is
along the direction of the refracted ray for S0. It is obvious that
the direction does not change, whereas, with the construction
of Fig. 4, both for this direction and the one of the wave front,
it varies depending on |u02|.

043202-11



G. CAVALLERI, E. TONNI, AND F. BARBERO PHYSICAL REVIEW E 87, 043202 (2013)

FIG. 4. Huygens construction used in Ref. [6]. A wave has
velocity c01 in medium 1 and equiphase surface AB perpendicular
to c01 if the observer S0 is at rest with medium 1. An interface σ ,
having local velocity V0, separates medium 1 from medium 2. At
time t medium 2 includes both the less shaded region and the shaded
region. At time t + t0, when B reaches B ′, medium 2 is represented
by the shaded area only. The less shaded region is the one swept
by the interface σ from time t to time t + t0. Consequently, during
the time interval between t and t + t0, the ray AA′ travels only in
medium 2 while ray BB ′ travels only in medium 1. The unit vector
n̂ is perpendicular to the interface, chosen so that c01 · n̂ > 0. When
a wave ray impinges on the interface in A the wave is refracted in
medium 2 with velocity c02. Point B of the wave front reaches the
moving interface in B ′. The wave front A′B ′ of the refracted wave is
obtained as the envelope of the spherical waves radiated by the points
of the interface consecutively reached by the impinging wave front.
The spherical wave radiated by A has its center moving with velocity
u02 and reaching F at time t . Its radius at time t is FA′. Since u02

does not lie, in general, in the incidence plane ζ (that is the plane of
the figure), points B, D, B ′, and A′ lie in a plane parallel to ζ and
containing F .

APPENDIX B: CALCULATION OF THE DEVIATION DUE
TO THE REFRACTION OF A WAVE BEAM TRAVERSING

A GAS CLOUD WITH SPHERICAL SYMMETRY

In a frame at rest with a cloud of gas having refraction
index n(r), function of r = |r|, the deviation of a wave beam
can be obtained by an integral, as shown by Maréchal [13]. For
the reader’s convenience, we simplify Maréchal’s cumbersome
procedure, and use less notation. We denote r the radius vector
starting from the center of the distribution,

ds = |dr| (B1)

the absolute value of the displacement dr (which is different
from dr), and

v̂ = dr/ds. (B2)

the unit vector tangent to the trajectory of the wave ray.
We first prove that the Bouguer vector

G = n(r)r × v̂ (B3)

along the same trajectory is invariant when nr (r) = nr (r).

Differentiating Eq. (B3), we obtain

dG
ds

= dn

ds
r × v̂ + nv̂ × v̂ + nr × dv̂

ds
= r ×

(
dn

ds
v̂ + n

dv̂
ds

)
.

(B4)

We now use the Fermat principle, which is valid when the
refractive fluid is at rest, as in the case here considered. We
elaborate it in order to obtain an equivalent expression for the
term inside the round bracket in the third side of Eq. (B4).
For any wave ray passing through two fixed points A and B
(so that δB = δA = 0), we have

0 = δ

∫ B

A
ds n =

∫ B

A
(nδds + dsδn) . (B5)

Since δn = δr · ∇n, and

δds = dδs = d(v̂ · δr) = dv̂ · δr + v̂ · dδr = v̂ · dδr, (B6)

because dv̂ · δr ∝dv̂ · v = 0, Eq. (B5) becomes

0 =
∫ B

A
[nv̂ · dδr + dsδr · ∇n] = nv̂ · δB

− nv̂ · δA +
∫ B

A
ds

[
−δr · d

ds
(nv̂) + δr · ∇n

]

=
∫ B

A
dsδr ·

(
−dn

ds
v̂ − n

d

ds
v̂ + ∇n

)
. (B7)

Equation (B7) is valid for every couple of points A, B in
our space, whence

∇n = dn

ds
v̂ + n

dv̂
ds

. (B8)

We derive from Eqs. (B4) and (B8)

dG/ds = r × ∇n. (B9)

In the case the n(r) distribution is spherically symmetric, i.e.,
n(r) = n(r), the n gradient is directed as r, so that dG/ds =
0. Consequently, the invariance of the Bouguer vector G of
Eq. (B3) is proven.

G invariance implies that the whole trajectory of a wave
beam lies on a plane σ containing the symmetry center. If we
use in σ the polar coordinates r and ϕ, the incident angle ϑi ,
formed by the wave ray with the normal to the local isodensity
surface, can be expressed as

|sinϑi | = |r̂ × v̂| = rdϕ

ds
= rdϕ

(r2dϕ2 + dr2)1/2

= r

[r2 + (dr/dϕ)2]1/2
. (B10)

We derive from Eqs. (B10) and (B3)

G2 = n2r4

r2 + (drdϕ)2
, (B11)

whence

ϕB − ϕA =
∫ B

A

dr

r

(
n2r2

G2
− 1

)−1/2

. (B12)

If we want the total variation of the ϕ angle when the wave
ray starts from infinity, and then goes again to infinity in a
practically opposite direction, it is convenient to double the
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result starting from the distance of minimum approach R,
corresponding to sin ϑi = 1, so that G = n (R) R. We therefore
obtain

δϕtot = 2
∫ +∞

R

dr

r

[ (
n(r)r

n(R)R

)2

− 1

]−1/2

= 2
∫ +∞

1

dx

x

[ (
x

n(x)

n(1)

)2

− 1

]−1/2

, (B13)

having set x = r/R in the last integral. When n(x) = 1
(negligible refraction), it is

δϕtot(n = 1) = 2
∫ +∞

1

dx

x(x2 − 1)1/2
= π. (B14)

The total deviation �β=0 of the wave ray coming from the
quasar, passing at a minimum distance r0 from the center of a
gas cloud, and arriving at Earth is

�β=0 = δϕtot − δϕtot(n = 1) = 2
∫ +∞

1

dx

x

×
[ (

x
n(x)

n(1)

)2

− 1

]−1/2

− π , (B15)

where the subscript “β = 0” denotes nonrelativistic cal-
culus, i.e., the choice of a frame at rest with the gas
cloud.
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