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Approximate method for calculating the radiation from a moving charge
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An approximate method for calculating the radiation from a moving charge in the presence of a dielectric
object is developed. The method is composed of two steps. The first step is calculation of the field in the medium
without considering the external boundaries of the object, and the second step is an approximate (ray-optical)
calculation of the wave propagation outside the object. As a test problem, we consider the case of a charge
crossing a dielectric plate. Computations of the field are performed using exact and approximate methods. It
is shown that the results agree well. Additionally, we apply the method under consideration to the case of a
cone-shaped object with a vacuum channel. The radiation energy spectral density as a function of the location
of the observation point and the problem’s parameters is given. In particular, the convergent radiation effect is
described.
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I. INTRODUCTION

Problems of radiation from charged particles in the presence
of dielectric objects are of interest for a series of important
applications in accelerator and beam physics and other areas.
For example, such problems are typical of Cherenkov detectors
[1]. Additionally, a recently reported method for bunch
diagnostics is connected to these problems [2].

It should be noted that, as a rule, the radiation field is
measured outside the dielectric object. The form of the object
in such problems usually does not allow an exact analytical
solution to be obtained. At the same time, computer simulation
of electromagnetic fields is very cumbersome. Thus, the
development of approximate methods for calculating the field
of a moving bunch in the presence of different dielectric
objects is of great interest. One such technique is offered and
developed in this paper.

The method under consideration can be used for at least the
following situations: (1) a charge moving into some dielectric
or magnetic object, (2) a charge moving in a vacuum channel
in such an object, and (3) a charge moving along the border of
an object. The radius of the channel (in the second situation)
and the distance from the border (in the third situation) can
be, in principle, arbitrary. Note that the cases when these
parameters are relatively small (no more than the wavelength
under consideration λ) are of most interest because radiation is
exponentially small if these parameters are much more than λ.

In any case, we assume that Cherenkov radiation (CR) is
generated in the object but is not excited outside it. Such
a situation usually occurs in problems concerning Cherenkov
detectors [1] and in schemes for diagnostics of charged particle
bunches [2].
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The method offered here concerns problems that are
characterized by some large geometric parameter: the size of
the object is assumed to be much larger than the wavelengths
under consideration. To be more exact, it is assumed that the
CR excited by the bunch travels into the object over a distance
that is much longer than the typical wavelengths. It should
be emphasized that the other geometric parameters (such as
the channel radius or the distance from the object’s border to
the charge trajectory) can be arbitrary.

Under such conditions, the following approach can be
applied. At first, the field of the charge in an infinite medium
without “external” borders is calculated. It is important that the
finite distance from the charge trajectory to the nearest border
of the object is taken into account in this step.

The second step is the approximate calculation of the
radiation exiting the object (sometimes named “Cherenkov-
transition radiation” (CTR) [3,4]). This calculation is related
to Fock’s method for analyzing reflection of waves from an
arbitrary surface [5], but we address transmission instead of
reflection. Analogous calculations are applied to elaborate
different optical systems [6]. The incident field is multiplied
by the Fresnel transmission coefficient, and then the decrease
(or increase) in the radiation field because of change in the ray
tube cross section in the external medium is taken into account.
Thus, the first of the CTR refracted rays is obtained. This ray
will most likely be satisfactory for the majority of applied
problems. If necessary, multiple reflections and refractions
from the object’s borders can be taken into account.

II. EXACT SOLUTION FOR A DIELECTRIC PLATE

To test the method under consideration, we use the problem
of the field of a point charge flying through a dielectric
layer placed at 0 < z < d (Fig. 1). The medium of the layer
has permittivity ε2 and permeability μ2, and the half-spaces
outside the layer are characterized by permittivity ε1 and
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FIG. 1. (Color online) Cross section of the plate. The region
enclosed by dashed lines is the zone of the first ray.

permeability μ1. A point charge q moves perpendicularly to the
layer with a constant velocity V . The charge’s location at time
t is determined by the equations x = y = 0 and z = V t , so
the charge density is written in the form ρ = qδ(x,y,z − V t).
The tangential projections of the electric and magnetic fields
should be continuous at the layer boundaries.

Such a problem has an exact solution [7], which has been in-
dependently proved by us. To calculate the field, the scalar (�)
and vector ( �Az = Az�ez) potentials were used, and the Fourier
method was applied. The solution can be written as the sum of a
“forced” field (the field of the charge in an unbounded medium)
and a “free” field (which is connected with the influence of the
boundaries). The forced-field potentials have the form

{
A(1),(3)

z
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}
= q

2π2V
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0
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0
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where the indexes (1), (2), and (3) refer to regions 1, 2, and 3,
respectively (Fig. 1), and ρ, φ, z are cylindrical coordinates.
The free-field potentials have the following form:
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The index (s1) indicates the region z < 0, the index (s2)
indicates the layer region 0 < z < d, and the index (s3)
indicates the region z > d. The boundary conditions give the
following expressions for the coefficients:
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where
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Note that the integral over φk can be calculated using the
formula

∫ 2π

0 ei�k �ρdφk = 2πJ0(kρρ).
The field components are determined by the formulas

�E = −∇� − 1

c

∂ �A
∂t

, �B = rot �A. (13)

We consider the magnetic field strength in region 3:

�H = Hφ�eφ = (
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H

(1)
1 (kρρ) is the Hankel function. Note that we can integrate

(14) on the half-axis only using the formula
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−∞ f (ω)dω =

2
∫ +∞

0 Re[f (ω)]dω, which follows from the reality of the field
components.
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III. APPROXIMATE SOLUTION FOR A
DIELECTRIC PLATE

In accordance with the approximate method under consid-
eration, the field in the object without “external” boundaries
should be found first. In the case of the plane layer, it is the field
of the charge in an infinite medium 2. This field is determined
by a formula analogous to (14):

H
(2)
φ =

∫ +∞

−∞
dωH

(2)
φω exp(−iωt),

(15)

H
(2)
φω = iq

2c
s2(ω)H (1)

1 [s2(ω)ρ] exp

(
i
ωz

V

)
,

where s2(ω) =
√

ω2(ε2μ2β2 − 1)/V 2 [Im s2(ω) � 0].
The method under consideration allows the small wave-

length waves to be analyzed (d
√

ε2μ2ω/c � 1). At the
boundary, z = d, we have approximately for these frequencies

H
(2)
φω

∣∣
z=d

≈ iq

c

√
s2

2πρ
exp

(
i
ωd

V
+ is2ρ∗ − i

3π

4

)
, (16)

where ρ∗ = ρ − (z − d) tan θt , and θt is a transmission angle
determined by Snell’s law:

sin θt = sin θi
√

ε2μ2√
ε1μ1

. (17)

In the case under consideration, the angle of incidence θi is
equal to the Cherenkov angle θp (Fig. 1):

θi = θp = arccos[(
√

ε2μ2β)−1]. (18)

The amplitude of the first refracted wave is determined by the
Fresnel transmission coefficient [6]

T =
2
√

μ1

ε1
cos θt√

μ2

ε2
cos θi +

√
μ1

ε1
cos θt

. (19)

Note that the transmitted wave is cylindrical, as is the
incident wave, i.e., the divergence of the ray tube is the same
as in the layer, and the amplitude decreases with 1/

√
ρ. Taking

into account (16), the field in region 3 has the following form:

H
(3)
φ (ω) = iq

c
T

√
s2(ω)

2πρ
exp

[
iω

d

V
+ is2(ω)ρ∗

+ il
ω

c

√
ε1μ1 − i

3π

4

]
, (20)

where l = (z − d)/ cos θt is the path of the wave in region 3.
The results obtained on the basis of the exact and approx-

imate formulas are shown in Fig. 2. We see that the results
are close even for d = 2λ2 (in the zone of the first ray). In
the case where d ∼ 10λ2, very good agreement is shown
for the majority of “the light bar.” This fact stimulates the
application of this method to more complex objects where the
exact solution cannot be found.

IV. APPROXIMATE METHOD FOR A CONE

In this section, the method under consideration is applied to
the case of an infinite cone with a cylindrical vacuum channel
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FIG. 2. (Color online) Fourier component of the magnetic field
strength H

(3)
φω (in A s/m) as a function of z; computations are

performed using the exact (solid curves) and approximate (dashed
curves) formulas; ε2 = 1.5, μ2 = 1, q = −1 nC, β = 0.99, ρ =
0.6 cm.

(Fig. 3). The permittivity and permeability of the cone material
are ε2 = ε and μ2 = μ, respectively, and the channel and the
region outside the cone are in a vacuum: ε1 = μ1 = 1. The
geometry of the problem gives the external boundary of
the cone determined by the equation ρ = (z0 − z) tan α, where
0 < α < π/2. A point charge moves along the axis (z axis) of
the channel of radius a, which can either be smaller or larger
than the typical wavelengths (the case of relatively small radius
a < λ is of the most interest). It is also assumed that the CR
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FIG. 3. (Color online) Cross section of the cone for different ray
dispositions; θi,t > 0 in (a) and (b); θi,t < 0 in (c).

wave travels a distance in the dielectric much longer than the
wavelength under consideration.

First, the problem should be solved for the case of an infinite
medium with a vacuum channel. The solution of this problem
is known [8]: the Fourier transform of the magnetic field can
be written in the form

H
(2)
φω = iq

2c
ηsH

(1)
1 (sρ) exp

(
i
ω

V
z∗

)
, (21)

where

η = − 2i

πa

[
1 − εμβ2

ε(1 − β2)
I1(ka)H (1)

0 (sa) + sI0(ka)H (1)
1 (sa)

]−1

,

s = ωV −1
√

εμβ2 − 1, (Im s � 0), (22)

k = |ω|V −1
√

1 − β2.

Additionally, it is necessary to determine the point of
incidence M∗ for the wave on the cone boundary. The
coordinates of the incidence point ρ∗, z∗ are a function of
the coordinates of the observation point. Analysis of the ray
geometry (Fig. 3) gives the following results:

ρ∗ = (z0 − z∗) tan(α), z∗=z0 tan(α)+z cot(α + θt ) − ρ

tan(α) + cot(α + θt )
,

sin θt = √
εμ sin θi, θi = π

2
− α − θp, (23)

cos θp = 1/(
√

εμβ).

It is assumed that the volume wave exists outside the
cone; that is, total reflection does not occur, i.e., the condition√

εμ sin |θi | < 1 is fulfilled.
Note that angles θi and θt have the same sign, they can

be either positive or negative simultaneously. Figures 3(a)
and 3(b) illustrate the case α + θp < π/2 (when θi,t > 0); the
opposite case α + θp > π/2 (when θi,t < 0) is characterized
by the different positional relationship of the rays and the
vector normal to the boundary [Fig. 3(c)].

One can show that the divergence of the ray tube outside
the cone is the same as in the cone, which is explained by the
cylindrical character of the wave field. As a result, we obtain
the expression for the field outside the cone in the form

Hφω ≈ H
(2)∗
φω

√
ρ∗
ρ

T exp (iωl/c), (24)

where H
(2)∗
φω (ω) is the incident field (21) at the point M∗, T is

the Fresnel transmission coefficient (19), and l is the ray path
in vacuum:

l = (z − z∗)/ sin(α + θt ). (25)

Naturally, the obtained result describes the field outside
the cone in the zone in which the transmitted wave exists. If
α + θt < π/2, then this zone is bounded:

z < z0 + ρ tan(θt + αsgnθt ) (26)

[dotted lines in Figs. 3(a) and 3(c)]. However, if α + θt > π/2,
then the transmitted wave exists everywhere outside the cone
[Fig. 3(b)]. One can show that this inequality is equivalent to
the following:

tan α < (1 − β)/
√

εμβ2 − 1. (27)

Under this condition, the transmitted wave propagates to the z

axis, so the field increases along the ray [Fig. 3(b)]. Formally,
in this case, the ray optical solution tends to infinity if ρ → 0,
according to (24). Naturally, our approximate solution is not
true at small ρ where the wave amplitude depends strongly on
distance. Practically, the solution obtained here is correct for
ρ > 2πc/ω.

An important characteristic of radiation is the spectral
density of energy passing through a unit square. This value
can be introduced in the following way. We consider the
total energy flowing through a unit square: � = ∫ +∞

−∞ Sdt ,

where S = c(4π )−1|[ �E, �H ]| is the modulus of the Poynting
vector. Because in the approximation under consideration the
magnetic and electric strengths are mutually orthogonal and
| �E| = | �H | = |Hφ|, we have

� = c(4π )−1
∫ +∞

−∞
|Hφ|2dt = c

4π

∫∫∫ +∞

−∞
HφωHφω′

× exp[−i(ω−ω′)t]dω′dωdt. (28)
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FIG. 4. (Color online) Angle of the CR, angle of incidence, and
angle of refraction (in degrees) as functions of the charge velocity for
α = 45◦.
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FIG. 5. (Color online) Spectral density of the radiation energy σ

(J s/m2) on the cone surface at a distance ξc = 5 cm from the cone
vertex as a function of α for different β, indicated near the curves.

Applying the formula
∫ +∞
−∞ exp[−i(ω − ω′)t] dt = 2πδ

(ω − ω′) and the equality Hφ,−ω = Hφω (where the upper line
indicates the complex conjugate), after a simple transforma-
tion, we obtain

� =
∫ +∞

0
σdω =

∫ +∞

0
c|Hφω|2dω, (29)

where σ = c|Hφω|2 is the spectral density of energy flowing
through a unit square. Using (24) we have

σ ≈ ∣∣T H
(2)∗
φω

∣∣2
ρ∗/ρ. (30)

V. RESULTS OF COMPUTATION FOR THE CONE

All computations were performed with the following
parameters: ε = 4, μ = 1, a = 2 mm, q = −1 nC, and ω =
2π × 3 × 1010 s−1. Note that we present here results for case
of nonmagnetic objects because such objects are typical for
applications.

Figures 4–8 illustrate some properties of the field obtained
above. Figure 4 shows the angle of the CR, the incidence angle,
and the angle of refraction as a function of the charge velocity.
Recall that the positive values of θi and θt correspond to the

2 4 6 8
0

5 10 13

1 10 12

c

0.99

0.8

0.53

×

×

FIG. 6. (Color online) Spectral density σ (J s/m2) as a function
of the distance ξc (cm) from the cone vertex along the cone surface;
α = 45◦; values of β are given near the curves.
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FIG. 7. (Color online) Spectral density σ (J s/m2) as a function
of the distance ξr (cm) along the ray from the cone surface: the initial
point M∗ is situated at ρ∗ = 5 cm; α = 45◦; values of β are given
near the curves.

case shown in Figs. 3(a) and 3(b), and negative values of these
angles correspond to the case shown in Fig. 3(c).

The dependence of σ on the cone surface for different
charge velocities is shown in Fig. 5. Note that there are limiting
values of α for each curve, which are explained by the effect of
total reflection of the CR at the cone boundary. The radiation
energy approaches infinity when α approaches one of these
limits.
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FIG. 8. (Color online) Spectral density σ (J s/m2) as a function
of the distance ξr (cm) along the ray from the cone surface: the initial
point M∗ is situated at ρ∗ = 5 cm; β = 0.6 (top); β = 0.99 (bottom);
values of α are given near the curves.
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Figure 6 illustrates the typical dependence of the spectral
density of the radiation energy on the cone surface on the dis-
tance ξc from the cone vertex. This dependence monotonically
decreases because the CR is a cylindrical divergence wave in
the cone.

The typical dependencies of the spectral density of the
radiation energy σ on the distance from the cone boundary
along the rays are shown in Figs. 7 and 8. One can see
that there are some values of the parameters at which the
radiation energy increases with distance ξr . This means that
the radiation is a convergent cylindrical wave [Fig. 3(b)]. As a
rule, this effect takes place for velocities close to the Cherenkov
threshold, βC = 1/

√
εμ, while for ultrarelativistic velocities

the radiation energy decreases along the ray, i.e., the wave is
divergent.

VI. CONCLUSION

An approximate method for calculating the radiation from
a moving charge in the presence of a dielectric (or magnetic)
object has been developed. In the first step of this technique,
the field of the charge in an infinite medium without “external”
borders is calculated. At this stage, we take into account
the wave interaction of the charge field with the “near”
boundaries of the object. It is important that the distance
from the object boundary to the charge trajectory can be
arbitrary, so we can analyze the most interesting case when
this distance is relatively small (<λ). The second step is the
approximate calculation of the radiation exiting the object.
This calculation is performed with the help of the Fresnel

transmission coefficient and the laws of ray optics. As result,
we can obtain relatively simple expressions for the wave field
components outside the object. Thus, the technique under
consideration allows taking into account both the “near” bor-
ders of the object and the “distant” ones without cumbersome
computations.

As a test problem, the case of a charge crossing a dielectric
plate has been considered. Computations of the field have
been performed using exact and approximate methods, and the
results agree well. Using this method for the case of a conical
dielectric object allows the description of some interesting
physical phenomena, for example, convergent Cherenkov-
transition radiation.

Note that the technique developed here allows us to easily
take into account losses in the medium because we can use
complex values of ε and μ in the obtained formulas. Moreover,
although we considered here the case of point charge, the
method under consideration can be applied to particle bunches
having different sizes and forms. We believe also that the
method will be useful for problems with objects having more
complex shapes. As well, in principle, accelerated or nonlinear
motion of charge can be considered, but such problems go
beyond the scope of this work.
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