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Stability and energetics of Bursian diodes
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We present an analysis of the stability, energy, and torque properties of a model Bursian diode in a one
dimensional Eulerian framework using the cold Euler-Poisson fluid equations. In regions of parameter space
where there are two sets of equilibrium solutions for the same boundary conditions, one solution is found to be
stable and the other unstable to linear perturbations. Following the linearly unstable solutions into the nonlinear
regime, we find they relax to the stable equilibrium. A description of this process in terms of kinetic, potential
and boundary-flux energies is given, and the relation to a Hamiltonian formulation is commented on. A nonlocal
torque integral theorem relating the prescribed boundary data to the average current in the domain is also provided.
The results will be useful for numerical verification purposes, and understanding Bursian diodes in general.
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I. INTRODUCTION

In its simplest form, a diode consists of two conducting
electrodes with a relative electric potential bias |φ1| and
a distribution of moving charge carriers. Fundamentally,
the transport of these charge carriers is constrained, self-
consistently, by nonlinear space charge effects. For example,
in the case of a steady un-neutralized electron flow in one
dimension (a Bursian diode), the charge flux cannot exceed
the analytically derivable Child-Langmuir limit that depends
only on |φ1|, the size of the domain and the velocity of
the incoming electrons [1–3]. Mechanistically, if the electron
flux exceeds the limiting value, there is a charge build-up—a
virtual cathode—and an associated electric field that resists
the passage of additional electrons.

Understanding and controlling the onset of this virtual
cathode, as well as other, nearby, physically and numerically
accessible states, their stability properties, and the energy
demands of maintaining a diode flow, has applications in a
wide range of settings that are well reviewed by Ender et al. [4].
Some examples include inertial-electrostatic confinement [5],
pinch reflex diodes for intense ion beam generation [6],
vircators [7], reflex triodes for microwave generation [8], pho-
toinjectors [9,10], and producing GHz to THz electromagnetic
radiation [11,12].

Historically, much of the illuminating analysis has come
from simulations, especially in complex geometries and for
kinetic systems. To ensure the fidelity of future codes, a good
understanding of the basic physics and a suite of test cases
for benchmarking is desirable. These are an integral part of
the verification process [13,14]. Indeed, for just this purpose,
there has recently been an explicit call for analytic and high-
accuracy numerical solutions for model problems in plasma
physics [15–17]. Solutions that meet these requirements would
also be of benefit in a wide range of simulation-assisted
fields where the equations governing diode dynamics are also
applicable: collisional electrostatics, inviscid fluid dynamics,
and gravitating astrophysical systems.
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On a more primitive level, beyond the industrial appli-
cations that can be inferred from simulation, diodes exhibit
important fundamental physics. The entering and exiting
particles carry with them kinetic and potential energy, thereby
making them a readily analyzable, energetically open system.
This means that the continuum Hamiltonian description,
designed for energetically closed systems, must be extended
if it is to be applicable [18,19]. Again, because of the wide
applicability of the diode equations to other areas of physics,
extending the Hamiltonian formalism would be of significant
general importance. A good precursor to any such attempt
would be a diode energetics analysis that focused on the role
of boundary terms.

To these ends, providing benchmarks for numerical codes
and a boundary-inclusive energetics analysis, this paper inves-
tigates the linear and nonlinear dynamics of the simple Bursian
diode above. In particular, we consider the time-dependent
solutions and energy evolution of the two-equilibria region of
parameter space.

While this is an old problem with many existing descrip-
tions, e.g., Refs. [3,20], our approach has several original
contributions. First, our results are presented in a Eulerian,
as opposed to Lagrangian, framework, which is the most
generally convenient representation against which to compare
numerical simulation. Second, we consider in detail the
intermediate nonlinear regime of solutions that exists beyond
the linear stage and before the final relaxed state is reached. It
is in this regime, where the nonlinear dynamics compete with
the electrostatically driven relaxation, that code irregularities
will most likely appear. While the initial and final states of a
perturbed Bursian diode in the two-equilibria region are well
know, how the system transitions between these states is not.
Finally, we present new interpretations and parallels between
disperate areas of physics that have not been previously
discussed: diodes, the role of torque conservation, and, briefly,
astrophysics.

The plan of this paper is as follows. In Sec. II we introduce
our equations and review what is known about their time-
independent, i.e., equilibrium, solutions. We focus on regions
of parameter space that support two distinct equilibria. In
Sec. III we present a new perspective on their linear stability,
showing one to be stable and the other unstable. In Sec. IV we
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continue our investigation by following the linear instability
into the nonlinear regime and discuss the associated system
energy and torque and their role as diagnostics. In Sec. V
we conclude and discuss some potential applications for our
results.

II. EQUILIBRIUM SOLUTIONS

The physical picture of a working Bursian diode is one of
electrons flowing across a diode domain under the influence
of an electric potential. The potential is made up of an external
component that is determined by the boundary conditions at
the incoming and outgoing edges, and an internal potential that
is determined self-consistently by Poisson’s equation.

When the electrons are cold and collisionally dominated,
this systems is described by the Euler-Poisson fluid equations

∂tρ + ∂x(ρv) = 0, (1)

∂tv + v∂xv = ∂xφ, (2)

∂xxφ = ρ. (3)

Here x, t , ρ, v, and φ are the scaled position, time, density,
velocity, and potential for an electron fluid. The hyperbolic
equations (1) and (2), respectively, describe the conservation
of mass, and the momentum evolution of a fluid element forced
by an electric field −∂xφ. Equation (3) relates the electric
potential to the charge density via the elliptic Poisson equation.

To determine the external electric potential, and incoming
electron density and velocity, we introduce the following time-
independent Dirichlet boundary conditions:

φ = 0
v = v0

ρ = ρ0

⎫⎬
⎭ on x = 0

φ = φ1 on x = d. (4)

Here x = 0 is the incoming boundary and x = d is the outgo-
ing boundary, so electrons flow from 0 to d. Equations (1)–(4)
have been normalized using

(x,t,v,φ,ρ) = (x ′/L,t ′/T ,v′/(L/T ),φ′/ϕ,ρ ′/R)

ϕ = (me/qe)(L/T )2 R = (ε0/qe)(ϕ/L2),

where the primed variables are unscaled, L and T are
characteristic length and time scales, me is the electron
mass, qe the fundamental charge (positive), and ε0 is vacuum
permittivity.

In the steady state (1) and (2) constrain the current ρv and
the energy density of a fluid element, kinetic plus potential
v2/2 − φ, to be constant across the domain (the minus is
because electrons are negatively charged). This implies that for
given boundary conditions, i.e., (4), the two unspecified fields
at the outgoing boundary ρ(d),v(d) are uniquely determined.
The motion of the fluid can be understood energetically in
terms of Hamilton’s principle, the principle of least action,
from which (2) can be derived. The gain (loss) in the kinetic
energy of a fluid element as it crosses the domain equals its
loss (gain) in potential energy as work is done on (against) it by
the electric field (that accelerates electrons from the emitting
cathode to the collecting anode, in the case of a monotonically
increasing potential).

It is known that there are two kinds of equilibrium solutions
to the system (1)–(4), and we review them here [3]. For φ1 > 0,
their implicit expressions are given by

(� − 2α)
√

� + α = 3

4

√
8ρ0

v0
x + (1 − 2α)

√
1 + α, (5)

(� − 2α)
√

� + α =
∣∣∣∣3

4

√
8ρ0

v0
x − (1 − 2α)

√
1 + α

∣∣∣∣ , (6)

where � =
√

1 + 2φ/v2
0 and �d =

√
1 + 2φ1/v

2
0 are normal-

ized potentials. The quantities ξ1 = 4/3(1 + �
3/2
d ) < ξ2 =

4/3(�d + 2)(�d − 1)1/2 < ξ3 = 4/3(1 + �d )3/2 demarcate
(nonexclusively) the boundaries between solutions monotonic
in φ given by (5) that occur when 0 < d

√
8ρ0/v

2
0 � ξ2, and

solutions with a single turning point given by (6) that occur
when ξ1 < d

√
8ρ0/v

2
0 � ξ3. The physically relevant difference

between (5) and (6) is that, for the former, the electric field
always points in one direction and, for the latter, it changes
direction. At the reversal point for solutions given by (6), the
electric field vanishes and the electrons flow ballistically.

To close (5) and (6) so the functional form of the fields can
be determined, α is needed. It satisfies

(�d − 2α)
√

�d + α = 3

4

√
8ρ0

v0
d ± (1 − 2α)

√
1 + α, (7)

where the positive and negative signs correspond to (5) and (6),
respectively.

Necessary and sufficient conditions for determining the
number of solutions, zero, one, or two, are given succinctly by

d

√
8ρ0/v

2
0 > ξ3: zero solutions, (8)

d

√
8ρ0/v

2
0 < ξ1, or = ξ3: one solution, (9)

ξ1 � d

√
8ρ0/v

2
0 < ξ3: two solutions. (10)

The number of accessible solutions is a function of
d, v0, ρ0, and φ1 (Figs. 1 and 3). For example, for
(d,v0,φ1) = (1,1,0.25), there are no steady-state solution
for ρ0 > 2.5, two when 2.5 > ρ0 > 1.2, and one when
ρ0 < 1.2. It is important to know these boundaries a priori for
both modeling and physical testing purposes because of the
extreme sensitivity of system around the bifurcation points
where the number of solutions changes.

We denote the solution with larger φ as branch I and the
other as branch II. In the literature, these are known as the
C-branch and C-overlap branch, respectively [21].

It is the stability, dynamics, and energy of perturbations
to the equilibria in the region of parameter space given
by (10) that are the focus of this paper. While these have
been investigated before in a Lagrangian framework, our
approach in a Eulerian framework is new and has several
advantages. Specifically, it allows for a direct interpretation of
solutions that are functions of x and t rather than Lagrangian
coordinates; the discrete nature of the linear eigenmodes are a
natural product of the formulation; and the description is robust
to changes that would not allow for a Lagrangian analysis.
These features are all useful for verification purposes, as are
the expressions (5)–(10) for the equilibrium configuration.
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FIG. 1. (Color online) Potential profiles φ associated with
branch I (solid lines) and branch II (dashed lines) equilibria for
(d,v0,φ0,φ1) = (1.0,1.0,0,0.25) and ρ0 = 2.45 (red, no symbols),
ρ0 = 2.00 (blue, diamonds), and ρ0 = 1.00 (black, squares), respec-
tively. Note that for ρ = 1.00 there is only one solution, as given
by (9).

In accordance with earlier studies, we find that the
C-overlap branch is unstable to linear perturbations, and we
follow these into the nonlinear regime [3,20,22].

III. LINEAR STABILITY ANALYSIS

To provide a set of numerical benchmarks for verification
purposes, and to understand the physics of Bursian diodes
at small times, we conduct a perturbation analysis. We wish
to determine the linear stability properties of branch I and
branch II equilibrium solutions to (1)–(3) when (10) holds. To
do so, we use (5)–(7) subject to (4) to construct equilibria
ρ̃(x), ṽ(x), φ̃(x), and to these we add small perturbations
(δρ,δv,δφ) = (δρ(x),δv(x),δφ(x))eλt that obey (δρ,δv,δφ) =
(0,0,0) at x = 0 and δφ = 0 at x = d.

Linearizing, we obtain

λδρ + ∂x(ρ̃δv) + ∂x(ṽδρ) = 0, (11)

λδv + ∂x(ṽδv) = ∂xδφ, (12)

∂xxδφ = δρ. (13)

This system can be written as

λ

(
δρ

δv

)
= A

(
δρ

δv

)
, (14)

where

A :=
[−∂xṽ − ṽ∂x −∂xρ̃ − ρ̃∂x

∂x(∂xx)−1 −∂xṽ − ṽ∂x

]
. (15)

The eigenvalues of (14) determine the linear stability of
the system as follows: Re(λ) > 0 describes unstable modes
and Re(λ) < 0 describes stable modes. To compute λ, we
discretize the operator matrix (15) using three methods: a
uniform grid with an upwind scheme, a uniform grid with
a centered difference scheme, and a Chebyshev grid with
an associated polynomial interpolation [23]. The discrete
spectrum of eigenvalue-eigenvector solutions—a discreteness
not generally emphasized in the dispersion relations arising
from Lagrangian analyses, e.g., Refs. [20,22]—are obtained
numerically and shown in Figs. 2, 4, and 5. All three schemes
converge to the same consistent result. We take this to
constitute a “high-accuracy numerical solution,” and below
a numerical example is provided for testing purposes.

−5 −4 −3 −2 −1 0 1
−40

0

40

Im(λ)

Re(λ)

FIG. 2. Eigenvalues associated with perturbations to branch II
equilibria with parameters (d,ρ0,v0,φ1) = (1,2.4,1,0.25). Calculated
using Chebyshev spectral methods, only a single positive eigenvalue,
the first one, exists, corresponding to an unstable, purely growing
mode. The remaining eigenvalues are in complex conjugate pairs
with Re(λ) < 0, corresponding to damped, traveling waves.

Conducting a parameter scan, for branch II we find
λ > 0 ∈ Re for the first eigenvalue, the one with a single
zero in the corresponding eigenfunctions. For the remaining
eigenvalues in branch II, and all of branch I, Re(λ) < 0. The
system supports a single unstable mode. For example, for
(d,ρ0,v0,φ1) = (1,1.5,1,0.2), the most positive eigenvalues
from branch II and I are 1.1 and −2.1 respectively: One
mode is unstable and the other stable. As the two equilibrium
solutions merge at d

√
8ρ0/v

2
0 = ξ3, the unstable eigenvalue of

branch II obeys Re(λ) → 0. Approaching the other boundary
of the two solution region d

√
8ρ0/v

2
0 = ξ1, the full-width

at half-maximum of the corresponding eigenmode → 0. It
remains to be seen whether this singular mode bears any
fundamental relation to the singularity that forms in the case
that the current exceeds the Child-Langmuir limit [24,25].

The physical implications of these results is that for any
experimental realization, branch II solutions cannot persist
for any extended period. Infinitesimal perturbations arising
from any source of broadband background noise will, under
an appropriate decomposition, support an unstable mode.
This mode will grow at an exponential rate λ, moving the
total solution (ρ̃(x), ṽ(x), φ̃(x)) + (δρ,δv,δφ) away from its
initial branch II configuration. While the inherent instability of
branch II solutions are well known [20], the growth rates and
fields configurations are not, at least in terms of the boundary
conditions and Eulerian formulation, used here.

Furthermore, discussion of the medium term fate of the un-
stable solutions has been largely neglected in the literature. In
the next section we address this by following the perturbations
into the nonlinear regime and to their final, stable state.

IV. NONLINEAR DYNAMICS

For small time, coupling between infinitesimal amplitude
perturbations, and their feedback on the equilibrium solutions,
is negligible. However, because λ > 0 for one mode, that
mode grows exponentially and the perturbations quickly reach
nonlinear amplitudes. In this case, the methods and results of
Sec. III are no longer applicable. In the nonlinear regime,
the most general method for solving (1)–(3) is numerical
integration; although the method of characteristics can also
be used to obtain complete analytic solutions in a Lagrangian
framework [4,22]. The method used here, a Eulerian approach,
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FIG. 3. (Color online) Number of equilibrium solutions to
(1)–(3) as follows: Zero (horizontal lines), one (vertical lines), and two
(crossing lines) for varying ρ0,φ1 and (d,v0) = (1,1). The zero- and
two-solution boundary at d

√
8ρ0/v

2
0 = ξ3 corresponds to the space

charge limiting current derived by Child and Langmuir for v0 = 0,
Jaffé for v0 > 0, and Caflisch and Rosin for time-varying boundary
conditions [1–3,24]. The circled dot corresponds to the parameters
used in Fig. 2 and the star to those in Figs. 5, 6, and 7.

has the advantage that it is naturally formulated as a two-point
Dirichlet boundary value problem for φ, which can easily
be realized experimentally, i.e., φ is prescribed on both
boundaries. The alternative Lagrangian approach is more
naturally formulated as a Cauchy problem, which is harder
to realize experimentally and from which the corresponding
Dirichlet conditions are nontrivial to obtain [24], i.e., φ and
∂xφ are prescribed on one boundary. In terms of the relative
verification merits of the methods, it is worth noting that a
Lagrangian analysis must be numerical remapped before it
can be compared to the solution produced by a Eulerian code.

We favor the direct Eulerian numerical approach. We
employ MacCormack’s method to integrate the hyperbolic
equations (1)–(2) and solve the elliptic Poisson equation (3)
at each time step using a finite-difference description and
inverting a tridiagonal matrix. Our simulations are initialized
with unstable equilibrium solutions from branch II and
numerical noise provides broadband perturbations which are
constrained to obey (4). The solutions to our perturbed system
are well matched by our linear results for small time, and in
the final state the solutions have relaxed to the stable branch I
equilibrium solutions with the same boundary conditions as
the initial, unstable equilibrium (Fig. 6).

Physical insight and a set of numerical benchmarks for the
system can be obtained by considering both the energetics of
the system and its global torque. In the next subsection, we
examine each in turn and derive a set of integral equations that
describe the system’s spatially averaged properties and their
interaction with the boundaries.

These types of equations are both less computationally
demanding to solve (which is unimportant here but may
matter in higher dimensions or kinetic models) and do not
require knowledge of the fundamental unaveraged solutions.
Furthermore, being able to relate prescribed boundary value
data to derived domain data offers a new avenue for both
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FIG. 4. The most positive eigenvalues of (14), i.e., λ, associated
with perturbations to branch II [Re(λ) > 0, unstable] and branch I
[Re(λ) < 0, stable] solutions for the parameters (d,v0) = (1,1), and
varied ρ0 and φ1; see Fig. 3.

control and experimental measurement of spatially distributed
system properties.

A. Energetics

Even at the model equation level considered here, energy
insights may be important for industrial purposes [7]. In this
subsection, we examine the evolution and balance of the
standard energy integrals. We leave further detailed discussion
to a forthcoming paper in which we present a tailored Bursian
diode-battery model.

We start by multiplying (2) by v and combining it with (1) to
yield an evolution equation for the kinetic energy K = ρv2/2
balance of the system,

∂tK + ∂x (vK) = ρv∂xφ, (16)

where ρv∂xφ is the negative Joule heating term. Integrating
over x, the total kinetic energy in the system is given by

∂tK = v0K0 − vdKd + ρv∂xφ, (17)

where overbars denotes spatially integrated quantities
∫ d

0 dx

and subscripts 0, d indicate that the associated quantity is to be
evaluated at x = 0, d respectively. There are two contributions
to the total kinetic energy: the difference in the boundary fluxes
of kinetic energy and the work done on the fluid by the electric
field.

To describe the total energy balance in the system, it helps
to decompose φ = φE + φI into external and internal com-
ponents, and these satisfy Laplace’s and Poisson’s equations
respectively:

∂xxφE = 0, with φE(0) = 0, φE(d) = φ1, (18)

∂xxφI = ρ, with φI(0) = 0, φI(d) = 0. (19)

The solution to (18) is simply φE = (φ1/d)x, and the Green’s
function for φI is

φI(x) = 1

2

∫ d

0
dx ′ρ(x ′)

(
|x − x ′| − 2

xx ′

d
− x − x ′

)
. (20)
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FIG. 5. (Color online) Evolution of perturbed field quantities
associated with the unstable branch II equilibrium for t � 5.6 and
steady boundary conditions (d,ρ0,v0,φ1) = (1,3,1,1). Snapshots are
every t = 0.35 starting from the δρ,δv,δφ = 0 initial conditions (red
circles). The unstable linear eigenmodes (white circles) with growth
rate exp(λt) (Sec. III) overlay the fully nonlinear solutions (solid
lines) to t = 5.5 (blue diamonds), at which point they start to diverge.

Rewriting (16) in conservative form using (1) and (19), we
have

∂tE + ∂x [v (E + PI)] = 0, (21)

where E = K + PE + PI is the combined kinetic K, external
potential PE = −ρφE and internal potential PI = −ρφI/2
energy of a fluid element, and we have made use of the fact that
φE, φI(0), and φI(d) are time independent. Physically, the factor
of a half in the definition of PI is to avoid double counting
particle interaction energies [26]. Mathematically, it arises
from the symmetry properties of the Green’s function (20)
under x ⇔ x ′.

In the absence of net boundary fluxes, the second term in
(21) vanishes on integration. In this case, the total energy
E is conserved and coincides with the fluid Hamiltonian
H = ρv2/2 + (∂xφ)2/2, from which the equation of mo-
tion (2) can be derived [11,27]. The evolution of the various
energy quantities is plotted in Fig. 7.

Considerable work has been done on the nonlinear stability
of closed plasma and fluid systems using variational principles,
e.g., Refs. [28–31]. However, for open systems, i.e., ones with
sources, like boundary fluxes, stability proofs are difficult to
construct, and we do not attempt to do so here. Nevertheless,
the nonlinear stability and Hamiltonian structure of such
systems has been the focus of recent work, and so a theorem
tailored to the problem described here may be forthcoming
[32–35].

B. Torque and boundary conditions

Unlike energy, torque is not generally considered as an
important property of diode systems. However, it is frequently
invoked in describing stellar systems governed by (1)–(3), in
the context of which (2) is known as the Jeans equation and φ

is the gravitational potential. We consider it here too and derive
a simplified lower moment analog to the astrophysical virial

0
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0.0 0.2 0.4 0.6 0.8 1.0
x
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0.0

0.5

1.0

φ

FIG. 6. (Color online) Evolution of full solutions to (1)–(3)
starting at the same branch II equilibrium as in Fig. 5, for t � 11.5.
Snapshots are every t = 0.5, and the initial state (red circles) is given
by (5)–(7). The final state (blue diamonds) is the same stable branch I
equilibrium derived from the same set of equations and boundary
conditions as the initial state.

theorem, including boundary effects [36]. As for the virial
theorem, we find a “basic structural relation that the system
must obey” [37].

To proceed, we note that, uniquely, the 1D version of
Poisson’s equation (3) can be directly integrated to yield∫ x

0
dx∂xxφ = ∂xφ(x) − ∂xφ(0) =

∫ x

0
dx ′ρ(x ′), (22)

where the right-hand side is the mass between 0 and x which
can vary with time, and we now denote as M(x) := Mx . It
follows from (22) that

φ1 =
∫ d

0
dx

[∫ x

0
dx ′ρ(x ′) + ∂xφ(0)

]

= Md (d − x) + ∂xφ(0)d, (23)

where x ≡ ∫ d

0 dx xρ/
∫ d

0 dxρ is, by definition, the center of
mass.

Equation (23) has a very simple interpretation. By defini-
tion, the torque about a point d is T = Fr , where r is the
magnitude of the directional vector joining d and the point
at which F , the force perpendicular to this vector, acts. Let
us consider a force acting at the system’s center of mass x,
proportional to the total mass Md , and perpendicular to ∇x,
say, a gravitational force F = Mdg. In this case, we have
T = Mdg(d − x), and so

φ1 − ∂xφ(0)d = (d − x)Md ≡ T , (24)

where we have absorbed g into the definition of T . For time-
independent φ1 − ∂xφ(0)d, this implies that the total torque on
the system is constant.

This results in an interesting relation between the current,
the rate of change of the incoming electric field ∂t∂xφ(0), and
the exiting potential ∂tφ1. Differentiating (24),
∂tT =−∂txMd + (d − x)∂tMd = ∂t [φ1 − ∂xφ(0)d], (25)

and, using (1), we have

∂tMd = −
∫ d

0
dx ∂x(ρu) = ρ0u0 − ρdud, (26)
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FIG. 7. (Color online) Evolution of the total (spatially integrated)
energy of a Bursian diode system from an initial unstable equilibrium
solution (branch II) to a final stable equilibrium solution (branch I) for
the same set of boundary conditions as in Fig. 5. While the final total
energy state E is slightly greater than the initial state, the Hamiltonian
H is a strictly decreasing function of time. The system’s dominant
form of energy switches to kinetic K from internal potential energy
PI as time progresses, and in the final state the net boundary flux of
energy [v(E + PI ]d0 is zero.

∂txMd = −dρdud + J (d) − ∂tMd x, (27)

where J (d) ≡ ∫ d

0 dx ρu is the current in the domain, and (26)
simply states that the rate of change of mass is the flux in
minus the flux out.

Combining (25), (26), and (27) we find

ρ0u0 = d−1(J (d) + ∂tφ1) − ∂t∂xφ(0), (28)

which is the main result of this subsection [38].
Equation (28) relates the average current in the domain, a

derived quantity, to a set of boundary data. This, potentially,
affords a new avenue for control. As mentioned earlier, because
(1)–(3) can be written in characteristic form, in a mathematical
sense, the appearance of the incoming electric field −∂xφ(0)
is a more natural choice of boundary condition than φ1.

V. CONCLUSIONS

While Bursian diodes have been well studied over the past
century, the advent of large-scale, multidimensional particle-
in-cell codes and fluid codes in complex geometries have the
potential to offer new insights into their basic physics and to
guide their design. The work provided here, while relatively
basic, provides a reliable set of analytic and high-accuracy
numerical results against which the results of advanced code
bases can be verified [15–17]. Specifically, we have included
examples throughout the text using particular parameters, as
well as Figs. 2, 5, 6, and 7 and Eqs. (24) and (28). Where
we have employed numerical tools we have cross-checked
our results using multiple methods and conducted appropriate
convergence studies.

Our results include a linear stability analysis of the unstable
branch II equilibrium (C-overlap branch) and nonlinear simu-
lations of its evolution. We have found that its relaxed state is
that of the stable branch I equilibrium with the same boundary
conditions. We have also provided a quantitative discussion of
the role of energy and torque in diagnosing and controlling the
system, and, to the best of our knowledge, our interpretation
of the latter is new in the literature.

Possible extensions to this work include constructing a
nonlinear stability theorem in the spirit of Bernstein et al.
but including boundary fluxes [28]; using the results herein for
benchmarking more complicated systems, including investi-
gating the stability of Child-Langmuir limited solutions; and
prescribing optimizing and efficiency enhancing conditions or
frameworks for diode operation [24,39].
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104, 175002 (2010).

[13] W. L. Oberkampf and T. G. Trucano, Progr. Aerospace Sci. 38,
209 (2002).

043114-6

http://dx.doi.org/10.1103/PhysRevSeriesI.32.492
http://dx.doi.org/10.1103/PhysRev.2.450
http://dx.doi.org/10.1103/PhysRev.65.91
http://dx.doi.org/10.1016/S0370-1573(99)00092-7
http://dx.doi.org/10.1016/S0370-1573(99)00092-7
http://dx.doi.org/10.1063/1.3428744
http://dx.doi.org/10.1063/1.3428744
http://dx.doi.org/10.1063/1.3587082
http://dx.doi.org/10.1109/TPS.2011.2116809
http://dx.doi.org/10.1109/TPS.2011.2116809
http://dx.doi.org/10.1103/PhysRevA.27.1535
http://dx.doi.org/10.1103/PhysRevA.27.1535
http://dx.doi.org/10.1063/1.1463065
http://dx.doi.org/10.1063/1.1463065
http://dx.doi.org/10.1063/1.1383287
http://dx.doi.org/10.1103/PhysRevLett.104.175002
http://dx.doi.org/10.1103/PhysRevLett.104.175002
http://dx.doi.org/10.1016/S0376-0421(02)00005-2
http://dx.doi.org/10.1016/S0376-0421(02)00005-2


STABILITY AND ENERGETICS OF BURSIAN DIODES PHYSICAL REVIEW E 87, 043114 (2013)

[14] M. Greenwald, Phys. Plasmas 17, 058101 (2010).
[15] M. M. Turner and M. Vukovic, Overview of Verification

and Validation in Low Temperature Plasma Physics, Vol. 57
(APS, Washington, DC, 2012).

[16] S. Samukawa, M. Hori, S. Rauf, K. Tachibana, P. Bruggeman,
G. Kroesen, J. C. Whitehead, A. B. Murphy, A. F. Gutsol,
S. Starikovskaia et al., J. Phys. D 45, 253001 (2012).

[17] Michigan State University, Workshop, Algorithm and Model
Verification and Validation for Kinetic Plasma Simulation Codes
(2012), http://www.egr.msu.edu/amvv2012/home.

[18] R. Salmon, Annu. Rev. Fluid Mech. 20, 225 (1988).
[19] P. Morrison, Rev. Mod. Phys. 70, 467 (1998).
[20] R. Lomax, Proc. IEEE Monogr. 108, 119 (1961).
[21] C. Fay, A. Samuel, and W. Shockley, Bell Syst. Tech. J. 17

(1938).
[22] H. Kolinsky and H. Schamel, J. Plasma Phys. 57, 403 (1997).
[23] L. N. Trefethen, Spectral Methods in MATLAB (SIAM,

Philadelphia, PA, 2000).
[24] R. E. Caflisch and M. S. Rosin, Phys. Rev. E 85, 056408 (2012).
[25] E. Coutsias, J. Plasma Phys. 40, 369 (1988).
[26] J. Jackson, Classical Electrodynamics (John Wiley & Sons,

New York, 1965).
[27] D. Holm, Phys. Lett. A 114, 137 (1986).
[28] I. Bernstein, E. Frieman, M. Kruskal, and R. Kulsrud, Proc. R.

Soc. London A 244, 17 (1958).
[29] D. Holm, J. Marsden, T. Ratiu, and A. Weinstein, Phys. Rep.

123, 1 (1985).

[30] P. Morrison, Z. Naturforsch 42a, 1115 (1987).
[31] G. Rein, Arch. Ration. Mech. Anal. 168, 115 (2003).
[32] A. Van der Schaft and B. Maschke, J. Geom. Phys. 42, 166

(2002).
[33] D. Jeltsema and A. Schaft, J. Phys. A: Math. Theor. 40, 11627

(2007).
[34] D. Jeltsema and A. Van Der Schaft, Rep. Math. Phys. 63, 55

(2009).
[35] G. Nishida and N. Sakamoto, Hamiltonian Representation of

Magnetohydrodynamics for Boundary Energy Controls, Topics
in Magnetohydrodynamics (InTech, New York, 2012), http://
www.intechopen.com/books/topics-in-magnetohydrodynamics/
hamiltonian-representation-of-magnetohydrodynamics-for-
boundary-energy-controls.

[36] S. Chandrasekhar, The Higher Order Virial Equations
and Their Applications to the Equilibrium and the
Stability of Rotating Configurations, Lectures in Theoreti-
cal Physics, Vol. 6 (University of Colorado Press, Boulder,
1964).

[37] G. Collins et al., The Virial Theorem in Stellar Astrophysics,
Vol. 1 (Tucson Ariz., Pachart, 1977).

[38] An alternative derivation of this result due to R. Caflisch (private
communication) can be obtained by simply evaluating the
Green’s function solution of (3) for φ at x = d with appropriate
boundary conditions.

[39] M. Griswold, N. Fisch, and J. Wurtele, Phys. Plasmas 17, 114503
(2010).

043114-7

http://dx.doi.org/10.1063/1.3298884
http://dx.doi.org/10.1088/0022-3727/45/25/253001
http://www.egr.msu.edu/amvv2012/home
http://dx.doi.org/10.1146/annurev.fl.20.010188.001301
http://dx.doi.org/10.1103/RevModPhys.70.467
http://dx.doi.org/10.1049/pi-c.1961.0018
http://dx.doi.org/10.1017/S0022377896004886
http://dx.doi.org/10.1103/PhysRevE.85.056408
http://dx.doi.org/10.1017/S0022377800013349
http://dx.doi.org/10.1016/0375-9601(86)90541-4
http://dx.doi.org/10.1098/rspa.1958.0023
http://dx.doi.org/10.1098/rspa.1958.0023
http://dx.doi.org/10.1016/0370-1573(85)90028-6
http://dx.doi.org/10.1016/0370-1573(85)90028-6
http://dx.doi.org/10.1007/s00205-003-0260-y
http://dx.doi.org/10.1016/S0393-0440(01)00083-3
http://dx.doi.org/10.1016/S0393-0440(01)00083-3
http://dx.doi.org/10.1088/1751-8113/40/38/013
http://dx.doi.org/10.1088/1751-8113/40/38/013
http://dx.doi.org/10.1016/S0034-4877(09)00009-3
http://dx.doi.org/10.1016/S0034-4877(09)00009-3
http://www.intechopen.com/books/topics-in-magnetohydrodynamics/hamiltonian-representation-of-magnetohydrodynamics-for-boundary-energy-controls
http://www.intechopen.com/books/topics-in-magnetohydrodynamics/hamiltonian-representation-of-magnetohydrodynamics-for-boundary-energy-controls
http://www.intechopen.com/books/topics-in-magnetohydrodynamics/hamiltonian-representation-of-magnetohydrodynamics-for-boundary-energy-controls
http://www.intechopen.com/books/topics-in-magnetohydrodynamics/hamiltonian-representation-of-magnetohydrodynamics-for-boundary-energy-controls
http://dx.doi.org/10.1063/1.3503661
http://dx.doi.org/10.1063/1.3503661



