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Current-carrying string loops are adopted in astrophysics to model the dynamics of isolated flux tubes of
magnetized plasma expected to arise in the gravitational field of compact objects, such as black holes. Recent
studies suggest that they could provide a framework for the acceleration and collimation of jets of plasma observed
in these systems. However, the problem remains of the search of physical mechanisms which can consistently
explain the occurrence of such plasma toroidal structures characterized by nonvanishing charge currents and are
able to self-generate magnetic loops. In this paper, the problem is addressed in the context of Vlasov-Maxwell
theory for nonrelativistic collisionless plasmas subject to both gravitational and electromagnetic fields. A kinetic
treatment of quasistationary axisymmetric configurations of charged particles exhibiting epicyclic motion is
obtained. Explicit solutions for the species equilibrium phase-space distribution function are provided. These
are shown to have generally a non-Maxwellian character and to be characterized by nonuniform fluid fields and
temperature anisotropy. Calculation of the relevant fluid fields and analysis of the Ampere equation then show
the existence of nonvanishing current densities. As a consequence, the occurrence of a kinetic dynamo is proved,
which can explain the self-generation of both azimuthal and poloidal magnetic fields by the plasma itself. This
mechanism can operate in the absence of instabilities, turbulence, or accretion phenomena and is intrinsically
kinetic in character. In particular, several kinetic effects contribute to it, identified here with finite Larmor radius,
diamagnetic and energy-correction effects together with temperature anisotropy, and non-Maxwellian features
of the equilibrium distribution function.
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I. INTRODUCTION

This paper provides a theoretical treatment concerning
the physical mechanisms responsible for the generation of
magnetic loops in astrophysical context by collisionless
plasmas belonging to axisymmetric tori and subject to external
gravitational and electromagnetic (EM) fields. The research is
based on a kinetic theory developed in the framework of the
Vlasov-Maxwell description for nonrelativistic plasmas.

The dynamical description of current-carrying relativistic
string loops, which can arise in the background gravitational
field of a compact object (such as black holes), has been
addressed for a long time (see, for example, Refs. [1,2]).
The string-loop model is usually introduced to investigate the
dynamics of astrophysical plasmas that can exhibit stringlike
behavior through the dynamics of magnetic fields in the
plasma itself or due to thin isolated flux tubes of plasma that
could be described by a one-dimensional string [3,4]. In this
framework, the string-loop model is therefore a convenient
mathematical tool which allows one to build up a representative
configuration for the underlying physical system of interest.
Several string-loop models have been developed, according
to the geometry of the problem and of the phenomena to be
studied (see Refs. [3–6] and the references reported there).
In these works, the string is described as a physical quantity
which is characterized by an energy density and a tension,
possibly carrying mass and/or charge currents, and with several
model generalizations in terms of different system equations
of state [7]. The relativistic dynamics of a string loop is usually
determined in the framework of a curved space-time for a given
background metric tensor based on a Lagrangian formalism.
The string motion can then be expressed in terms of a properly
chosen action by assigning the scalar Lagrangian function

in terms of which the corresponding covariant equations of
motion can be obtained [3,4].

Recent studies prove that string loops of this type, which
are initially confined in a finite subset of configuration space
by the action of tension and angular momentum barriers, can
ultimately be accelerated enough to overcome the gravitational
attraction and escape to infinity [3–6]. This results as a
consequence of a scatter process of the string loop near
the black hole horizon and the efficient conversion of string
oscillation energy into translational kinetic energy. From the
astrophysical point of view, this effect is relevant because it can
potentially represent a plausible mechanism for acceleration
and collimation of jets of plasmas in neutron stars and black
holes systems as well as for supermassive black holes in
active galactic nuclei and microquasars [8]. More precisely,
string loops of magnetized plasma could arise near equatorial
plane of accretion disks and, due to transmutation process of
converting the internal string energy to the kinetic energy of
their translational motion, a stream of string loops moving
along the symmetry axis forms, representing a well collimated
jet [3,5]. String loops of this type moving with ultrarelativistic
velocities (Lorentz factor γ � 100) can be created if the
transmutation process occurs in sufficiently deep gravitational
fields [6]. The string-loop model is then adopted as a simplified
description for the behavior of relatively thin and isolated
flux tubes of plasmas orbiting around compact objects and
coupled to magnetic fields. In connection with this, another key
application of the string-loop model would be to coronal loops
and flares associated with disks, including the illumination of
the disk from off-equatorial coronal plasma, which is thought
to be involved in the production of the observed fluorescent
iron lines.

043113-11539-3755/2013/87(4)/043113(15) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.87.043113
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However, the problem remains of the proof of the existence
of a physical mechanism which can explain the generation
of magnetic loops by orbiting plasma in toroidal structures
and the determination of the physical requirements for its
occurrence. For consistency with the string-loop theory, a
mechanism of this type should operate in stationary config-
urations and should predict the possibility of having confined
plasmas carrying a nonvanishing current density giving rise
to axisymmetric azimuthal magnetic fields. Aside from its
conceptual importance and its own relevance for plasma
physics, such a result would also necessarily give support to the
string-loop model. The configuration explained in this way in
fact could serve as an initial condition for the dynamical studies
of these systems according to the approach of Refs. [3–6]. As it
will be proved in the following, a theory of this type can only be
developed in the framework of kinetic theory for magnetized
plasmas.

A further motivation for this kind of investigation is
represented by a series of works concerning the motion of
test particles in strong gravitational and EM fields related to
black holes and neutron stars. We refer here in particular to
the case of charged particles moving in stable circular orbits
determined by minima of effective potential in axisymmetric
systems [9]. In Refs. [10–17], it has been recently proved that
configurations of this type can arise both in the equatorial
plane and also in regions of the configuration space out of it
(off-equatorial orbits), while in Ref. [18] similar conclusions
have been extended also to charged fluid tori encircling black
holes. A notable aspect of the dynamics of these particles is
the possibility of exhibiting epicyclic motion corresponding to
oscillations around minima of the potential in both radial and
vertical directions with corresponding epicyclic frequencies
[19–23]. The question arises therefore as to whether systems of
oscillating charged particles confined near minima of effective
potential can represent a plausible model for plasma tori
either in or off the equatorial plane and can provide the
conditions for the validity of the string-loop approach. This
requires the construction of a specific statistical treatment of
the system formed by these particles and an investigation of
the role of epicyclic oscillations for the characterization of the
corresponding equilibrium configurations and the generation
of magnetic loops.

The problem posed by the magnetic loop generation and
its connection with epicyclic motion of charged particles
belong to the general framework of the theoretical description
of magnetized astrophysical plasmas in gravitating systems
and the search of dynamo mechanisms responsible for the
self-generation and amplification of magnetic fields by the
plasma currents. In this regard, a pioneering contribution is
represented by the kinetic theory developed for collisionless
magnetized and gravitationally bound accretion disk plasmas
in quasistationary configurations presented in Refs. [24–29]
and their stability properties with respect to axisymmetric
perturbations given in Ref. [30]. Specifically, in these works,
an approach based on the nonrelativistic Vlasov-Maxwell
description was adopted. It was shown that consistent solutions
of the Vlasov equation can be determined for the kinetic
distribution function (KDF) associated with collisionless plas-
mas, based on the identification of the relevant single-particle
invariants. In particular, it was proved that the species KDFs

admit a representation in terms of generalized Maxwellian
and bi-Maxwellian distributions, characterized by tempera-
ture anisotropy, nonuniform fluid fields, and local plasma
flows. The perturbative kinetic theory developed therein made
possible the analytical calculation of the relevant fluid fields
carried by the equilibrium KDF and the identification of the
relevant kinetic effects included in the corresponding mag-
netohydrodynamic (MHD) description. These were identified
with diamagnetic, energy-correction, and finite Larmor-radius
(FLR) kinetic effects. As a basic consequence, it was shown
that these equilibria can exhibit nonvanishing current densities
which can also support a kinetic dynamo mechanism for
the self-generation of EM fields in which the plasma is
immersed and operating in the absence of instabilities or
turbulence phenomena [24,25,27,28]. Remarkably, similar
conclusions were shown to apply also to laboratory plasmas
in tokamak devices [31], while in Ref. [32] the theory was
extended to collisionless plasmas in spatially nonsymmetric
configurations, showing that also in this case the relevant
phenomenology characterizing axisymmetric systems can be
recovered.

A. Goals and scheme of the paper

Putting all the previous issues in perspective, in this paper
we pursue the following target: to construct a theoretical
formulation based on kinetic theory for equilibrium config-
urations of collisionless magnetized plasmas composed of
charged particles in epicyclic motion in toroidal systems. The
theory is based on the results previously obtained in the case
of accretion disk plasmas in such a way to warrant the relevant
kinetic effects discovered for axisymmetric and nonsymmetric
systems to be recovered. The ultimate aim consists of proving
that the new theoretical development can effectively provide a
physical mechanism for the generation of magnetic loops by
these toroidal plasma structures, showing that this represents a
specifically kinetic effect which can only be consistently dealt
with in the framework of kinetic theory.

Notice that here the treatment deals with collisionless
plasmas. The collisionless regime is realized when binary
Coulomb interactions become negligible at the microscopic
level as far as the particle dynamics is concerned. In this case,
the statistical behavior of such plasmas can be described in
terms of a mean-field interaction within the Vlasov description.
The proper definition of the collisionless regime requires,
in principle, comparing the characteristic time and length
scales of the system (e.g., the Larmor frequency and Larmor
radius, the mean free path, and the collision time). We refer
to Refs. [24,25,31] for a detailed discussion on the issue.
On the other hand, it is possible to give an indication as to
which real astrophysical systems associated with the existence
of compact objects can be consistent with the collisionless
assumption. Among accretion disks, a notable example of this
type is represented by the hydrodynamic model known in the
astrophysics literature as radiatively inefficient accretion flows
(RIAFs, see Ref. [33]). These are expected to arise in geo-
metrically thick disks around black holes and consisting of a
two-temperature plasma, with the ion temperature being much
higher than the electron one, and the time scale of the Coulomb
collision frequency being much longer than the inflow time.
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Other interesting applications of the model include the possible
statistical description of hot and low-density plasmas in mag-
netized coronas expected to arise above accretion disks, for
which collisionless kinetic effects should be important [34,35].
Finally, it is worth mentioning the case of plasmas in strong
magnetic field around compact objects, such as for neutron
stars. In fact, in this framework, when the magnetic field of
the central object becomes dominant, ions and electrons can
be collisionally decoupled and sustain different temperatures.
This happens, in particular, if the radiative cooling time scale of
the plasma is shorter than the electron-ion collision time scale
[36,37]. Aside from this discussion, it is nevertheless necessary
to stress, however, that this paper has a theoretical setting and
is focused on presenting the fundamentals of kinetic theory for
the problem of interest. Concrete astrophysical applications of
the results obtained here in physically realizable systems will
be considered in future works.

In detail, the main goals of the investigation are as follows:
(1) The construction of a statistical treatment of a plasma
system composed by charged particles in epicyclic motion
in the framework of the Vlasov-Maxwell description: This
requires determination of the general form of the equilibrium
KDF and its functional dependencies to be expressed in terms
of the relevant particle integrals of motion and adiabatic
invariants. (2) The determination of an explicit solution for
the equilibrium KDF and the proof that a kinetic solution
exists for the posed problem: As a consequence, this implies
the simultaneous existence of the corresponding fluid-MHD
equilibria (kinetic MHD). (3) The identification of the relevant
plasma regimes in which the solution admits a Chapman-
Enskog representation and the development of a suitable
perturbative theory for the treatment of implicit phase-space
dependencies carried by the equilibrium KDF. (4) The proof
that the solution obtained in this way is generally non-
Gaussian and the identification of the physical reason for
this. (5) The determination of the conditions for analytical
calculation of fluid fields: This calculation has the main scope
of proving that the equilibrium KDF carries nonuniform fluid
fields and can generate the sources for the magnetic-field
creation, i.e., azimuthal and poloidal current densities. (6)
The investigation of the physical features which characterize
the present kinetic theory: This includes the display of the
role of the adiabatic invariants in determining the kinetic
solution and the corresponding fluid fields, and in particular the
constraints posed on them by the particle epicyclic oscillations
and non-Maxwellian features of the KDF.

It must be stressed at this point that the kinetic approach
followed in this work becomes appropriate for collisionless
magnetized plasmas and is necessary in order to include
the new relevant effects which are typically missing in
“standalone” fluid approaches but are necessary to explain
the occurrence of a stationary kinetic dynamo. These include
diamagnetic FLR effects, energy-correction contributions, as
well as phase-space anisotropies leading to non-Maxwellian
features in the KDF. As it is shown below, the kinetic solution
obtained here for toroidal plasmas of epicyclic charged
particles is new and intrinsically different from previous
solutions obtained for accretion disks. Hence, this represents
the first consistent statistical treatment of these systems based
on nonrelativistic Vlasov-Maxwell kinetic theory.

The scheme of the paper is as follows. In Sec. II, the basic
assumptions and definitions are first introduced. In Sec. III,
a brief summary of the main features of epicyclic motion for
single particles in combined external gravitational and EM
fields is recalled. Section IV deals with the solution method
adopted here for the construction of stationary solutions for the
species KDF, while in Sec. V the identification of the relevant
plasma regime to which the present treatment applies is
determined. In Sec. VI, the general features of the equilibrium
KDF are discussed and an explicit solution is then given in
Sec. VII. In Sec. VIII, a perturbative theory is developed and
a Chapman-Enskog representation of the equilibrium KDF is
obtained. In Sec. IX, the relevant fluid fields associated with the
equilibrium KDF are evaluated, corresponding to the number
density, the flow velocity, and the plasma temperature. These
results are then applied in Sec. X to investigate the constraints
posed by the Ampere equation and prove the existence of a
kinetic dynamo mechanism. Finally, concluding remarks are
summarized in Sec. XI.

II. BASIC ASSUMPTIONS AND DEFINITIONS

Ignoring possible weakly dissipative effects (e.g., Coulomb
collisions and turbulence) and EM radiation effects [38–42],
we shall assume that the KDF and the EM fields associated
with the plasma obey the system of Vlasov-Maxwell equations,
with Maxwell’s equations being considered in the quasistatic
approximation. For definiteness, we shall consider here a
plasma consisting of s species of charged particles which are
characterized by proper mass Ms and total charge Zse.

We shall take the plasma to be as follows: (a) nonrelativistic,
in the sense that it has nonrelativistic species flow velocities,
that the gravitational field can be treated within the classical
Newtonian theory, and that the nonrelativistic Vlasov kinetic
equation is used as the dynamical equation for the KDF; (b)
collisionless, so that the mean free path of the plasma particles
is much longer than the largest characteristic scale length of
the plasma; (c) axisymmetric, so that the relevant dynamical
variables characterizing the plasma (e.g., the fluid fields) are
independent of the azimuthal angle ϕ, when referred to a set of
either cylindrical coordinates (R,ϕ,z) or spherical coordinates
(r,θ,ϕ); (d) acted on by both gravitational and EM fields.

In the following, we will focus on solutions for the
equilibrium magnetic field B which admit, at least locally, a
family of nested and open axisymmetric toroidal magnetic sur-
faces {ψ( x)} ≡ {ψ(x) = const}, where ψ denotes the poloidal
magnetic flux of B and the vector x denotes either x = (R,z)
or x = (r,θ ). A set of magnetic coordinates (ψ,ϕ,ϑ) can be
defined locally, where ϑ is a curvilinear anglelike coordinate
on the magnetic surfaces ψ(x) = const. Each relevant physical
quantity G(x,t) can then be conveniently expressed either in
terms of the cylindrical or spherical coordinates or as a function
of the magnetic coordinates, i.e., G(x,t) = G(ψ,ϑ,t), where
the ϕ dependence has been suppressed due to the axisymmetry.

We require the EM field to be slowly varying in time, i.e.,
of the form

[E(x,λkt),B(x,λkt)], (1)

where λ � 1 denotes a small dimensionless parameter to
be properly identified (see below), with k � 1 being a
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suitable integer. This kind of time dependence can be due
to either external sources, boundary conditions for the KDF,
or intrinsic time evolution associated with adiabatic invariants.
In particular, we assume the magnetic field to be represented
as

B ≡ ∇ × A = Bself (x,λkt) + Bext (x,λkt), (2)

where Bself and Bext denote the self-generated magnetic field
produced by the toroidal plasma and a finite external magnetic
field (vacuum field) produced by a rotating compact object with
mass M+, radius R+, and spin �+ oriented in the positive z

direction. The external field is assumed to be purely poloidal,
namely,

Bext = ∇ψD(x,λkt) × ∇ϕ, (3)

where ψD represents the magnetic flux function of a dipolar
field. In terms of the spherical coordinates (r,θ ), this is
given by

ψD = M0
sin2 θ

r
, (4)

with M0 being the magnitude of the dipole magnetic moment.
The self-magnetic field instead is taken to be of the general
form

Bself = I (x,λkt)∇ϕ + ∇ψp(x,λkt) × ∇ϕ, (5)

where BT ≡ I (x,λkt)∇ϕ and BP ≡ ∇ψp(x,λkt) × ∇ϕ are
the corresponding toroidal (i.e., azimuthal) and poloidal
components, respectively. As a result, the total magnetic field
can be written in the equivalent form

B = I (x,λkt)∇ϕ + ∇ψ(x,λkt) × ∇ϕ, (6)

where the function ψ(x,λkt) is defined as ψ(x,λkt) ≡
ψp(x,λkt) + ψD(x,λkt), with k � 1 and (ψ,ϕ,ϑ) defining a
set of local (nonorthogonal) magnetic coordinates. In the
following treatment, we consider the case in which the self-
component of the magnetic field is weak with respect to the
external one, in the sense that the relative ordering

|Bself |
|Bext | ∼ O(λk) (7)

applies, with k � 1.
Because of the central object rotation, the plasma is subject

to an induced corotating electric field Ecor . This can be
estimated in terms of the dominant external magnetic field
(see Ref. [12]), obtaining for the corresponding potential the
expression

	cor (x,λkt) = M0

c
�+

sin2 θ

r
. (8)

Charged particles of the plasma are then assumed to be subject
to the action of the effective potential 	

eff
s (x,λkt) defined as

	eff
s (x,λkt) = 	cor (x,λkt) + 	(x,λkt) + Ms

Zse
	G(x,λkt), (9)

with 	(x,λkt) and 	G(x,λkt) denoting the electrostatic (ES)
potential generated by the plasma charge density and the
gravitational potential, which in principle is produced both
by the central object and the plasma. In the following, we
shall neglect the contribution of the plasma to 	G, with the

latter being therefore assumed as stationary and expressed in
terms of either the Newtonian potential or a pseudo-Newtonian
potential, such as the Paczyński-Wiita potential [43]

	G(x) = −GNM+
r − rsc

, (10)

where GN is the Newton gravitational constant and rsc ≡
2GNM+/c2 is the Schwarzschild radius. A comment is in order
here. In fact, it is well known that, while pseudo-Newtonian
potentials are consistent with a nonrelativistic treatment,
they nevertheless allow for the inclusion in the treatment
of some relevant features which are characteristic of a fully
relativistic solution in curved space-time [44]. The use of
pseudo-Newtonian potentials is therefore motivated in the
present context for the description of collisionless plasmas
arising around compact objects, such as black holes, and the
generation of magnetic loops in these environments. Although
a general relativistic treatment is in principle required, as far
as the plasma kinetic description is concerned, for the purpose
of this investigation a nonrelativistic formulation in terms of
pseudo-Newtonian potentials is satisfactory. As discussed in
the Introduction, the goal here is to prove the existence of a
plausible physical mechanism for the generation of magnetic
loops, the dynamics of which can then be investigated in a
general relativistic framework by means of string-loop models.

III. EFFECTIVE POTENTIAL AND EPICYCLIC
FREQUENCIES

In Refs. [10,11], the possible existence of equatorial as
well as of off-equatorial particle orbits in combined strong
gravitational and EM fields near compact objects was ad-
dressed. The case of isolated single-particle dynamics was
considered in the absence of self-generated EM fields. Thanks
to the ordering assumptions introduced in the previous section,
the self-EM fields are considered as being of higher order with
respect to the external EM field. Hence, in the nonrelativistic
regime, to leading order the configuration considered here is
consistent with the one studied in Refs. [10,11], so that the
same qualitative features pointed out there still apply. We recall
here briefly the main points of this analysis, which are needed
later on. As far as the single-particle motion is concerned, this
is described by the Hamiltonian function

Hs = 1

2Ms

(
Ps − Zse

c
A

)2

+ Us , (11)

where Ps is the particle canonical momentum and Us is the
potential energy given byUs = Zse	

eff
s . The motion of single

particles in the R − z plane can be studied by means of the
effective potential Ueff,s defined as

Ueff,s = 1

2MsR2

(
Pϕs − Zse

c
ψ

)2

+ Us , (12)

where Pϕs is the particle toroidal canonical momentum given
by

Pϕs = MsRv · eϕ + Zse

c
ψ ≡ Zse

c
ψ∗s , (13)

with vϕ = v · eϕ and eϕ being the unit vector along the
azimuthal direction ϕ. We notice that, to leading order, i.e., ne-
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glecting the contribution of the EM self-fields, the expression
of the effective potential coincides with the one given for ex-
ample in Ref. [12]. Minima of Ueff,s determine the location of
bound orbits. In the following we restrict to effective potential
profiles with minima in the equatorial plane only. For particles
which are found close to the minimum, the motion in the radial
and vertical directions can be treated in the linear regime for
small excursions δR and δz (epicyclic motion). In the follow-
ing, we shall refer to these particles as oscillating particles.
Here, δR ≡ R − Rmin and δz ≡ z − zmin are the spatial devia-
tions from positions of the minima in radial (Rmin) and vertical
(zmin = 0) directions, respectively. Given validity of the order-
ing assumption (7), the epicyclic dynamics in the R-z plane
can be treated as being decoupled from the azimuthal dynamics
and is described in terms of the two Hamiltonian functions

HR ≡ p2
R

2Ms

+ Ms

2
ω2

RδR2, (14)

Hz ≡ p2
z

2Ms

+ Ms

2
ω2

zδz
2, (15)

where pR ≡ MsvR and pz ≡ Msvz are the linear momenta
in the R and z directions, respectively, corresponding to
the displacements δR and δz. In this approximation, one
correspondingly obtains dynamical equations which recover
the form of simple decoupled harmonic oscillators, namely,

d2

dt2
δR + ω2

RδR = 0, (16)

d2

dt2
δz + ω2

zδz = 0. (17)

Here, the characteristic epicyclic frequencies are, respectively,

ω2
R = 1

Ms

[
∂2Ueff,s

∂R2

]
min

, (18)

ω2
z = 1

Ms

[
∂2Ueff,s

∂z2

]
min

, (19)

which are to be evaluated at the minimum of the potential and
are assumed to be nonvanishing. Given the potential Us , one
finds that in general ω2

R �= ω2
z , while the precise expressions of

the two epicyclic frequencies critically depend on the form of
the effective potential as well as on the spatial position where
they are evaluated [19–23].

IV. SOLUTION METHOD

The technique adopted here for the construction of Vlasov-
Maxwell equilibria is based on the method developed in
Refs. [24–26,31,32]. This consists in the construction of
equilibrium KDFs fs for collisionless plasma species such
that, in a suitable subset of phase space, each of them can
be realized in terms of appropriate generalized Gaussian
distributions. In the case of stationary or quasistationary
configurations, two possible approaches are available. The
first one is the Chapman-Enskog solution method of the
drift-kinetic Vlasov equation (see, for example, Refs. [45–49]
in the case of astrophysical symmetric systems). This is
achieved by seeking a perturbative solution of the form fs =
fMs + λf1s + . . . , where 0 < λ � 1 is an appropriate small
dimensionless parameter to be properly identified and fMs a
suitable equilibrium KDF. Usually, the latter is identified with

a drifted Maxwellian KDF. The Chapman-Enskog method thus
requires solving a hierarchy of PDEs which follow from the
Vlasov equation as a consequence of the series representation
for the equilibrium KDF.

A second solution technique for the Vlasov equation is
adopted here. It consists in the determination of particular
solutions of the KDF of the form fs = f∗s , where f∗s is
prescribed as a function of a suitable set of particle invariant
phase functions {Kj, j = 1,n}. Here, we follow the definitions
given in Ref. [32]. Thus, in particular, Kj is regarded as a first
integral if it does not depend explicitly on time and satisfies
the equation

d

dt
Kj (z) = 0 (20)

for a properly defined state z in the phase space ϒ ′. Instead,
Kj represents an adiabatic invariant of order k � 1 when it
depends at most slowly on time, in the sense Kj = Kj (z,λkt),
and satisfies the asymptotic equation

d

dt
Kj (z,λkt) = 0 + O(λk) (21)

for the state z.
From these definitions, it follows that f∗s is a first integral

when it is expressed as a function of first integrals only.
This identifies a stationary KDF. On the other hand, if f∗s

depends also on adiabatic invariants of prescribed order, it
is necessarily quasistationary, in the sense that it is itself an
adiabatic invariant too. In the following, we shall consider the
second case, i.e., f∗s as an adiabatic invariant. As a short way,
this will be also equivalently referred to as an equilibrium
KDF (or kinetic equilibrium). It is important to stress that
a basic requirement of this second type of solution method
is the possibility of determining a posteriori a perturbative
representation of the KDF equivalent to the Chapman-Enskog
expansion, according to the perturbative technique developed
in Refs. [24–27,31,32]. This feature requires identifying the
relevant characteristic dimensionless parameters of the system
and the classification of the plasma according to the scheme
presented in Ref. [26] (see Sec. V). It will be proved in the
following that this feature can be realized also in the present
case, determining an asymptotic expression for the equilibrium
KDF which affords also evaluation of the relevant fluid fields
associated with it.

A necessary prerequisite is therefore the identification of
the relevant first integrals of motion or more generally adia-
batic invariants which characterize single-particle dynamics.
Because of axisymmetry, the toroidal canonical momentum
Pϕs defined by Eq. (13) is a first integral of motion. Thanks to
the assumption introduced for the EM fields in Eqs. (6) and (9),
which are slowly time varying, the total particle energy

Es = Ms

2
v2+Zse	

eff
s ≡ Zse	∗s (22)

is an adiabatic invariant of prescribed order. Additional adia-
batic invariants can be determined for magnetized plasmas by
using gyrokinetic (GK) theory. A variational nonperturbative
formulation of GK theory can be found in Ref. [32] for
nonrelativistic charged particles in the presence of both EM
and gravitational fields (for a formulation holding in the case of
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relativistic particles, see Ref. [50]). It is proved that, when EM
radiation-reaction effects are neglected [38–42], the particle
magnetic moment m′

s associated with the Larmor rotation of
charges around magnetic-field lines is an adiabatic invariant.
According to standard notation, here and in the rest of the
paper, quantities labeled with a prime refer to dynamical
variables which are evaluated at the particle guiding-center
position. In the framework of an asymptotic formulation of GK
theory carried out by means of a Larmor-radius expansion, the
magnetic moment can be in principle determined with arbitrary
accuracy. In Ref. [32], both nonperturbative expression as
well as second-order Larmor-radius expansion have been
determined for m′

s .
We further point out that the subset of oscillating particles

admits additional adiabatic invariants which characterize the
two-dimensional epicyclic harmonic motion in the R-z plane.
In this case, when assumptions of Sec. II apply, the Hamilton-
Jacobi equation corresponding to the problem is completely
separable, so that the adiabatic invariants are identified with the
action variables Ji of classical dynamics, with i = R,z (see,
for example, Refs. [51–53]). These are defined in terms of line
integrals over complete periods of the orbit in the (pi,qi) plane
as

Ji ≡ 1

2π

∮
pidqi . (23)

Direct calculation for oscillating particles gives the two
invariants

JR = HR

ωR

, (24)

Jz = Hz

ωz

. (25)

To conclude this section, we notice that in order to assure
the adiabatic conservation of the canonical momenta and the
action variables, we must exclude the possibility of having
phase-space resonance phenomena. Thus, in the case of slowly
varying EM and gravitational fields, to avoid occurrence of
resonances we restrict the analysis to the subset of particles
for which the azimuthal frequency ωϕ = vϕ

R
and the Larmor

frequency �cs = ZeeB

Msc
are different and aliquant with the two

epicyclic frequencies ωR and ωz.

V. DIMENSIONLESS PARAMETERS AND
PLASMA REGIME

In order to identify the appropriate plasma regime for the
case of interest and the conditions providing the corresponding
quasistationary kinetic solution, we follow the regime classi-
fication determined in Ref. [26] . Thus, we first introduce the
dimensionless species parameters εM,s , εs , and σs . These are
prescribed in such a way to be all independent of single-particle
velocity and at the same time to be related to the characteristic
species thermal velocities. Both perpendicular and parallel
thermal velocities (defined with respect to the magnetic-field
direction) must be considered. These are defined, respectively,
by v⊥ths = {T⊥s/Ms}1/2 and v‖ths = {T‖s/Ms}1/2, with T⊥s

and T‖s denoting here the species perpendicular and parallel
temperatures.

In detail, the first parameter is defined as εM,s ≡ rLs

L
, where

rLs = v⊥ths/�cs is the species average Larmor radius, with

L being the minimum scale length characterizing the spatial
variations of all of the fluid fields associated with the KDF
and of the EM fields. The second parameter εs is related to
the particle canonical momentum Pϕs . Denoting by vths ≡
sup{v‖ths,v⊥ths}, εs is identified with εs ≡ |MsRvths

Zs e
c

ψ
|. Hence,

εs effectively measures the ratio between the toroidal angular
momentum Lϕs ≡ MsRvϕ and the magnetic contribution to
the toroidal canonical momentum, for all particles in which
vϕ is of the order vϕ ∼ vths while ψ is assumed as being
nonvanishing. Finally, σs is related to the particle total energy

Es and is prescribed as σs ≡ | Ms
2 v2

ths

Zse	
eff
s

|. It follows that σs

measures the ratio between particle kinetic and potential
energies, for all particles having velocity v of the order
v ∼ vths , with 	

eff
s being assumed as nonvanishing. In the

following, we shall denote as thermal subset of velocity
space the subset of the Euclidean velocity space in which
the asymptotic conditions v

vths
∼ vϕ

vths
∼ O(1) holds.

Then, following the classification scheme proposed in
Ref. [26], in this work the equilibrium plasma is assumed to
belong to the strongly magnetized and strong effective potential
energy (SEPE) regime for which the asymptotic orderings

εM,s � 1, (26)

εs � 1, (27)

σs � 1 (28)

hold. These imply the following asymptotic expansions for
ψ∗s and 	∗s :

ψ∗s = ψ[1 + O(εs)], (29)

	∗s=	eff
s [1 + O(σs)]. (30)

We finally notice that one can consistently identify the small
parameter λ introduced above with one of the parameters given
here, and in particular with εM,s .

Before concluding this section, it is worth commenting on
the choice of the strongly magnetized SEPE regime and its
physical realization in astrophysical systems. We consider
first the magnetized orderings determined by εM,s and εs .
We notice that the magnetic field enters the two parameters
in a different way. In fact, εs contains the poloidal flux ψ

which contributes to the toroidal canonical momentum Pϕs ,
while εM,s depends on the magnitude of the total magnetic
field. Indeed, the parameter εs determines the particle spatial
excursion from a magnetic flux surface ψ(x) = const, while
εM,s measures the amplitude of the Larmor radius with respect
to the inhomogeneities of the background fluid and EM fields.
These two effects correspond to different physical magnetic-
related processes due, respectively, to the Larmor-radius and
magnetic-flux surface confinement mechanisms. As pointed
out in Ref. [26], the two ordering conditions (26) and (27) are
expected to be easily verified in accretion disk systems for a
wide range of magnetic-field magnitudes that can be present in
these scenarios. Hence, recalling the assumptions introduced
in Sec. II, these conditions properly apply also in the present
context.

For what concerns the validity of the ordering (28), this can
result from the action of some energy nonconserving mecha-
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nisms. Plausible physical mechanisms that can be responsible
for the decrease of the single-particle kinetic energy, in both
collisionless and collisional accretion disk plasmas, are EM
interactions (e.g., binary Coulomb collisions among particles
and particle-wave interactions, such as Landau damping)
and/or radiation emission (radiation reaction). These can in
principle be ascribed also to the occurrence of EM instabilities
and EM turbulence. For single particles, these processes can be
dissipative, i.e., they can involve the loss of kinetic energy. As a
consequence, these particles tend to move towards regions with
higher gravitational and/or ES potential energy (in absolute
value). After multiple interactions of this type, the process can
ultimately reach an equilibrium state which corresponds to the
SEPE regime. In turn, this condition requires the presence of
a strong gravitational field, as in the surrounding of compact
objects, and of strong ES fields. As shown, for example, in
Refs. [24,31], the latter are characteristic of neutral or more
generally quasineutral magnetized axisymmetric collisionless
plasmas with azimuthal flow velocity. All these conditions
are applicable to the astrophysical scenarios mentioned in the
Introduction in connection with the problem of magnetic loop
generation.

VI. EQUILIBRIUM KDF: GENERAL FEATURES

Following the prescriptions of Sec. IV, here we determine
the general features of the equilibrium KDF consistent with
the plasma regime determined above. It is understood that,
in the general situation, a plasma consisting of both particles
with epicyclic and nonepicyclic motion is likely to occur. In
the framework of kinetic theory for collisionless plasmas,
the coexistence of these two populations is allowed, with
each of them being treated independently and interacting only
through the mean EM field. In a realistic situation of this
type, one should expect that charged particles which are not in
epicyclic motion should represent the major component. For
them, the kinetic solution obtained in Refs. [24,25] applies.
Instead, plasma particles in epicyclic motion could represent a
minority. However, the separate study of this population is of
fundamental importance. In fact, as proved in the following,
particles which exhibit epicyclic motion are characterized by a
number of distinctive statistical features which are missing in
previous results. This has consequences for what concerns the
generation of localized magnetic loops and spectral features
observed in disk systems, for which the present theory can
provide a contribution toward their theoretical investigation in
the framework of a kinetic description.

In view of these considerations, in the following we restrict
the analysis only to the subset of charged particles exhibiting
epicyclic motion. For this subspecies, the quasistationary KDF
is expressed in terms of the set of adiabatic invariants listed
above, and is of the form

f∗s = f∗s(Es,ψ∗s ,m
′
s ,JR,Jz,�∗s ,λ

kt), (31)

where �∗s denotes the so-called structure functions, i.e.,
functions which depend implicitly on the particle state x and
must be properly prescribed according to the specific form of
the solution (see following). For definiteness, both f∗s and �∗s

are assumed to be analytic functions. In order for f∗s to be an
adiabatic invariant, �∗s must also be a function of the adiabatic

invariants. This restriction is referred to as a kinetic constraint.
More precisely, following Ref. [26], here �∗s is taken to be of
the type

�∗s = �s(	∗s ,ψ∗s). (32)

Under these assumptions, invoking Eqs. (29) and (30), the
structure functions can be Taylor expanded to give

�∗s = �s

(
	eff

s ,ψ
)
[1 + O(εs) + O(σs)]. (33)

The following remarks are in order:
(1) Because of the conservation of the two adiabatic

invariants JR and Jz, the functional dependence of f∗s in
Eq. (31) differs from the type of solution previously obtained
for collisionless accretion disk plasmas given in Refs. [24–27].
This means that the subspecies of oscillating particles in
epicyclic motion is characterized by an intrinsically different
equilibrium KDF.

(2) The choice of the kinetic constraints, namely, the
functional form to be prescribed on the structure functions �∗s ,
is determined by the possibility of allowing for an analytical
treatment of the kinetic solution and the calculation of the
corresponding fluid fields. In particular, the validity of the
expansion (33) is a prerequisite for obtaining a solution which
is consistent with the Chapman-Enskog series representation.
In fact, Eq. (32) is consistent with the requirement of adiabatic
invariance and permits at the same time an explicit treatment
of the implicit phase-space dependencies carried by the same
structure functions.

(3) The equilibrium KDF is generally non-Maxwellian.
This feature arises because of both the kinetic constraints as
well as the existence of the established adiabatic invariants,
and in particular the magnetic moment m′

s and the invariants
JR and Jz.

(4) In order to make possible a physical description of a
toroidal plasma, the equilibrium KDF must be characterized
by nonuniform fluid fields, to be properly specified according
to the case of equatorial or off-equatorial tori. These must
include in particular nonuniform number density, flow velocity,
as well as parallel and perpendicular temperatures arising from
temperature anisotropy. As shown in Refs. [24,25,31,32], the
latter should be mainly ascribed to the adiabatic conservation
of the particle magnetic moment. It is also expected that the
constraints imposed by the existence of the two adiabatic
invariants JR and Jz should affect the functional form of the
equilibrium fluid fields (including the temperature anisotropy)
with respect to the case of generalized bi-Maxwellian KDF
treated in Refs. [24,25,31,32].

VII. CONSTRUCTION OF THE EQUILIBRIUM KDF

In this section, we proceed with the determination of an ex-
plicit solution for the equilibrium KDF which is characterized
by the general features outlined above. Here, we consider the
case of a collisionless plasma composed by oscillating particles
in epicyclic motion in axisymmetric configurations and look
for a quasistationary KDF with the following properties:

(i) The KDF is an adiabatic invariant of the form expressed
by Eq. (31), which in general is different from a Maxwellian
distribution.
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(ii) Structure functions: a suitable set of structure functions
�∗s is identified, which are subject to the kinetic constraints
according to Eq. (32).

(iii) Temperature anisotropy: it is assumed that different
parallel and perpendicular temperatures are allowed. In the
case of temperature anisotropy associated with the magnetic
moment conservation, the components are defined with respect
to the local direction of the magnetic field.

(iv) Azimuthal rotation: a nonvanishing species-dependent
azimuthal flow velocity is prescribed.

(v) Open, locally nested magnetic flux surfaces: the mag-
netic field is taken to allow quasistationary solutions with
magnetic flux lines belonging to open and locally nested
magnetic surfaces.

(vi) The solution is required to admit an asymptotic rep-
resentation consistent with the Chapman-Enskog expansion
which can allow for the treatment of implicit phase-space
dependencies for the calculation of the relevant fluid fields.

In order to determine the equilibrium KDF, we generalize
the solution obtained in Refs. [24–26] for accretion disk
plasmas with the inclusion of the two adiabatic invariants JR

and Jz. We impose the following requirements:
(a) The equilibrium KDF must recover the solution of

Refs. [24–26] in the limit of vanishing JR and Jz, namely,
for charges which are not characterized by epicyclic motion.

(b) The KDF f∗s must be a strictly positive real function and
it must be summable, in the sense that the velocity moments
of the form

�s(x) =
∫

W

d3v Xs(x)f∗s (34)

must exist for a suitable ensemble of weight functions {Xs(x)},
to be prescribed in terms of polynomials of arbitrary degree
defined with respect to components of the velocity vector field
v, and where W denotes the volume of integration in velocity
space.

Starting from the generalized bi-Maxwellian KDF intro-
duced in Refs. [24–26] and in line with all of the previous
requirements, a particular solution for the equilibrium distri-
bution is therefore given by

f∗s = β∗s

(2π/Ms)3/2 T
1/2
‖∗s

exp

{
−JR�R

∗s

T‖∗s

− Jz�
z
∗s

T‖∗s

}

× exp

{
−Es − Zse

c
ψ∗s�∗s

T‖∗s

− m′
sα∗s

}
, (35)

which we refer to as the generalized harmonic bi-Maxwellian
KDF. Here, the name “harmonic” refers to the fact that the
KDF depends explicitly on the two invariantsJR andJz which
are characteristic of particles undergoing harmonic epicyclic
oscillations. We also notice that the representation (35) is
consistent with the requirements (a) and (b) specified above.
In particular, the choice of introducing the exponential factor

exp{−JR�R
∗s

T‖∗s
− Jz�

z
∗s

T‖∗s
} implies both the consistency with the

previous results for nonoscillating particles [condition (a)]
and the convergence of the solution in velocity space [i.e.,
its integrability according to condition (b)]. Following the

notation of Refs. [24–26,32], here

α∗s ≡ B

�Ts∗
, (36)

1

�Ts∗
≡ 1

T⊥s

− 1

T‖∗s

, (37)

where the quantities �Ts∗, T⊥s , and T‖∗s are denoted, re-
spectively, as generalized species temperature anisotropy,
perpendicular and parallel temperatures, while

β∗s ≡ ηs

T⊥s

, (38)

with ηs to be referred to as the generalized species pseudoden-
sity. In Eq. (35), the structure functions are identified with the
set

{�∗s} ≡ {
β∗s ,α∗s ,T‖∗s ,�∗s ,�

R
∗s ,�

z
∗s

}
, (39)

where the quantities �∗s , �R
∗s , and �z

∗s are generalized frequen-
cies to be related, respectively, to the fluid azimuthal rotation
frequency and the radial and vertical oscillation frequencies.
Notice that the functional form of the structure functions is
prescribed according to the kinetic constraints (32). Hence,
at this stage, the set {�∗s} can not be directly identified with
particular fluid fields, i.e., velocity moments of the KDF. In
addition, it must be stressed that f∗s depends on the magnetic
moment m′

s which is evaluated at the guiding-center position.
The evaluation of the fluid fields requires preliminarily a
back-transformation to the actual particle position (see Ref.
[32]).

We remark that by construction, f∗s in Eq. (35) is an
adiabatic invariant and therefore an asymptotic solution of
the Vlasov equation. It follows that all of the velocity-
moment equations obtained from the Vlasov equation (e.g.,
the continuity and linear momentum fluid equations) are
identically satisfied in an asymptotic sense [25,31]. In addition,
it is immediate to verify that Eq. (35) recovers the solution
obtained in Refs. [24–26] in the limit in which the adiabatic
invariants JR and Jz vanish identically. Finally, invoking
the definitions (13) and (22), Eq. (35) can be equivalently
written as

f∗s =
β∗s exp

[
X∗s

T‖∗s

]
(2π/Ms)3/2 T

1/2
‖∗s

exp

{
−JR�R

∗s

T‖∗s

− Jz�
z
∗s

T‖∗s

}

× exp

{
−Ms (v − V∗s)

2

2T‖∗s

− m′
sα∗s

}
, (40)

where V∗s = eϕR�∗s and

X∗s ≡ Ms

|V∗s |2
2

+ Zse

c
ψ�∗s − Zse	

eff
s . (41)

VIII. PERTURBATIVE THEORY

In this section, we proceed determining an asymptotic
representation of the solution (35) which permits the treatment
of the implicit velocity dependencies contained in the structure
functions. We do this by adopting the perturbative technique
developed in Refs. [25,26,31] and appropriate for the plasma
belonging to the strongly magnetized SEPE regime defined in
Sec. V. The perturbative expansion is first carried out in terms
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of the dimensionless parameters εs and σs introduced in Sec. V.
Here, for greater generality we treat εs and σs as infinitesimals
of the same order, with εs ∼ σs � 1. Upon invoking Eqs. (29)
and (30), the structure functions can be Taylor expanded
accordingly. Correct to first order, i.e., neglecting corrections
of O(εsσs), as well as of O(εk

s ) and O(σ k
s ), with k � 2, one

obtains

�∗s
∼= �s + (ψ∗s − ψ)

[
∂�∗s

∂ψ∗s

]
ψ∗s = ψ

Es = Zse	
eff
s

+(	∗s − 	eff
s )

[
∂�∗s

∂	∗s

]
ψ∗s = ψ

Es = Zse	
eff
s

, (42)

where �s = �s(	
eff
s ,ψ) are the leading-order structure func-

tions. When Eq. (42) is applied to the equilibrium KDF given in
Eq. (35), a Chapman-Enskog representation can be recovered
for f∗s . To first order in the expansion parameters, this gives

f∗s = f ′
s

[
1 + εsh

(1)
s + σsh

(2)
s

]
, (43)

where f ′
s ≡ f ′

s (Es,ψ∗s ,m
′
s ,JR,Jz,�s,λ

kt). Here, h(1)
s and h(2)

s

represent, respectively, the diamagnetic and energy-correction
contributions carried by the εs and σs expansions of the
structure functions �∗s . In particular, the leading-order KDF
f ′

s is found to be

f ′
s =

ηs exp
[

Xs

T‖s

]
(2π/Ms)3/2 T

1/2
‖s T⊥s

exp

{
−JR�R

s

T‖s
− Jz�

z
s

T‖s

}

× exp

{
−Ms (v − Vs)

2

2T‖s
− m′

s

B

�Ts

}
, (44)

which is referred to as the harmonic bi-Maxwellian KDF.
Here, 1

�Ts
≡ 1

T⊥s
− 1

T‖s
is related to the temperature anisotropy

carried by m′
s , ηs denotes the pseudodensity, Vs = eϕR�s , and

Xs ≡ Ms

R2�2
s

2
+ Zse

c
ψ�s − Zse	

eff
s . (45)

The leading-order structure functions are therefore identified
with the set {�s} = {βs,αs,T‖s ,�s,�

R
s ,�z

s}, αs ≡ B
�Ts

, and

βs ≡ ηs

T⊥s
. By construction, the functional form of the set {�s}

is uniquely prescribed in terms of ψ and 	
eff
s . It is important

to notice here that, although T‖s and T⊥s have the dimensions
of temperatures, they are not the parallel and perpendicular
temperatures of the plasma. These in fact must be computed
as velocity moments of the KDF. Since the distribution f ′

s is
non-Maxwellian (due to m′

s , JR , and Jz), its leading-order
fluid moments do not necessarily coincide with the structure
functions {�s}. Furthermore, we notice that Eq. (44) contains
more structure functions with respect to the solution obtained
in Ref. [25] for accretion disk plasmas. This is a consequence
again of the fact that the KDF is non-Maxwellian. It is precisely
the conservation of JR,Jz which allows for the inclusion
of the two fluid frequencies �R

s and �z
s . One can therefore

interpret Eq. (44) as the equilibrium KDF which describes
a collisionless plasma species characterized by macroscopic
oscillations having frequencies �R

s and �z
s and exhibiting

at the same time azimuthal flow velocity (to leading order)
and temperature anisotropy. These features can have important

consequences for the investigation of the kinetic stability of
these systems.

Concerning the first-order terms in Eq. (43), explicit
calculation gives

h(1)
s = [Y1 + Y2]

c

Zse
MsR(v · eϕ), (46)

h(2)
s = [Y3 + Y4]

Ms

2Zse
v2. (47)

Here, Yi, i = 1,4, are defined as

Y1 ≡ A1s + A2s

(
Hs

T‖s
− 1

2

)
+

Zse

c
ψ∗�s

T‖s
A3s − αsm

′
sA4s ,

(48)

Y2 ≡ A2s

(JR�R
s

T‖s
+ Jz�

z
s

T‖s

)
− JR�R

s

T‖s
A5s − Jz�

z
s

T‖s
A6s

(49)

and

Y3 ≡ C1s + C2s

(
Hs

T‖s
− 1

2

)
+

Zse

c
ψ∗�s

T‖s
C3s − αsm

′
sC4s ,

(50)

Y4 ≡ C2s

(JR�R
s

T‖s
+ Jz�

z
s

T‖s

)
− JR�R

s

T‖s
C5s − Jz�

z
s

T‖s
C6s ,

(51)

where

Hs ≡ Es − Zse

c
ψs�s, (52)

and the following definitions have been introduced:

A1s ≡ ∂ ln βs

∂ψ
, A2s ≡ ∂ ln T‖s

∂ψ
, A3s ≡ ∂ ln �s

∂ψ
,

A4s ≡ ∂ ln αs

∂ψ
, A5s ≡ ∂ ln �R

s

∂ψ
, A6s ≡ ∂ ln �z

s

∂ψ

and

C1s ≡ ∂ ln βs

∂	
eff
s

, C2s ≡ ∂ ln T‖s
∂	

eff
s

, C3s ≡ ∂ ln �s

∂	
eff
s

,

C4s ≡ ∂ ln αs

∂	
eff
s

, C5s ≡ ∂ ln �R
s

∂	
eff
s

, C6s ≡ ∂ ln �z
s

∂	
eff
s

.

The quantities Ais and Cis, i = 1,6, represent the gradients
of the structure functions across equipotential surfaces and
are here referred to as generalized thermodynamic forces
(see also Refs. [25,26]). Therefore, consistent with the
Chapman-Enskog solution, the first-order terms h(1)

s and h(2)
s

are proportional to the gradients of �s and permit the treatment
of collisionless plasmas characterized by nonuniform fluid
fields. We also notice that consistency of Eqs. (46) and (47)
requires that εs

c
Zse

MsR(v · eϕ)( Hs

T‖s
− 1

2 ) ∂ ln T‖s
∂ψ

� O(εs) and

σs
Ms

2Zse
v2( Hs

T‖s
− 1

2 ) ∂ ln T‖s
∂	

eff
s

� O(σs), which implies that T‖s must

be of the form T‖s = T‖s(εl
sψ,σ l

s	
eff
s ), with l � 1, i.e., slowly

dependent on both ψ and 	
eff
s .
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IX. FLUID MOMENTS

Given the equilibrium KDF (35), in this section we consider
the possibility of evaluating the relevant fluid fields associated
with it, which are defined as velocity integrals according
to Eq. (34). In principle, an exact calculation of the fluid
moments could be carried out (e.g., numerically) for f∗s after
prescription of the structure functions �∗s . Here, however, the
calculation is based on analytical inspection by considering
suitable asymptotic estimations of the equilibrium KDF in
terms of the expansion pointed out in the previous section.
We do this because the analytical approach allows one to
display the basic physical properties of the solution and to
understand how the kinetic features affect the corresponding
fluid configuration. In particular, in the following we are
concerned with the expressions of the species number density,
the flow velocity, and the generally nonisotropic plasma
temperature.

We start by considering plasma species satisfying the
strongly magnetized SEPE regime orderings, for which the
equilibrium KDF f∗s is expressed according to Eq. (43). We
notice that, with respect to the solution obtained for accretion
disk plasmas in Refs. [24–26], here the perturbative theory
performed in terms of the εs and σs expansions as well as
the corresponding analytical calculation of the fluid fields
are modified by the simultaneous occurrence of the following
two features: (1) The inclusion of the two adiabatic invariants
JR and Jz, which carry additional velocity dependencies. (2)
The existence of a temperature anisotropy associated with the
adiabatic conservation of the magnetic moment m′

s .
In order to proceed, it is necessary here to develop

further the perturbative treatment of the equilibrium KDF by
considering additional asymptotic limits. We first assume that
in Eq. (44)

exp

{
−JR�R

s

T‖s

}
∼ exp

{
−Jz�

z
s

T‖s

}
∼ O (1) , (53)

so that these exponential functions can be both expanded to
first order to get

exp

{
−JR�R

s

T‖s
− Jz�

z
s

T‖s

}

 1 − JR�R

s

T‖s
− Jz�

z
s

T‖s
. (54)

From the physical point of view, this means that, given the
frequencies �R

s and �z
s , we consider a configuration in which

the vertical and radial energies associated with the harmonic
oscillations are small compared to the plasma temperature-
related parameter T‖s . We then introduce the parameter ςs

to compare the relative magnitude of the diamagnetic and

energy-correction terms with respect to JR�R
s

T‖s
and Jz�

z
s

T‖s
. Thus,

we set ∣∣∣∣∣∣
h(i)

s

JR�R
s

T‖s

∣∣∣∣∣∣ ∼
∣∣∣∣∣∣

h(i)
s

Jz�
z
s

T‖s

∣∣∣∣∣∣ ∼ O (ςs) , (55)

with i = 1,2 according to Eq. (43), where we recall that here
εs and σs are treated as infinitesimals of the same order.
Given these premises, we can now proceed by considering
two separate cases which permit us to display the role of the
three invariants JR , Jz, and m′

s in determining the functional

form of the fluid fields and the relevant physical properties of
the solution.

A. Case 1: Dominant JR and Jz

In this limit, we single out the contribution due to the
invariants JR and Jz with respect to the diamagnetic and
energy-correction terms. This requires setting 0 < (εs ∼ σs) <

ςs < 1. In addition, we also assume that the plasma is
characterized by a small temperature anisotropy associated
with m′

s , which implies in Eq. (43) the ordering |m′
s

B ′
�Ts

| ∼
O(εk

Ms), with k � 1. Therefore, to leading order we can set
T‖s ∼ T⊥s . Then, neglecting corrections of O(εs), O(σs), and
O(εk

Ms), the equilibrium KDF in Eq. (43) reduces to

f∗s = f (asym−1)
s

[
1 + ςsh

(3)
s

]
, (56)

where, respectively,

f (asym−1)
s =

ηs exp
[

Xs

T‖s

]
(2π/Ms)3/2 T

3/2
‖s

exp

{
−Ms (v − Vs)

2

2T‖s

}
(57)

is the Maxwellian contribution, and

h(3)
s = −JR�R

s

T‖s
− Jz�

z
s

T‖s
(58)

represents the non-Maxwellian correction term, while the
corresponding leading-order structure functions now become
{�s} = {ηs,Ts,�s,�

R
s ,�z

s}, with Xs retaining its expression
given by Eq. (45). For the sake of illustration, we restrict the
calculation of the species number density and temperature
correct up to O(ςs) in terms of f∗s given by Eq. (56),
thus neglecting the higher-order contributions, while the flow
velocity is calculated to its leading-order expression.

Let us start from the species number density. In validity
of the previous orderings, the total number density ntot

s is
approximated as ntot

s
∼= ns and is given by the velocity integral

ns =
∫

W

d3v f (asym−1)
s

[
1 + ςsh

(3)
s

]
. (59)

Three contributions arise, giving

ns = n(asym−1)
s [1 + �Rns + �zns], (60)

where

n(asym−1)
s = ηs exp

[
Xs

T‖s

]
(61)

is the Maxwellian contribution to the number density, while
�Rns and �zns are the corrections arising from the non-
Maxwellian features associated with JR and Jz, respectively.
These are found to be

�Rns = −�R
s

T‖s

∫
W

d3v JRf (asym−1)
s , (62)

�zns = − �z
s

T‖s

∫
W

d3v Jzf
(asym−1)
s , (63)

where the integrals can be explicitly computed (analytically or
numerically) on the appropriate volume of integration W once
the representation of the corresponding epicyclic frequencies
is assigned (see Sec. III).
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The calculation of the leading-order flow velocity is
immediate and gives Vs = eϕR�s , which is purely azimuthal
and coincides with the drift velocity carried by the exponential
factor in Eq. (57). We notice that, in this approximation, the
leading-order flow velocity is therefore not affected by the
non-Maxwellian contributions. It is nevertheless possible to
show that, since h(3)

s is an even function in the radial and
vertical velocity components, it can not be responsible for the
occurrence of additional components of the flow velocity along
the same spatial directions.

Finally, we can proceed computing the species temperature
T tot

s . Given validity of the previous orderings, it is found that to
leading order the temperature T tot

s is approximated as T tot
s

∼=
Ts and defined as

Ts = Ms

ns

∫
W

d3v
(v − Vs)2

3
f∗s , (64)

in terms of Eq. (56). The calculation yields

Ts = T (asym−1)
s [1 + �RTs + �zTs], (65)

where here T
(asym−1)
s ≡ T‖s is the leading-order term, which

coincides with the temperature carried by the Gaussian
exponent in Eq. (57) (Maxwellian term). The non-Maxwellian
contributions �RTs and �zTs are defined, respectively, by

�RTs = −�R
s

T‖s

Ms

ns

∫
W

d3v
(v − Vs)2

3
JRf (asym−1)

s , (66)

�zTs = − �z
s

T‖s

Ms

ns

∫
W

d3v
(v − Vs)2

3
Jzf

(asym−1)
s . (67)

These results show how the non-Maxwellian character
of the equilibrium KDF affects the number density and the
temperature of the plasma with respect to the Maxwellian
solution. In this approximation, the flow velocity is found to
have only azimuthal direction. Additional corrections in fact
can only arise when the contributions h(1)

s and h(2)
s of the KDF

are taken into account. When the magnetic moment is retained,
the latter are expected to be also responsible for the occurrence
of nonvanishing velocity components along R and z directions
(see next section).

B. Case 2: Temperature anisotropy

The main purpose of this section is to prove that the
temperature anisotropy associated with the magnetic moment
conservation can be responsible for the occurrence of a nonva-
nishing poloidal flow velocity associated with the equilibrium
plasma configuration. We then proceed by examining the
physical reasons behind this and the role of the adiabatic
invariants JR and Jz in affecting this feature.

We start by assuming that the temperature anisotropy term
�Ts

enters the KDF in its leading-order expression. Concern-
ing the first-order contributions, we impose the validity of the
ordering 0 < εs ∼ σs ∼ ςs < 1, namely, we consider the dia-
magnetic and energy-correction terms of the same order of the
contributions associated with the conservation of JR and Jz.
The latter are treated according to Eq. (54). Before calculating
the relevant fluid fields, it is necessary to express the guiding-
center magnetic moment m′

s at the actual particle position.
This can be done by invoking a back-transformation from the

gyrokinetic state defined in terms of the Larmor-radius expan-
sion parameter εM,s , as illustrated in detail in Ref. [32]. For
this purpose, the particle velocity is represented as v = ub +
w + VD , where u denotes the parallel velocity with respect to
the magnetic-field line having unit tangent vector b = B/|B|,
w = w[e1 cos φ + e2 sin φ] is the component of the velocity
perpendicular to b of magnitude w, and VD is a suitably defined
drift velocity (see, for example, Refs. [25,32]). Here, (e1,e2,b)
are orthogonal unit vectors, while φ denotes the gyrophase
angle associated with the Larmor rotation around magnetic-
field lines (see Ref. [32]). Then, correct through first order in
εM,s , the back-transformation gives for m′

s the representation

m′
s = μ0s[1 + εM,s�μs], (68)

where μ0s = Msw
2

2B
is its leading-order expression, while �μ

represents the correction of O(εM,s). Without loss of clarity, we
omit here to report explicitly the full expression of �μs . This
can be found in Ref. [32]. For the purpose of this section, it is
sufficient to notice that �μs is generally a function of the type
�μs = �μs(w2,u,w), so that it contains both even as well as
odd contributions in terms of the particle velocity components.

Given validity of these assumptions, for this example case
the equilibrium KDF (43) becomes

f∗s = f (asym−2)
s

[
1 + εsh

(1)
s + σsh

(2)
s + ςsh

(3)
s + εM,s�μs

]
,

(69)

where

f (asym−2)
s =

ηs exp
[

Xs

T‖s

]
(2π/Ms)3/2 T

1/2
‖s T⊥s

× exp

{
−Ms (v − Vs)

2

2T‖s
− μ0s

B

�Ts

}
. (70)

Here, the leading-order term f
(asym−2)
s coincides with a drifted

bi-Maxwellian KDF, h(1)
s and h(2)

s are given by Eqs. (46)
and (47), while h(3)

s is defined according to Eq. (58).
Let us now consider the calculation of the dominant con-

tributions of the fluid fields associated with the solution (69).
Regarding the number density, one obtains

ns = n(asym−2)
s [1 + �ns], (71)

where for the leading-order contribution n
(asym−2)
s carried by

f
(asym−2)
s one finds that formally n

(asym−2)
s = n

(asym−1)
s , with

the latter being given by Eq. (61). Instead, �ns is the whole
contribution originating by the first-order terms in Eq. (69)
and whose explicit calculation is omitted because it is beyond
the scope of this section. For what concerns the plasma
temperature, a straightforward calculation proves that this is
nonisotropic, with the leading-order parallel and perpendicular
components carried by f

(asym−2)
s coinciding, respectively, with

T‖s and T⊥s . These components of the temperature enter the
definition of the corresponding leading-order species pressure
tensor �

s
:

�
s
=

∫
W

d3v Ms(v − Vs)(v − Vs)f
(asym−2)
s . (72)
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Explicit calculation proves that this is nonisotropic too and is
given by

�
s
= p⊥sI + (p‖s − p⊥s)bb, (73)

where p⊥s ≡ n
(asym−2)
s T⊥s and p‖s ≡ n

(asym−2)
s T‖s represent

the leading-order perpendicular and parallel pressures, with I
being the unitary tensor. Finally, the leading-order contribution
of the flow velocity is found to be purely azimuthal and
coincides with the velocity Vs = eϕR�s carried by f

(asym−2)
s .

Concerning the first-order contribution, this is given by the
velocity integral

�Vs =
∫

W

d3v vf (asym−2)
s

×[
εsh

(1)
s + σsh

(2)
s + ςsh

(3)
s + εM,s�μs

]
. (74)

This integral can be computed either in terms of the cylindrical
velocity components (vR,vϕ,vz) or, for example, in terms of the
set (u,w,φ). In both cases, the calculation consists of integrals
of a Gaussian distribution multiplied by a polynomial function
of the particle velocity. The detailed expression of �Vs is
out of the scope of this work and we do not report it here.
Instead, we are interested in showing that �Vs has generally
nonvanishing components in all the three spatial directions. In
terms of the magnetic coordinates (ψ,ϕ,ϑ), this is therefore of
the type

�Vs = �Vϕseϕ + �Vϑseϑ + �Vψseψ, (75)

where �Vϕs is the azimuthal contribution, �Vϑs is the com-
ponent along eϑ ≡ ∇ψ×∇ϕ

|∇ψ×∇ϕ| and �Vψs is the component along

the direction eψ ≡ ∇ϑ×∇ϕ

|∇ϑ×∇ϕ| . The proof follows immediately
by noting that, once expressed for example in the variables
(u,w,φ), letting v = ub + w + Vs , the first-order polynomial
contributions (h(1)

s ,h(2)
s ,h(3)

s ,�μs) contain both odd and even
dependencies on the particle velocity. Odd terms give null
contribution to the integral (74), which is therefore only
determined by the even terms. The latter are independent
and generally nonvanishing in the presence of temperature
anisotropy and nonuniform structure functions. It is also
immediate to recognize that in general all three components
in Eq. (75) are present. Consider, for example, odd integrals
in the parallel velocity u. Since, from Eq. (6) b = B

|B| =
I∇ϕ+∇ψ×∇ϕ

|B| , these terms decompose in contributions along
both azimuthal and eϑ directions. Similar considerations hold
for odd integrals in the perpendicular velocity w. In general,
all terms in Eq. (74) contribute to generate �Vϕs and �Vϑs ,
which therefore arise due to diamagnetic, energy-correction,
FLR effects, and non-Maxwellian features. On the other hand,
the drift component �Vψs is uniquely associated with FLR
effects and is due only to the contribution �μs coming
from the back-transformation of the guiding-center magnetic
moment. Equation (75) represents the main conceptual result
of this section and can have notable consequences on the
self-generation of magnetic fields by the torus plasma (see
discussion in the next section).

Before concluding, the following comments are in order
about the physical interpretation of these results and the role
of the conservation laws of JR and Jz in this. In particular,
note the following:

(1) According to the description of collisionless epicyclic
plasma particles developed here, the contributions �Vϑs and
�Vψs arise only due to the existence of the temperature
anisotropy which is included in the equilibrium KDF by the
condition of adiabatic conservation of the particle magnetic
moment m′

s .
(2) If such a temperature anisotropy is negligible, the

adiabatic invariantsJR andJz alone can not provide a physical
mechanism for the occurrence of �Vϑs and �Vψs . In fact, as
shown in the previous section (example case 1), they carry
only even dependencies on the particle velocity which do not
contribute to the fluid velocity.

(3) The flow velocity �Vs is effectively modified by the
existence of the adiabatic invariants JR and Jz. The latter
contribute in two different ways. First, in an indirect way
through the terms h(1)

s and h(2)
s by means of the nonuniform

structure functions �R
s and �z

s to which they are associated
with in the equilibrium KDF. Second, in a direct way through
the term h(3)

s . A similar type of contribution holds also for the
rest of fluid fields (e.g., number density and temperature).

(4) The results presented here are applicable to the subset
of the collisionless plasma characterized by the existence
of oscillating epicyclic particles. Hence, the nonvanishing
flow velocity components �Vϑs and �Vψs can not be here
interpreted as generating an accretion velocity of matter away
from the neighborhood of the minimum of the effective
potential. While preserving the conservation of m′

s , particles
also oscillate keeping JR and Jz asymptotically conserved. It
follows that the poloidal velocity �Vϑseϑ + �Vψseψ can be
consistently interpreted as a drift velocity of the plasma on a
bounded configuration domain.

X. KINETIC DYNAMO

In this section, we consider the solubility constraints
imposed by the Ampere equation on the equilibrium kinetic
solution obtained above. This will allow us to point out the
existence of a kinetic dynamo, namely, the possibility of
self-generation of a quasistationary magnetic field by the
plasma currents.

In detail, for a quasistationary and nonrelativistic configu-
ration, the Ampere equation for the self-magnetic field is

∇ × Bself = 4π

c
J, (76)

where Bself is defined by Eq. (5) while J denotes the total
plasma current density. The latter is defined as

J =
∑

s

Js =
∑

s

Zsen
tot
s Vtot

s =
∑

s

Zse

∫
W

d3v vf∗s . (77)

Invoking the representation of f∗s given in the previous section
by Eq. (69) in the case of both nonvanishing temperature
anisotropy and non-Maxwellian contributions give the follow-
ing result:

J =
∑

s

[Jϕseϕ + Jϑseϑ + Jψseψ ], (78)
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where, respectively, correct to first order in the relevant
expansion parameters

Jϕs = Zsen
(asym−2)
s [R�s + �Vϕs]

+Zsen
(asym−2)
s �nsR�s, (79)

Jϑs = Zsen
(asym−2)
s �Vϑs, (80)

Jψs = Zsen
(asym−2)
s �Vψs. (81)

Hence, in this case J has nonvanishing components along
all of the three directions identified by the set of magnetic
coordinates (ψ,ϕ,ϑ). We notice that in general J is non-
vanishing for a single-species plasma or for a multispecies
collisionless plasma in which each species has distinctive
structure functions.

Let us now consider the azimuthal component of Eq. (76).
This yields a generalized Grad-Shafranov equation for the
poloidal flux function ψp of the self-field:

�∗ψp = −4π

c
Jϕ, (82)

where �∗ is the Grad-Shafranov differential operator and
Jϕ ≡ ∑

s Jϕs . The remaining terms of Eq. (76) along the
directions eϑ and eψ yield two differential equations for the
azimuthal component of the self-magnetic field I/R. These
are, respectively,

∂I

∂ψ
= 4π

c
Jϑ, (83)

∂I

∂ϑ
= 4π

c
Jψ, (84)

which are subject to the constraint of solenoid current ∇ · J =
0, namely,

∂Jψ

∂ψ
= ∂Jϑ

∂ϑ
. (85)

This equation represents a solubility condition arising from
the Ampere equation and must be intended as a constraint
for the structure functions. Since generally I is of the form
I = I (ψ,ϑ,λkt), the solubility condition (85) can always be
satisfied by an appropriate choice of one of the structure
functions. As a consequence, Eqs. (82)–(85) prove that the
collisionless plasma considered here is able to generate a
nonvanishing poloidal and azimuthal magnetic field in a
quasistationary configuration. This mechanism is referred to
here as a kinetic dynamo, in analogy with the mechanism
found in Refs. [24,25,27,28,31,32] in the case of accretion disk
plasmas. It must be stressed that this dynamo effect can occur in
the absence of possible instabilities or turbulence phenomena.
For the validity of the theoretical model developed here, the
resulting self-magnetic field must be checked a posteriori to
be consistent with the ordering assumption (7) introduced in
Sec. II. Several notable features characterize the present result:

(1) The poloidal magnetic field is generated by azimuthal
currents. To leading order, the azimuthal flow velocity R�s

is determined by the combined presence of gravitational and
magnetic fields, mainly generated by external sources. Kinetic
effects enter as first-order contributions in both the expressions
of number density and azimuthal flow velocity.

(2) The azimuthal magnetic field is generated by poloidal
currents. These arise only due to specifically kinetic effects.
In the asymptotic approximation considered above, these
contributions enter as first-order terms (with respect to the
corresponding expansion parameters).

(3) Among the kinetic effects responsible for the ki-
netic dynamo, we distinguish the diamagnetic contributions
originating from the εs expansion (poloidal magnetic flux
expansion), the energy-correction contributions from the σs

expansion, the non-Maxwellian contributions carried by the
adiabatic invariants JR and Jz, and finally the FLR effects
due to the conservation of the guiding-center magnetic
moment.

(4) The kinetic dynamo for the toroidal field can be present
only if the plasma exhibits a temperature anisotropy associated
with m′

s , which gives rise to poloidal drift currents in the
presence of nonuniform structure functions (and therefore
nonuniform fluid fields).

We conclude this section by noting that the result obtained
here proves the main goal of this investigation, namely, the
existence of a physically based dynamo mechanism that can
operate in quasistationary configurations for axisymmetric
collisionless plasmas in toroidal structures. For plasmas com-
posed of epicyclic particles, such a dynamo effect is consistent
with the result of Refs. [24,25,27,28,31,32] and can represent
a promising phenomenon for the generation of magnetic loops
in the presence of external EM and gravitational fields for
astrophysical plasmas around compact objects.

XI. CONCLUSIONS

In this paper, the problem concerning the existence of
astrophysical systems composed by magnetized plasmas able
to generate magnetic loops in the gravitational field of compact
objects has been addressed. To this aim, a suitable kinetic
theory appropriate for the description of collisionless nonrela-
tivistic and gravitationally bound plasmas has been developed
in the framework of Vlasov-Maxwell description. The case
of charged particles in toroidal axisymmetric configurations
exhibiting epicyclic motion around minima of the effective
potential in the equatorial plane has been treated.

Quasistationary solutions for the species equilibrium ki-
netic distribution function describing these systems have been
determined, which are expressed in terms of the relevant
particle adiabatic invariants characterizing particles oscillating
with epicyclic frequencies. It has been shown that such
solutions are generally non-Maxwellian, while, as proved
here, they can always be conveniently expressed in terms
of generalized harmonic bi-Maxwellian distributions. The
main physical properties as well as the relevant phase-space
anisotropies characteristic of the equilibrium distribution
functions have been discussed. A suitable perturbative theory
has been developed in order to allow for the treatment
of the implicit phase-space dependencies carried by the
quasistationary solution. As a consequence, the analytical
calculation of the fluid fields associated with the kinetic
distribution function has been investigated, proving that these
are generally nonuniform, with the plasma exhibiting both
azimuthal and poloidal nonvanishing flow velocities. Then,
analysis of the Ampere equation has shown the existence of
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a kinetic dynamo effect, responsible for the self-generation of
both poloidal and azimuthal quasistationary magnetic fields by
the plasma currents in the absence of instabilities, turbulence,
or accretion phenomena.

This conclusion provides a plausible physical mechanism
that can explain the occurrence of magnetic loops around
compact objects originating by magnetized plasmas confined
in toroidal configurations and consisting of charged particles
in epicyclic motion. The main properties of the dynamo effect
have been analyzed. In particular, it has been proved that this
represents a specifically kinetic phenomenon that can only
be dealt with consistently in the framework of kinetic theory.
Several notable features contribute to this mechanism, which
have been identified here with diamagnetic, energy-correction,
and finite Larmor-radius effects together with non-Maxwellian
features of the equilibrium distribution function. Finally,
concerning the self-generation of the azimuthal field, it has
been pointed out that this can only take place in nonuniform
plasmas characterized by temperature anisotropy associated
with conservation of particle magnetic moment.

The theoretical outcomes of this work contribute to a better
understanding of the dynamics of astrophysical gravitationally
bound plasmas in connection with magnetic-field generation.
In particular, they can provide a valuable background for
possible future investigations on the subject of plasma kinetic
equilibria and corresponding stability analyses, including stud-
ies concerning accretion disk plasmas and current-carrying
string-loop models around compact objects.
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[15] O. Kopáček, J. Kovář, V. Karas, and Z. Stuchlı́k, AIP Conf.

Proceedings 1283, 278 (2010).
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