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Plasma expansion into vacuum assuming a steplike electron energy distribution
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The expansion of a semi-infinite plasma slab into vacuum is analyzed with a hydrodynamic model implying a
steplike electron energy distribution function. Analytic expressions for the maximum ion energy and the related
ion distribution function are derived and compared with one-dimensional numerical simulations. The choice of
the specific non-Maxwellian initial electron energy distribution automatically ensures the conservation of the
total energy of the system. The estimated ion energies may differ by an order of magnitude from the values
obtained with an adiabatic expansion model supposing a Maxwellian electron distribution. Furthermore, good
agreement with data from experiments using laser pulses of ultrashort durations τL � 80 fs is found, while this
is not the case when a hot Maxwellian electron distribution is assumed.
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I. INTRODUCTION

In physics and applied science there is a large interest in
the production of highly energetic ions. In addition to the
possibility of using conventional accelerators, laser-driven ion
acceleration has gained increasing interest in recent years
as a promising alternative. Although this idea was already
discussed in the 1970s [1–4], the focus has been renewed with
the first experiments using short-pulse high-power lasers [5–8].
The ion pulses produced in such experiments reveal several
outstanding properties. They are characterized by (i) a short
duration, which is initially of the order of the laser pulse
length [5,7,9], and (ii) a small divergence angle [10], and
they are (iii) highly laminar [11,12] and contain (iv) a large
number of particles (e.g., up to 1013 protons [13]). Due to
these features laser-based particle accelerators may become
auspicious sources for different applications such as in medical
physics [14–16], for new diagnostic techniques [17–20],
for astrophysical investigations of high-energy-density matter
[21–24], for isotope production [25,26], as front ends for
conventional accelerators [11,27], and for fast ignition in the
context of inertial fusion energy research [28–34].

The dominant mechanism in most of the laser-driven ion
acceleration experiments performed so far is the so-called
target normal sheath acceleration (TNSA). In this scheme, a
subpicosecond laser pulse with an intensity �1019 W/cm2 ion-
izes atoms at the front side of a solid target and accelerates the
electrons of this plasma layer to relativistic energies [35,36].
These hot electrons propagate through the target [37,38] and
exit at its rear side, forming a plasma sheath. The associated
charge separation causes a strong electrostatic field oriented
normally to the target rear surface, which ionizes atoms in
the vacuum-target surface layer and accelerates them up to
energies in the range of several tens of MeV per nucleon [5].

In order to describe the ion acceleration process theoreti-
cally, numerous publications appeared during the past decade.
Many of them are based on the pioneering articles by Gurevich,
Allen, and Widner [1,39,40]. The theoretical analysis is often
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reduced to a one-dimensional electrostatic description, in
which the Poisson equation plays a central role. Moreover,
the explicit dynamics of the electrons is usually neglected by
assuming that the electrons arrange themselves in a stationary
configuration with the electric potential. The basic relation,
which describes the electron distribution in this case, is the
stationary, one-dimensional, electrostatic Vlasov equation,

p

me γ

∂fe

∂x
+ e

∂φ

∂x

∂fe

∂p
= 0, (1a)

where fe(x,p) expresses the phase-space density of the
electrons, x is the spatial coordinate, p refers to the momentum
in this direction, and γ =

√
1 + (p/mec)2 denotes the corre-

sponding Lorentz factor. In addition, the notations me for the
electron rest mass, e for the elementary charge, and φ for the
electric potential are used.

Note that the Vlasov equation (1a) has an infinite number
of solutions given as

fe(x,p) = fe,0(�(p,φ)), (1b)

with

�(p,φ) = c−1
√

(γ me c2 − e φ)2 − (me c2)2.

The distribution fe,0 is an arbitrary function of the momentum
p, which has to fulfill the symmetry condition fe,0(p) =
fe,0(−p). It describes the phase-space density in the absence
of an electric potential. Depending on the choice of fe,0 one
may obtain different expressions for the electron density as a
function of the potential

ne(φ) =
∫
R

fe,0(�(p,φ))dp. (1c)

So far, a density relation of the form ne(φ) =
ne,0 exp(e φ/Te,0) has been used in many models (see, for
example, Refs. [2,13,39–43]), with the electron temperature in
energy units,1 Te,0, and the electron density ne,0, both being the

1In the following we label the thermal energy kB Te,0 by Te,0 and
refer to it shortly as a temperature.
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respective equilibrium values in the absence of any potential
(φ = 0). Using this approach, a Maxwellian distribution for
fe,0 is assumed implicitly, as one can prove immediately after
inserting the Maxwell-Jüttner distribution (see, e.g., Ref. [44])
in Eq. (1c). However, there is a priori no direct reason
for this assumption, because the plasma can be treated to
be collisionless in most experimental schemes relevant for
laser-driven ion acceleration from solid targets [45]. In fact,
there are experimental observations and theoretical arguments
for a non-Maxwellian distribution [46–51]. In these studies,
the plasma expansion was investigated assuming either a trun-
cated Maxwellian distribution [46–49,51], a super-Gaussian
distribution [52,53] or a Crain distribution [54]. Note that the
form of the hot electron distribution to be used is still under
debate [54,55].

In addition, there are contributions dealing with the laser-
heated plasma expansion into vacuum taking both hot and cold
electrons into account. Commonly, these studies are assuming
a bi-Maxwellian electron distribution function (for example,
see Refs. [3,13,42,56–60]). From these investigations it can
be found that for typical values of the electron populations
present in TNSA experiments,2 the acceleration process at the
ion front of the expanding plasma is strongly dominated by the
hot electrons [59], since the cold electron population is almost
completely left behind. Although there is a noticeable effect on
the ion front caused by the cold electrons at the very beginning
of the expansion, which leads to slightly higher ion energies in
comparison with the case of a single hot electron distribution
(see, e.g., Fig. 14 in Ref. [59]), the direct influence of the cold
electrons on the qualitative properties of the ion front is almost
negligible. In addition, to the weak direct influence, there is
also an indirect effect on the ion front caused by the cold
electrons. Due to these electrons, the temporal evolution of
the hot electron phase-space density may differ from the case
assuming a single hot electron distribution [57,60]. However,
within the electron parameter range of our interest this effect
becomes relevant only on a time-scale, which is larger than
the typical effective ion acceleration time. From that we may
reason that the qualitative behavior of the ion front acceleration
is well described with one hot electron population only.

In this paper we analyze the free expansion of a plasma
assuming a single steplike hot electron energy distribution,3

illustrating the significant modification of the ion acceleration
process when a non-Maxwellian initial electron distribution is
assumed. Note that the expansion of a plasma with such an
electron phase-space density intrinsically conserves the total
energy of the system [61]. Therefore, it might be an adequate
ansatz for the description of the adiabatic plasma expansion.
As it has been shown in Ref. [61], a steplike electron energy
distribution implies the spatial electron density to have the
form

ne(φ) = ne,0

(
1 + κ − 1

κ

e φ

Te,0

)1/(κ−1)

. (2a)

2Commonly, the characteristic densities nh, nc and temperatures Th,
Tc of the hot and cold electron populations, respectively, fulfill the
conditions nh � nc, Th � Tc and nh Th � nc Tc.

3In the literature, the name “waterbag” distribution is also used.

Here, κ denotes the adiabatic index, which is determined by
the degrees of freedom Z of the one-dimensional electron gas
via

κ = 1 + 2/Z. (2b)

Moreover, the degrees of freedom Z depend on Te,0 through

Z(β) = 2

[
1 + β

(
K0(β)

K1(β)
− 1

)]
, (2c)

with β = me c2/Te,0 and Kn being the modified Bessel
functions of second kind and n-th order. They increase from
Z = 1 to Z = 2 with rising temperature from Te,0 � me c2

(nonrelativistic case) to Te,0 → ∞ (ultrarelativistic case). At
the same time, the adiabatic index is decreasing from κ = 3 to
κ = 2. Thus, from a practical point of view, only the domain
2 � κ � 3 turns out to be important for our studies, especially
in the Secs. IV and V. However, up to that point we want to
keep the analytic results as general as possible, assuming the
weaker limitation,4 κ � 1.

The relation (2a) was initially derived using a fluid descrip-
tion of the electron gas. It has been used to study the expansion
of a plasma under the approximation of quasineutrality and
wave-breaking effects from a target with an initial density
gradient [62] as well as to determine the optimal thickness
of an ultra-thin target in the TNSA process [63,64]. Although
the treatment of the hot electrons in our study is always based
on a kinetic description, we will consider the relations (2a)–
(2c)—according to the original context—as the hydrodynamic
approach.

Besides the form of the initial electron distribution function,
our model has much in common with the analysis of Ref. [39]
and followers. This means that the electric potential φ is
determined by the (nonlinear) Poisson equation

ε0
∂2φ(x,t)

∂x2
= e[ne(φ(x,t)) − Zi ni(x,t)], (2d)

depending on the space coordinate x and time t . The charge
number of the ions is set to be Zi and their initial spatial density
ni is given as a steplike function,

ni(x,t = 0) = ni,0 
(−x), (2e)

with the Heaviside-Theta function 
(x). Furthermore, we set
ne,0 = Zi ni,0. To close the system of equations, it is necessary
to describe the ion motion. This will be done using the
hydrodynamic equations for a perfect fluid,

∂ni

∂t
+ ∂

∂x
(ni vi) = 0, (2f)

∂vi

∂t
+ vi

∂vi

∂x
= −Zi e

mi

∂φ

∂x
, (2g)

which are valid as long as vi(x) is a single-valued function,
meaning that the ions do not overtake each other.

The paper is organized as follows. In Sec. II we are
going to derive analytic expressions for the motion of the
ion front. Section III contains a short recall of Mora’s theory

4The case κ = 1, which corresponds to the isothermal situation, has
to be understood as a limiting process, κ → 1.
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[57], which studies the adiabatic plasma expansion assuming
Maxwellian hot electrons with decreasing temperature (adi-
abatic Maxwellian expansion). Here, we add some further
analytical results. Afterwards, the findings described in Secs. II
and III are compared with each other in Sec. IV. Finally, we
discuss various proton-ion acceleration experiments in Sec. V,
employing the models specified before. Section VI contains
the concluding remarks.

II. ANALYTICS FOR STEPLIKE DISTRIBUTED
ELECTRONS

Following Ref. [65] one can derive a self-similar solution
for the system (2) under the assumption of charge quasineu-
trality,5 ne = Zi ni. It takes the form

φss = Te,0

e

[
κ − 1

(κ + 1)2

(
x

cs t

)2

− 4
√

κ

(κ + 1)2

x

cs t
− κ(κ + 3)

(κ + 1)2

]
, (3a)

vi,ss = 2 cs

1 + κ

(
x

cs t
+ √

κ

)
, (3b)

Zi ni,ss = ne,0

[
2

κ + 1

(
1 − κ − 1

2
√

κ

x

cs t

)]2/(κ−1)

, (3c)

with the ion-acoustic velocity cs = √
Zi Te,0/mi. Note that

equations (3) are identical with the self-similar result of
Ref. [62]. Considering the self-similar solution (3) mathemat-
ically, it is valid in the domain6 −√

κ < x/cs t � 2
√

κ/(κ −
1), i.e., within a region where the condition of charge neutrality
is sufficiently fulfilled.7 In case of an ion distribution with
strong spatial variations this condition is violated, because the
electron distribution cannot follow these variations instanta-
neously due to the thermal smoothing of the electron density.
Hence, the self-similar solution is not suitable as a model
for the expansion of a target with an initially steplike density
profile at the very beginning of the acceleration process. At
later times, however, when the ion density profile smoothes
out due to the expansion itself, the relations (3) provide a good
approximation to the exact solution of the system (2) within
the quasineutral region (see Fig. 1).

While the lower boundary of that quasineutral region is
approximately given by the position of the rarefaction wave
−√

κ cs t , which is identical with the lower boundary of

5Note the different meaning of the quasineutral condition ne = Zi ni

and the assumption ne,0 = Zi ni,0 made before. While the latter is just
a special choice for the factor in the electron density function ne,
the former is a relation between the functions ni and ne in a certain
domain of x.

6For x > 2
√

κ cs t/(κ − 1) the solution is continued by e φss ≡
− κTe,0/(κ − 1) and ni,ss ≡ 0. Here the ion velocity vi,ss is not
defined due to the absence of ions. Moreover, for x < −√

κ cs t ,
the expressions (3) become meaningless. Instead, one has vi ≡ 0,
ni ≡ ne,0/Zi, and φss ≡ 0.

7Strictly spoken, in a general situation the quasineutrality condition
is a necessary but not a sufficient condition. However, with respect to
the problem discussed here, one may regard it as a sufficient condition,
too.

FIG. 1. (Color online) Illustration of the self-similar solution (3)
for κ = 3 in comparison with the numerical solution of the equations
(2). Panels (a) and (b) show the spatial density distributions of the
particles at the instants ωpi t = 1 and ωpi t = 50, respectively. The
dashed black and the solid red (gray) curves correspond to the exact
electron and ion densities, respectively, obtained by solving Eqs. (2)
numerically, whereas the thick green (light gray) lines represent the
self-similar solution (3c). Note that Zi = 1 is assumed in the plotted
example. In panels (c) and (d), the exact electric potential evaluated
numerically from Eqs. (2) (dashed black line) is compared with the
self-similar relation (3a) [thick green (light gray) curve] for ωpi t = 1
and ωpi t = 50, respectively.

the range of validity of Eqs. (3), the upper boundary of
the quasineutral region does not equal the upper boundary
2 cs t

√
κ/(κ − 1) of the self-similar solution (3). Instead,

it is approximately given by the point where the local
electron Debye length, λD,local = √

ε0 Te,0/(ne(x) e2), exceeds
the scale length lss of the spatial variation in the ion density
(see Refs. [41,46]). By evaluating the local scale length
lss = |ni/(∂ni/∂x)| of the self-similar ion density (3c) at
the initial target boundary (x = 0), which we take as a
representative position, one finds lss = √

κ cs t . Consequently,
λD,local exceeds lss at the position

xf,ss = 2
√

κ

κ − 1
cs t

[
1 − κ + 1

2
(
√

κ ωpi t)
1−κ

]
. (4)

Here, ωpi = √
Zi ne,0 e2/(mi ε0) denotes the ion plasma

frequency.
From a physics point of view, Eq. (4) is an approximative

expression for the position of the ion front, because the
quasineutral condition fails here as a result of the jump
discontinuity in the ion density, which the electron density
cannot follow directly. According to the self-similar solution,
the ion velocity at the position xf,ss is given by

vf,ss = 2 cs

√
κ

κ − 1
[1 − (

√
κ ωpi t)

1−κ ]. (5)

Note, that Eq. (5) at t → ∞ equals the velocity at which the
upper boundary of the range of validity of the self-similar
solution is propagating. In addition, Eq. (5) is consistent with
the expression given by Mora [41] for κ → 1. By taking the
derivative of Eq. (5) we deduce the corresponding scaling of
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FIG. 2. (Color online) Panels (a) and (b) illustrate the self-similar
electric field [thick green (light gray) curve] in comparison with
simulation results (black curve) for κ = 3 at the instants ωpi t = 20
and ωpi t = 50, respectively. The ion front—marked by the dotted
black vertical line—surpasses the upper boundary 2cs t

√
κ/(κ − 1)

of the self-similar solution [dashed green (light gray) vertical line]
at some instant ωpi tsur between 20 and 50. As exhibited in (c), such
a point ωpi tsur exists for each value of κ . Consequently, the final
velocity of the ion front vmax [see Eq. (12) below] always exceeds
the velocity 2cs

√
κ/(κ − 1), at which the upper boundary of the

self-similar solution is propagating. Plot (d) shows the velocity of the
ion front at the instants of surpassing [green (light gray) dots] against
the final velocity of the ion front (black crosses) for different κ . Both
velocities differ by less than 1%.

the electric field strength at the ion front as

Ef,ss(t) ∝ t−κ . (6)

Although the self-similar solution is useful for the investiga-
tion of the general properties of the plasma expansion, it does
not allow for a characterization of the complete process. First,
it cannot specify the expansion in the early stages due to the
considerable violation of quasineutrality. Moreover, even for
later times, this condition fails at the ion front. Consequently,
the self-similar solution does not provide a precise deduction of
the electric field strength at the ion front. In case of isothermal
electrons, κ → 1, Mora circumvented this difficulty by utiliz-
ing numerical results implying that the electric field E(t) at the
ion front for ωpi t � 1 is approximately twice the value Ef,ss(t)
given by the self-similar solution [41]. But for parameters
κ 	= 1, simulations show that the ion front surpasses the upper
boundary of the self-similar solution, 2 cs t

√
κ/(κ + 1), at

some instant (see Fig. 2). Hence, the self-similar solution (3)
cannot formally be used to characterize the motion of the ion
front at later times.

However, simulations8 reveal saturation in the growth of
the ion front velocity when approaching this moment of

8The simulations in this article were performed with a code which
solves the system (2) numerically. Primarily, it consists of a solver for
the nonlinear Poisson equation (2d) and a particle stepper—similar

surpassing, as it becomes clear from Fig. 2(d). Hence, the
self-similar description of the electric field strength at the
ion front beyond the point of surpassing does not introduce
an essential error. Therefore, we may reason that the scaling
of the electric field predicted by the self-similar solution (6)
approximates the evolution of the electric field at the ion front
for late times ωpit � 1 sufficiently well, despite the restriction
mentioned above.

In order to express the electric field at all instants of time, we
propose—analogously with the isothermal fit in Ref. [41]—the
generalized expression

E(t) ≈ E(t = 0)

[1 + C(κ)(ωpi t)2]κ/2
, (7)

which obeys the asymptotic behavior (6). Here, C(κ) is a
function of κ only and E(t = 0) denotes the initial field
strength at the ion front. The latter value can be determined by
integration of Eq. (2d) with the electron density (2a), resulting
in

E(t = 0) =
√

2 κ
− κ

2(κ−1) E0, (8)

where E0 = √
ne,0 Te,0/ε0 . For values κ � 10, the expression

(7) properly fits the simulation results, as long as C(κ) is
well chosen. This is demonstrated in Fig. 3(a) for three values
of κ . Since relation (7) is a heuristic fit, C(κ) cannot be
determined unambiguously. However, a comparison with the
best-fit values Cn = C(κn) gained from a series of simulations
with various values κn shows that

C(κ) = 1

2

1

exp(1) + κ − 1
(9)

is a good approximation, as illustrated in Fig. 3(b). Further-
more, expression (7) together with Eq. (9) leads to the fit
formula found by Mora for the case κ = 1.

Using the empiric fit (7), we obtain the velocity,

v(t)

cs
=

√
2 κ

− κ
2(κ−1) ωpi t 2F1

[
1

2
,
κ

2
;

3

2
; −C(κ)(ωpi t)

2

]
,

(10)

as well as the position of the ion front,

x(t)

λD
=

√
2 κ

− κ
2(κ−1)

{
[1 + C(κ)(ωpi t)2]1− κ

2 − 1

C(κ)(κ − 2)

+ (ωpi t)
2

2F1

[
1

2
,
κ

2
;

3

2
; −C(κ)(ωpi t)

2

]}
, (11)

as functions of time. Here, 2F1 denotes the Gaussian hyper-
geometric function and λD = √

ε0 Te,0/(ne,0 e2) is the electron
Debye length. Relations (10) and (11) are displayed in Fig. 3(c)
and 3(d) and reproduce the simulation data well. The fit
precision decreases slightly with increasing κ . However, for

to a PIC code—to solve the ions’ equations of motion (2f) and (2g).
Moreover, it can handle different approximations for the evolution of
the electron phase-space density, as described in Sec. IV. The code,
which was already used in a previous study [61], is quite similar to a
number of codes used in several studies (e.g., Refs. [41,43,57,66–69])
and was carefully tested against those published results.
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FIG. 3. (Color online) In (a), the electric field strength at the ion
front in units of E0 as a function of time is shown for κ = 2, 3, and
10. Black dots correspond to simulation results, while the green (light
gray) curves represent the analytical estimate (7). Panel (b) displays
the best-fit values for C(κ) found by simulations (black dots) in
comparison with Eq. (9) [green (light gray) curve]. In (c) and (d), the
time dependence of the normalized ion front velocity and its position
are plotted, respectively. The corresponding estimates (10) and (11)
are depicted by green (light gray) lines; black dots show the results
of simulations.

values κ � 3 the relative error in v(t) is still less than 1% for
all times t .

From relation (10), we deduce the maximum ion velocity
in the limit t → ∞ as

vmax/cs =
√

2 χ (κ). (12)

The function χ (κ) depends on κ only and is defined as

χ (κ) = 4 π
�

[
κ+3

2

]2

�
[

κ
2

]2

κ− κ
κ−1

C(κ)(κ2 − 1)2
. (13)

From (13) it is evident, that the final maximum ion velocity
is finite for κ > 1, in contrast to the isothermal case (κ →
1). This is not surprising, since the steplike electron energy
distribution does have a finite cut-off energy (see Ref. [61]).
As a consequence, the difference of the potential values at
x = −∞ (deep inside the target) and x = ∞ (in vacuum) is
finite and, hence, the maximum kinetic energy a test particle
can gain is limited, too. The correlation between a finite cut-off
electron energy and the limitation of the final maximum ion
energy has been studied in the case of a truncated Maxwellian
distribution for (i) the free expansion of a plasma consisting of
one ion species [46,47] and (ii) the acceleration of light ions,
which were assumed as test particles in the field of immobile
heavy ions [48,49,51].

It is interesting to note that the maximum velocity (12) is
close to the velocity 2 cs

√
κ/(κ − 1) of the upper boundary

of the self-similar solution (3). Indeed, the relative difference
between both terms is less then 15% for all κ � 10. Further-
more, from Eq. (12) we can derive the maximum ion energy

FIG. 4. (Color online) Panel (a) displays the maximum energy
per charge number of the accelerated ions as a function of the initial
electron energy. The bold green (light gray) curve corresponds to
Eq. (14) with κ expressed as function of the electron temperature Te,0

by applying the relation κ = 1 + 2/Z and Eq. (2c). That exact curve
is almost perfectly covered by the approximation (15) (dashed black
curve). In addition, the minorant and majorant functions (16) are
displayed by dotted black lines. Panel (b) shows the energy spectrum
for κ = 3 at ωpi t = 50. The black dots correspond to the results of
a simulation, while the green (light gray) curve is determined by
Eq. (17). Here, the number of ions per unit surface and unit energy is
normalized to ni,0 λD/Zi Te,0.

per charge number:

εmax/Zi = Te,0 χ (κ). (14)

Substituting κ by the number of degrees of freedom Z via
Eq. (2b) and expressing this parameter in terms of the initial
electron temperature Te,0 by using Eq. (2c), the relation (14)
will depend on Te,0 only. For practical use, we give an
approximative expression (see also Fig. 4):

εmax/Zi ≈ Te,0
1.36312 + 4.58725 Te,0/MeV

0.750591 + Te,0/MeV
. (15)

From this relation one can extract the minorant and majorant
functions,

1.82 Te,0 � εmax/Zi � 4.59 Te,0. (16)

Finally, the number of ions per unit energy and unit surface
(energy spectrum) can be approximately calculated from the
self-similar solution (3) as

∂2N

∂ε∂A
= κ + 1

23/2

ni,0 cs t√
Zi Te,0 ε

(
1 − κ − 1√

2 κ

√
ε

Zi Te,0

) 2
κ−1

. (17)

In the limit κ → 1, this relation reproduces the result given in
Ref. [41].

III. ADIABATIC EXPANSION WITH MAXWELLIAN
ELECTRONS

Because of the energy conservation in the plasma expansion
with a single steplike hot electron distribution, the model
presented in Sec. II offers an appropriate framework to
describe the adiabatic expansion of a plasma slab into vacuum.
However, there are other expansion models, which ensure the
energy conservation as well.

One well-known approach is the so-called adiabatic
Maxwellian model studied in Ref. [57]. In contrast to the
hydrodynamic model it is based on a Maxwell-Jüttner electron
distribution, implying a hot electron density relation of the
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form

ne(φ) = ne,0 exp

(
e φ

Te

)
. (18)

In the adiabatic Maxwellian model, the electron temperature
Te is assumed to be time dependent, Te = Te(t). Here, the
electron energy is varied in such a way that the conservation
of the total energy of the system is ensured.

In this section we are going to recall and partially extend the
results of Ref. [57]. This will serve—together with the findings
of Sec. II—as the basis for further discussion in the following
sections. Here, we will follow an empirical line of thinking
and we will focus on a few essential points. A more general
theoretical treatment of an adiabatic Maxwellian expansion is,
for example, given by Kovalev et al. (e.g., Refs. [52,53]).

According to Ref. [41], the electric field at the ion front of an
expanding plasma driven by isothermal Maxwellian electrons
is given by

E(t) = E(t = 0)√
1 + τ 2

, (19)

with τ = ωpi t/
√

2 exp(1). Here, the ions are initially con-
tained in a semi-infinite slab (steplike target), as described
by Eq. (2e). For t → ∞, Eq. (19) predicts the behavior
E(t) ∝ t−1, in agreement with the self-similar solution (see,
e.g., Refs. [39,65]). In accordance with the unlimited amount
of initial total energy, the expansion of the plasma slab
proceeds isothermally.

If the plasma slab has initially a finite extension9 L, the ion
density may be written in the form

ni(x,t = 0) = ni,0 
(L − 2|x|). (20)

For the adiabatic process [57], one finds the dependencies
Te ∝ t−2 by starting from nonrelativistic temperatures Te,0

as well as Te ∝ t−1 in the ultrarelativistic case with Te,0 �
me c2. These time scalings for the hot electron temperature
induce the corresponding field dependencies E(t) ∝ t−2 for
nonrelativistic and E(t) ∝ t−3/2 for ultrarelativistic plasmas.

At nonrelativistic electron energies, a simple expression
for the electric field at the ion front, which guarantees the
correct asymptotic temporal behavior, is assumed in analogy
with Eq. (19) as

E(t) = E(t = 0)√
1 + α τ 2 + β τ 4

. (21)

9In order to avoid misunderstandings, which may appear in the con-
text of the terms semi-infinite/finite plasma slab and unlimited/limited
large amount of energy, we want to specify these terms. As a
direct consequence of the one-dimensional modeling, the initial ion
distribution is always infinitely extended in the transverse y and z

directions. Therefore, the total number of ions and electrons contained
in the plasma is always infinitely large, leading to an unlimited amount
of initial energy, too. However, this is not crucial for the model
and the evolution of the electron temperature, since the essential
quantity here is the total initial energy per area dydz contained in
the system, ∂2ε/∂y∂z = ∫

R ∂3ε/∂y∂z∂x dx . For finite values of the
initial energy per area the plasma expansion proceeds adiabatically,
otherwise isothermally. Note that for practical reasons we shorten the
term energy per area simply to energy.

Here, α and β are functions of the normalized initial target
thickness, L/λD, only. By demanding α(L/λD) = 1 and
β(L/λD) = 0 for L/λD → ∞, the ansatz (21) includes the
isothermal limit by letting the initial thickness of the target
go towards infinity. Numerous simulations have shown that
Eq. (21) works well for targets with L/λD � 0.5.

For ultrarelativistic hot electrons we should use the corre-
sponding relation

E(t) = E(t = 0)√
1 + γ τ 2 + δ τ 3

, (22)

with γ and δ again being functions of L/λD only. However, we
will restrict the further discussion to the nonrelativistic case.
Asking about the influence of this restriction on the maximum
attainable ion velocity, we obtain variations in this quantity of
less than 10% for L/λD � 0.5 in the time domain ωpi t � 25,
which is typical for many related experiments. This spread is
tolerable for the analysis in the next sections, where we are
interested in general relations and scaling laws.

The unknown functions α and β were specified in a series
of simulations varying the normalized initial target thickness
l = L/λD. Starting from the fit values αn = α(ln) and βn =
β(ln) determined from the simulations, we found the following
empirical relations:

α = χ1 l3/2 + χ2 l2 + χ3 l5/2 + χ4 l3

1 + χ5 l3/2 + χ6 l2 + χ7 l5/2 + χ4 l3
,

(23a)

β =
(

η1 l + η2 l3/2 + η3 l2

1 + η4 l1/2 + η5 l2 + η6 l7/3

)4

,

with the coefficients

(χj ) = (−0.0129981, 0.525472,−0.144767, 0.0325432,

−0.70989, 0.860559,−0.199045),
(23b)

(ηj ) = (0.0926025, 5.65707, 0.2323, 12.9501,

2.09728, 0.0701358).

The fits (23) obey the required conditions α(l) = 1 and β(l) =
0 in the limit l → ∞ and they reproduce the values αn and βn

quite well within the range 0.5 λD � L � 500 λD, as shown in
Fig. 5.

An approximate expression for the electric field strength
E(t = 0) can be found by making a quadratic ansatz for
the potential inside the target, φ(x) = φ(0) + φ′′(0) x2/2, and
substituting it in the first integral of the Poisson equation (2d).
One obtains the expression

σ (l) =
√

2

exp(1)

√
l2

8 + l2
exp

(
8

8 + l2

)
(24)

for the normalized initial field strength at the target boundary,
σ = E(t = 0)/E0. Although the quadratic ansatz for the
potential is, strictly speaking, valid for thin targets only,
Eq. (24) seems to be an excellent approximation for targets
of arbitrary thickness, as one can see from Fig. 5(c).

Using the relations (23) and (24) in Eq. (21), the deviation
|E(t) − Enum(t)|/E0 of the ansatz (21) compared to the
simulation values Enum(t) is less than 1% for 0.5 λD � L �
500 λD [see, for example, Figs. 6(a) and 6(b)]. The integration
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FIG. 5. (Color online) Panels (a) and (b) show the best fit values
for αn and βn (black dots) determined by simulations of targets with
different thicknesses Ln in comparison with the empirical fit functions
(23), depicted by green (light gray) curves. In panel (c), the expression
(24) for the normalized initial field strength [green (light gray) curve]
is plotted together with the simulation values σn (black dots).

of Eq. (21) yields expressions for the ion velocity

v(t)

cs
=

√
2 exp(1)

σ√−a
F

[
arcsin(

√−a τ ) | b

a

]
, (25)

and for the position of the ion front,

x(t)

λD
= 2 exp(1) σ

(
τ√−a

F

[
arcsin(

√−a τ ) | b

a

]

− 1√
a b

ln

[√
b

√
1 + a τ 2 + √

a
√

1 + b τ 2

√
a + √

b

])
(26)

as functions of time. Here, F is the incomplete elliptic integral
of the first kind and the coefficients a and b are given by
(α ∓

√
α2 − 4 β)/2. The functions (25) and (26) are plotted in

Fig. 6 for the cases L/λD = 1 and L/λD = 100.
In addition, from Eq. (25) one can directly calculate the

kinetic energy of the ions at the front as a function of time.
By letting t → ∞, one gets the maximum energy of the ions,

FIG. 6. (Color online) In panels (a), (b), and (e), the evolution
of the electric field strength at the ion front as well as the velocity
and the extension of the ion front are shown for a normalized initial
target thickness L/λD = 1, respectively. The right column of panels
depicts the same results for L/λD = 100. Black dots represent the
simulation results, while the green (light gray) lines correspond to the
analytic estimates, Eqs. (21), (25), and (26), respectively. Obviously,
the analytic results fit the numerical data quite well for the plotted
examples L/λD = 1 and L/λD = 100. For intermediate values L/λD

we observed a similar coincidence.

given by

εmax/Zi = Te,0 exp(1)
σ 2

a
K

[
1 − b

a

]2

. (27)

Here, K denotes the complete elliptic integral of the first kind.
The energy relation (27) will be used in the following sections
and is displayed in Figs. 8(a) and 13.

IV. COMPARISON OF THE ADIABATIC MODELS

Before we compare the results obtained from the hydro-
dynamic model, which implies a single steplike hot electron
distribution function, with models assuming Maxwellian hot
electrons, we recall some characteristic properties of the
different approaches.

All models treat the electrons in a stationary approximation,
as described in Sec. I. This ansatz offers a simple framework
for the electrons at any moment in time. However, since one
operates with the stationary Vlasov equation, the temporal evo-
lution of the electron distribution is not intrinsically specified.
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To compensate for this drawback, additional assumptions are
needed.

Concerning Maxwellian electrons, the following ap-
proaches have been investigated. In the isothermal Maxwellian
model the same distribution function fe,0 (a Maxwell-Jüttner
distribution) is used at each instant of time. The second
approach—the adiabatic Maxwellian model—was already
discussed in Sec. III. In contrast to the isothermal Maxwellian
model, one introduces small changes of fe,0 with time in
a heuristic manner, as described in Ref. [57], for example.
Using this approach one retains a Maxwell-Jüttner distribution
for the function fe,0 at each instant but modifies the electron
temperature with time, Te = Te(t). The evolution of Te(t) must
be determined in such a way that the total energy of the system
is always conserved. The third approach treats the electron
cooling in a more sophisticated way [67,68]. We keep in mind
that the initial distribution function describes an ensemble
of many electrons with different energies. Those individual
electrons are oscillating in the electric potential around the
ions. As long as the ions are immobile the electric potential is
conservative and, therefore, the total energy of each individual
electron as well as the function fe,0 are conserved over time.
However, as soon as the ions start to move, the electric
potential slightly changes with time. Therefore, the motion
of the electrons is no longer conservative, their total energy
and, consequently, their distribution function will change with
time, since energy is transferred to the ions. Assuming that
the variation of the ion configuration is not too fast,10 a fully
dynamic modeling of the electrons on the basis of adiabatic
invariants may be accomplished [67]. We refer to this ansatz as
the kinetic model. It is generally suitable for an arbitrary initial
distribution function fe,0. Hence, it also allows us to describe
the evolution of the non-Maxwellian electron distribution
implied by the hydrodynamic approach. In case of an initially
Maxwellian electron distribution we refer to it as the kinetic
Maxwellian model.

As a result of the kinetic modeling, an initially Maxwellian
energy distribution fe,0 in general evolves into a non-
Maxwellian distribution at later times, see, e.g., Refs. [67,68].
Asking for the evolution of the electron distribution in the hy-
drodynamic approach, one has to note that the kinetic approach
preserves the implied initial steplike electron distribution fe,0,
as shown in Ref. [61]. Therefore, the hydrodynamic approach
(2a)–(2c) describes the electron evolution in a correct way (in
the sense of the kinetic model).

To conclude this discussion, we note two general differ-
ences in the quoted models: (i) by the specific choice of
the initial electron energy distribution fe,0 and (ii) in the
way how the temporal evolution of this specific function
fe,0 is determined. In the following, we want to compare

10According to Ref. [67], the necessary condition can be expressed
as Te/tφ � 1, with Te being the period of motion of an electron
with energy ε and tφ denoting the characteristic time of variations
in the potential “seen” by the electron. This time on its part may be
determined by the ratio of the electron energy and the mean variation
of the potential during a period of the electron motion, that is, ε/〈 ∂φ

∂t
〉.

In order to guarantee the equivalence, the condition Te/tφ � 1 has
to be fulfilled for all electrons.

FIG. 7. (Color online) Panels (a) and (b) illustrate the different
electron distributions underlying the different models (nonrelativistic
case) for a target with an initial thickness L/λD = 80 at ωpi t = 0 and
ωpi t = 50, respectively. While Ref. [57] is based on Maxwell-like
distributed electrons [dashed black and bold green (light gray)
curves], the hydrodynamic approach used here implicitly assumes
a steplike distribution [solid red (gray) line], see Ref. [61]. The
green (light gray) lines correspond to the adiabatic Maxwellian
case, whereas the dashed black curves show the changing electron
distribution function in the kinetic Maxwellian model. Here, fe is
normalized to ne,0/

√
2 me Te,0.

the hydrodynamic approach with the adiabatic Maxwellian
model [57] and with the kinetic Maxwellian model [67]. All
these approaches conserve the total energy of the system and
are, therefore, suitable for the description of an adiabatic
plasma expansion. Because of the complex interplay between
the expansion and the electron cooling, however, this task is
complicated within the Maxwellian models.

The various electron distributions, which are illustrated in
Fig. 7, lead to different behavior during the ion acceleration
process. While no finite velocity for the ion front exists in the
case of Maxwell-distributed electrons and half-infinite plasma
slabs, we identify the limit (12) for a steplike electron energy
distribution. In order to get finite ion energies in the case of
Maxwellian electrons, one has to operate with foils (targets of
limited thickness). This leads to different final ion energies in
dependence on the target thickness, as shown in Fig. 8(a). In
contrast, in the hydrodynamic approach, the final maximum
energy of the ions quickly saturates for an increasing thickness
of the foil, as also illustrated in Fig. 8(a). Moreover, these
values are lower by almost one order of magnitude for foil
thicknesses L in the range of λD � L � 100λD, as compared
with the results assuming Maxwellian hot electrons.

The final energy in the case of nonrelativistic Maxwell-like
electrons is given by Eq. (27), which is approximately equal
to εmax/Zi = 2 Te,0 ln(0.32 L/λD + 4.2)2 for L/λD � 20, see
Ref. [57]. This expression depends on Te,0 as well as on ne,0

(through λD), whereas the relation (14) of the hydrodynamic
model is only a function of the electron temperature Te,0.

To give an explanation for the remarkable difference in the
final maximum ion energies, predicted by the Maxwellian and
the hydrodynamic approaches, we may exclude differences
in the initial electric field strength as an essential reason,
because the ratio EMaxwell(t = 0)/Ehydro(t = 0) is given by√

κκ/(κ−1)/ exp(1), which is smaller than 1.4 for arbitrary
values of Te,0. Furthermore, the total energy of the system
(initial electric field energy plus initial thermal energy of the
electrons) does not significantly differ for foils with a thickness
greater than or equal to a few Debye lengths [see Fig. 8(b)].
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FIG. 8. (Color online) In (a) the final maximum energy of the
ions as a function of the initial target thickness L/λD is shown.
In case of Maxwellian electrons—black dots and blue (dark gray)
triangles represent numerical results of the nonrelativistic adiabatic
and the kinetic Maxwellian approach, respectively—the final energy
increases with increasing L/λD towards infinity. In contrast in
the hydrodynamic approach, where red (gray) diamonds represent
simulations for the nonrelativistic case with an adiabatic index κ = 3,
the maximum ion energy saturates quickly with increasing L/λD. The
green (light gray) curve depicts the analytical result for the maximum
ion energy of the nonrelativistic adiabatic Maxwellian approach,
given by Eq. (27). The dashed black line stands for the maximum ion
energies from thick targets and nonrelativistic electrons with a steplike
energy distribution (κ = 3), as determined by Eq. (14). In (b) the total
initial energy (per area) of the system as a function of the initial target
thickness L/λD is plotted. The values were found in simulations with
numerous foil thicknesses for the different models. Initially the total
energy is contained in the electric field and the thermal energy of
the electrons. The black dots correspond to Maxwell-like distributed
electrons, while the red (gray) diamonds represent the hydrodynamic
approach. For foil thicknesses L/λD � 10 the total initial energies in
both models are approximately the same.

Therefore, the large discrepancy in the ion energies arises
from the different temporal behavior of the electric field
strength E(t) at the ion front, which is illustrated in Figs. 9(a)
and 9(b). First, we notice that the fields in both models
using Maxwellian electrons are almost identical over tens of
ion plasma periods for thicker foils [Fig. 9(a)], whereas the
adiabatic Maxwellian model predicts a faster decrease of the
accelerating field in the case of thinner foils (see thick green
line in Fig. 9(b) in comparison with the dashed black curve
for the kinetic model). After ωpi t = 50, the field strengths
will be reduced by approximately two orders of magnitude. In
contrast, the hydrodynamic model predicts a much larger drop
of the electric field—approximately four orders of magnitude
during the same time interval.

In general, the electric field is given by E(t) =√
2/ε0

√
ne(t) Te(t). As Figs. 9(c) and 9(d) indicate, the

temporal behavior of the electron density is similar for both
types of models. Thus, the difference in the electric field
strength at the ion front should be mainly influenced by the
behavior of the electron temperature at that position. The
graphs in Figs. 9(e) and 9(f) show the evolution of the electron
temperature at the ion front. Obviously, the cooling process is
much more pronounced in the hydrodynamic model.

To give a qualitative explanation for this behavior, we have
to keep in mind that the adiabatic Maxwellian model uses a
single, well-defined electron temperature, which is uniform
in space, i.e., Te(x,t) = Te(t). The temporal variation of Te(t)
is caused by the transfer of thermal energy from electrons
to kinetic energy of the ions via the electric field. At the

FIG. 9. (Color online) Simulation results of the electric field
strength [panels (a) and (b)], the electron density [panels (c) and
(d)], and the electron temperature [panels (e) and (f)] at the ion front
as functions of time for targets with initial thicknesses L/λD = 80
(left column) and L/λD = 2 (right column), respectively. The curves
are normalized to the corresponding initial values. The thick green
(light gray) and dashed black curves follow from the nonrelativistic
adiabatic and kinetic Maxwellian models, respectively. The results of
the hydrodynamic ansatz are depicted by the solid (gray) red curves.

beginning of the expansion, the kinetic energy of the ions
gained from the electric field is almost independent on the
initial foil thickness, because the electric field at the ion
boundary depends only weakly on L for L > λD. However, the
total initial thermal energy of the electrons strongly depends
on L (at constant ne,0 and Te,0), because the number of
hot electrons increases proportionally with increasing target
thickness.11 Consequently, the relative energy loss of the hot
electrons is smaller for thicker foils. Or, in other words, the
temperature Te(t) decreases more slowly. This argument also
illustrates, why the adiabatic Maxwellian model converges
into the isothermal model predicting an infinite maximum ion
energy for L → ∞.

Within the kinetic Maxwellian model, the temperature is
not uniform in space as in the adiabatic Maxwellian approach.

11Note that from the experimental point of view, constant values of
ne,0 and Te,0 with an increasing target thickness L imply a constant
value of the laser intensity but an increasing focal spot radius and,
therefore, an increasing pulse power. This follows from the discussion
in Sec. V; see especially Eq. (38) for Te,0 and Eq. (36) for the electron
plasma frequency (which can be resolved for ne,0).
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FIG. 10. (Color online) In panels (a) and (b), the simulation
results for the spatial electron temperature distribution at two instants
of time are plotted for ωpi t = 0 and ωpi t = 50, respectively. The bold
green (light gray) and black dashed curves correspond to Maxwellian
electrons (adiabatic and kinetic ansatz, respectively), while the red
(gray) curves show the results of the hydrodynamic approach (κ = 3).
The dashed red (gray) and green (light gray) vertical lines mark the ion
fronts within the hydrodynamic and the adiabatic Maxwellian model,
respectively, whereas the dotted black vertical line corresponds to
the kinetic Maxwellian approach. Initially, the target thickness was
L/λD = 80 and the ion front was located at 40 λD.

However, the deviation of the electron phase-space density fe,0

from the initial Maxwellian distribution is relatively small in
the kinetic model during the essential acceleration time of the
ions. Therefore, the evolution of the electric field strength as
well as of the electron density and the electron temperature
at the ion front are very similar to that of the adiabatic case
during that period of time, ωpi t � 10 (see Fig. 9).

In contrast, the hydrodynamic model gives a local tempera-
ture, which is connected to the spatial electron density distribu-
tion by the adiabatic relation Te(x) = Te,0(ne(x)/ne,0)κ−1 (see
Ref. [64]). As a consequence, the electron temperature drops
rapidly at the ion front while the electron density is decreasing
due to the expansion. The obtained effect is much stronger
than the reduction of the electron temperature due to the total
energy loss of all electrons in the adiabatic Maxwellian model.
The differing properties of the spatial temperature profiles of
the models are demonstrated in Fig. 10.

V. DISCUSSION OF THE APPLICABILITY OF THE
DIFFERENT MODELS FOR THE INTERPRETATION

OF EXPERIMENTS

In this section we will compare the predictions of the
plasma expansion models described above with the results
of various experiments. Since PIC simulations commonly
predict a Maxwellian electron distribution generated during
the laser-plasma interaction, the observed ion acceleration is
often described by the application of Mora’s model [41] with
a certain (empiric) acceleration time tacc which is proportional
to the laser pulse duration τL (e.g., Refs. [9,70,71]). This
procedure simply assumes that the laser keeps the electrons in a
Maxwell distribution with a temperature approximately given
by the ponderomotive potential [72]. Once the laser pulse is
over, the hot electrons cool down, transferring a fraction of
their energy to the ions, and the plasma expansion becomes
adiabatic. The maximum ion energy is still increasing in this
phase. Its final value will be reached in the limit t → ∞,
according to Ref. [57] and Eq. (25). However, this is a purely
one-dimensional consideration.

In reality, the acceleration efficiency drops as soon as the
plasma geometry becomes multidimensional. This happens
approximately at the time when the displacement of the
ion front in forward direction, xacc, exceeds the transverse
dimension De of the electron spot on the rear side of the target
(e.g., Refs. [43,73,74]). The limitation of the acceleration
distance decreases significantly the resulting ion energies (see
Ref. [73]) in comparison to one-dimensional models used in
Refs. [41,73]. Based on the results of Ref. [41], this time t1D�3D

can be estimated for protons as

ωpi t1D�3D = (2 exp(1))1/4

√
De

λD
, (28)

which in physical units reads as

t1D�3D (fs) = 134.5

√
De (μm)√

ne,0 (1020 cm−3) Te,0 (MeV)
. (29)

Following Ref. [9], the size of the electron spot on the rear
target surface can approximately be evaluated with help of
the relation De = DL + 2 tan(θe) L. Here, DL is the laser
spot diameter on the target front side, L is the thickness of
the target, and θe is the half-opening angle of the electron
beam inside the target. According to Ref. [9] one has
θe ≈ 25◦. This value will be used throughout this section.
Furthermore, DL ≈ 5 μm . . . 25 μm (e.g., Ref. [75] resp.
Ref. [5]) and normally L � 100 μm. For the corresponding
quantity De we get values within a range of approximately
5 μm . . . 100 μm. Assuming hot electron temperatures in the
range of Te,0 ≈ 0.1 MeV . . . 10 MeV and densities ne,0 ≈
1020 cm−3 . . . 1021 cm−3, we may calculate corresponding
times t1D�3D between 100 fs and 2500 fs.

For relatively long laser pulse durations, τL � 150 fs, and
assuming similar focusing conditions, the ion bunch already
reaches a longitudinal extent of the order of the transverse size
of the electron spot during the laser pulse duration. Therefore,
the acceleration within the subsequent adiabatic regime is
almost negligible and the relation tacc ≈ t1D�3D ≈ τL holds.
As a result, the isothermal theory (e.g., Refs. [9,41]) describes
the acceleration process sufficiently well.

Although the maximum energy predicted by the isothermal
model depends on several experimental quantities, a rough
scaling with the laser intensity IL times the square of the laser
wavelength λL can be found, εmax iso ∝

√
IL λ2

L, as it was given
by Clark et al. in Ref. [76] and confirmed in Refs. [73,77]. We
may derive this characteristic behavior by inserting relation
(28) for the limited acceleration time into the expression for
the maximum proton energy of Ref. [41],

εmax iso = 2 Te,0 arcsinh

(
ωpi t√

2 exp(1)

)2

. (30)

In the linearized form we have

εmax iso ≈
√

2

exp(1)

Te,0 De

λD
. (31)

Now, applying the estimates of Ref. [9] for the total number of
hot electrons generated by the laser pulse, Ne = η εL/Te,0, and
for the hot electron density at the rear side of the target, ne =
4 Ne/(π D2

e τL c), as well as the relation PL = εL/τL, with the
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laser pulse power PL and the laser pulse energy εL in the focal
spot, respectively, one may rewrite the Debye length as

λD = De

2

√
1

η

π ε0 c

e2

T 2
e,0

PL
. (32)

Here, η denotes the conversion efficiency of laser energy into
hot electron energy within the laser focus. A typical value
of the order of 10% (see, e.g., Ref. [74]) will be used in the
estimates below.

From Eq. (32) we directly obtain the normalized electron
spot size

De

λD
=

√
η

4 e2

π c ε0

PL

T 2
e,0

(33)

and substitute it into Eq. (31). We finally get

εmax iso ≈ √
η

√
8

π exp(1)

e2

ε0 c

√
PL

= rL

λL

√
η

√
8

exp(1)

e2

ε0 c

√
IL λ2

L (34)

by relating the pulse power to the laser intensity, PL = π r2
L IL.

In physical units we obtain

εmax iso (MeV) ≈ 3.33
rL

λL

√
η

√
IL λ2

L (1018 W cm−2 μm2).

(35)

Hence, we find εmax iso ∝
√

IL λ2
L, in agreement with Refs. [76].

Note, again, that the scaling has been found by setting the
acceleration distance xacc equal to the transverse size of the
electron spot on the rear side of the target. Moreover, by
changing that acceleration distance to some multiple of the
electron spot size, h De, the result (35) would simply become
multiplied by this factor h. The same result would follow
from an increase of the normalized focal radius by a factor
of h, h rL/λL, while assuming the laser intensity IL to remain
constant. Therefore, the particular value of the acceleration
distance xacc does not influence the qualitative scaling law (35).

In the ultrashort-pulses regime τL � 100 fs the situation
differs, because the acceleration time exceeds the laser pulse
duration, tacc ≈ t1D�3D > τL. Hence, the adiabatic regime
becomes important, and another scaling for the maximum ion
energy should be obtained. This is demonstrated in Fig. 11,
which is based on Fig. 7 of Ref. [78], where the results from
a large number of laser-ion acceleration experiments from the
past decades have been collected.

The difference between the two regimes, as shown in
Fig. 11, was previously discussed also by Fuchs et al.
[71]. Assuming isothermal Maxwellian electrons and laser
pulse durations τL � 150 fs, they found empirically a good
agreement between experimental data and Eq. (30) by setting
the acceleration time proportional to the laser pulse duration
τL. In contrast, they determined the acceleration time to be
almost constant for ultrashort pulse durations, τL < 60 fs.

One can immediately show that a fixed acceleration time
in Eq. (30) will result in a dependency of the maximum ion
energy on Te,0 only—besides a factor, which contains the laser

FIG. 11. (Color online) Overview of various experiments per-
formed in the past decades. From the illustration it is obvious
that ultrashort pulse experiments [red (gray) dots] show a different
scaling than experiments with relatively long laser pulses [blue (dark
gray) triangles]. Dotted lines with the corresponding color (grayscale
values) are drawn in both regions to guide the eye. Experiments
with intermediate pulse durations [green (light gray) diamonds] fall
between both regions. The following experimental data have been
used: 1 = [79], 2 = [80], 3 = [81], 4 = [82], 5 = [83], 6 = [5],
7 = [84], 8 = [7], 9 = [85], 10 = [86], 11 = [87], 12 = [88],
13 = [78], 14 = [70], 15 = [89], 16 = [74], 17 = [90], 18 = [91],
19 = [77], 20 = [92], 21 = [93], 22 = [94], 23 = [95].

wavelength, the conversion efficiency and the divergence of
the electron beam as well as the ratio of the target thickness
and the laser focal spot radius. For that we rewrite the ion
plasma frequency in the form

ωpi =
√

η

1 + tan(θe) L
rL

√
Zi e2

mi ε0 c

IL

Te,0
, (36)

which in physical units assuming protons reads

ωpi(1/fs) = 0.019
√

η

1 + tan(θe) L
rL

√
IL (1018 W cm−2)

Te,0 (MeV)
, (37)

and express the laser intensity IL in Eq. (36) in terms of Te,0

by using the relation

Te,0 = me c2

(√
1 + IL λ2

L

1.37 × 1018 W cm−2 μm2
− 1

)
(38)

of Wilks et al. [72]. By inserting the resulting expression
into Eq. (30), we immediately confirm this statement. It is
interesting to note that exactly the same conclusion for the
maximum ion energy can be drawn assuming steplike dis-
tributed electrons, as shown in Eqs. (14) and (15), respectively.
Moreover, the relation (14) fits the experimental results in the
ultrashort pulse regime quite well (see Fig. 12).

To answer the question whether the illustrated agreement
is only a consequence of the intrinsic adiabatic plasma
description in the hydrodynamic model or if it is also related
to the shape of the initial electron distribution, we checked
the experimental data against the results of the Maxwellian
adiabatic modeling (see Sec. III). According to the discussion
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FIG. 12. (Color online) The
√

IL λ2 scaling [blue (dark gray)
dashed lines] according to Eq. (35) is shown for laser focal spot radii
rL = {2, 5, 10} λL. In addition, the red (gray) curve represents the
maximum energy of the ions in the hydrodynamic ansatz applying
Eq. (14). The experimental data are identical to those of Fig. 11.

of Sec. IV—see especially Fig. 8(a)—it is evident that the
Maxwellian adiabatic expansion gives a different scaling.
Figure 13 includes curves, which were calculated with help of
relation (27) for three different normalized target thicknesses
l = L/λD as well as the result from the hydrodynamic model.

In this context, we note that the applied relations (14) and
(27) express the final energy of the ion front in the limit
t,x → ∞. In contrast, as discussed earlier in this section, the
one-dimensional expansion—and, thus, the essential energy
gain—occurs over a distance xacc comparable to the transverse

FIG. 13. (Color online) Comparison of the scaling of the different
adiabatic models. While the red (gray) curve represents the maximum
energy of the ions in the hydrodynamic ansatz calculated with
Eq. (14), the blue (dark gray) dashed curves show the ion energies in
case of Maxwellian electrons given by Eq. (27) for three normalized
foil thicknesses l = L/λD = {5, 25, 100}. The experimental data are
identical to those of Fig. 11. We remind that the plotted theoretical
curves exhibit the maximum energies in the limit t → ∞. Note also
that an increase in the target thickness does not necessarily imply an
increase of its normalized value for a given set of laser parameters
(IL, rL, PL,. . . ), since the Debye length (32) depends on the size of
the electron spot on the rear side of the target, which itself changes
with the target thickness.

size De of the electron sheath at the rear side of the target.
Therefore, we have revisited the above comparison between
the two models and the experimental data using a finite
acceleration distance xacc. We found out that this limitation
in the acceleration process does not change the general
scaling remarkably. Instead the two models still predict two
clearly different scaling laws. In any case, the adiabatic
Maxwellian model cannot reproduce the scaling implied by the
ultrashort pulse experiments over the complete intensity region
(1018 W cm−2–1020 W cm−2). In contrast, the experimental
data for the maximum ion energy in the ultrashort pulse regime
may be interpreted well by the hydrodynamic approach.

Since the most important difference between both models is
the non-Maxwellian electron distribution in the hydrodynamic
approach, this could be an indication for the presence of
non-Maxwellian electron spectra generated in ultrashort pulse
interactions. This suggestion is supported by the statement
in Ref. [43] whereby about 100 fs are needed to evolve the
hot electrons into an equilibrium distribution, as well as by
simulations in Ref. [96], where a non-Maxwellian distribution
has been observed using an ultrashort pulse laser (τL = 60 fs).
Also we note here about the interaction schemes with truncated
Maxwellian distributions discussed in Refs. [46–51]. This type
of energy distribution functions may be induced by the escape
of the fastest electrons from the charge separation region. A
plausible explanation for this possibility follows from the mul-
tidimensional nature of the interaction, which does not provide
an equilibrium solution for Maxwellian electrons [97]. Be-
cause of a finite potential at infinity in this geometry, electrons
with kinetic energies exceeding this potential, can escape from
the target and a non-Maxwellian distribution will be formed.

As a non-Maxwellian electron distribution should also
manifest itself in the shape of the proton spectrum, we checked
that issue in the publications employed in the Figs. 11–
13 and compared it with the theoretical prediction of the
hydrodynamic model, Eq. (17), as well as with the theoretical
spectrum evaluated for Maxwellian electrons [41],

∂2N

∂ε∂A
= ni,0 cs t√

2 Zi Te,0 ε
exp

(
−

√
2 ε

Zi Te,0

)
. (39)

As mentioned in Sec. II, the hydrodynamic result (17) becomes
identical with Eq. (39) in the limit κ → 1, where the electron
spectrum associated with the hydrodynamic ansatz takes the
form of a Maxwellian distribution (see Ref. [61]). To compare
the experimental data with the theoretical models, we have
fitted the expressions (17) and (39) to the measured data. In
the case of the hydrodynamic model, the adiabatic index κ was
used as a fit parameter. The deviation of its best-fit value κfit

from unity may be considered as a measure for the deviation
of the electron energy distribution from a Maxwellian one.

In our analysis we noticed that κfit is close to 1 for
a large number of experiments using relatively long laser
pulse durations, τL � 300 fs. Hence, the corresponding proton
spectra are quite well described by the theoretical result (39)
assuming Maxwellian electrons. This is obvious from the right
column of panels in Fig. 14, where the best-fit results for
the hydrodynamic expression (green solid lines) are almost
identical with the best-fit results for the Maxwellian case
(red dashed lines). In contrast, for numerous ultrashort pulse
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FIG. 14. (Color online) The plot shows the experimental data
(black dots) for the proton spectrum from some of the references
used in the Figs. 11–13. While the left column of panels corre-
sponds to ultrashort pulse experiments (τL � 80 fs), the right one
concerns experiments with relatively long laser pulse durations
(τL � 300 fs). The best fit for the theoretical ion spectrum under
the assumption of Maxwellian electrons (39) is depicted by red
(gray) dashed lines. The corresponding fit of the hydrodynamic
result (17) shows up as a green (light gray) solid curve. Thereby,
the adiabatic constant κ is considered as a fit parameter and its
best-fit value is given by κfit. This number is close to 1 in case of
the experiments using relatively long laser pulse durations, while
it is close to values 2–3 for the ultra short pulse experiments.
The following data and characteristics correspond to the different
panels: (a) data from Ref. [86], τL = 70 fs, IL = 3 × 1018 W cm−2,
εmax = 0.88 MeV, κfit = 2.32, (b) data from Ref. [78], τL = 350 fs,
IL = 3 × 1019 W cm−2, εmax = 18 MeV, κfit = 1.08, (c) data from
Ref. [87], τL = 34 fs, IL = 3 × 1019 W cm−2, εmax = 4 MeV, κfit =
2.19, (d) data from Ref. [94], τL = 600 fs, IL = 4 × 1018 W cm−2,
εmax = 12 MeV, κfit = 1.24, (e) data from Ref. [81], τL = 60 fs,
IL = 7 × 1018 W cm−2, εmax = 0.95 MeV, κfit = 1.79, and (f) data
from Ref. [94], τL = 700 fs, IL = 1 × 1019 W cm−2, εmax = 20 MeV,
κfit = 0.93.

experiments (τL � 80 fs) the best-fit values for κ are close to
numbers12 2–3, as illustrated in the left column of Fig. 14.
However, we want to emphasize that this is not necessarily
a direct proof for the presence of a steplike electron energy
distribution in those ultrashort pulse experiments, since the

12Here we want to remind that values of 2 and 3 for κ are associated
with a steplike distribution function in the ultrarelativistic and the
nonrelativistic limit, respectively (see Ref. [61]).

FIG. 15. (Color online) Illustration of two exceptional cases for
the proton spectrum as compared to the default case which is illus-
trated in Fig. 14. Here, the best-fit for the hydrodynamic expression
(17) is almost identical to the Maxwellian result (39) in the case of
the ultrashort pulse experiment shown in (a), while this is not the case
for the experiment using a relatively long pulse duration depicted in
(b). The following data and characteristics correspond to the different
panels: (a) data from Ref. [95]: τL = 50 fs, IL = 1.3 × 1020 W cm−2,
εmax = 12 MeV, κfit = 0.88 and (b) data from Ref. [77]: τL = 300 fs,
IL = 3.7 × 1019 W cm−2, εmax = 18 MeV, κfit = 2.46.

shape of the proton spectra are in reality influenced by various
other aspects, such as the laser prepulse and multidimensional
as well as multi-ion species effects. But the results reported
above support the suggestion about the presence of a non-
Maxwellian distribution in those experiments.

As demonstrated in Fig. 15, we found also some ex-
ceptional cases in the analysis of the diagnosed proton
spectra. Nevertheless, we believe that there is some evidence
for a non-Maxwellian distribution in most of the analyzed
ultrashort pulse experiments as well as for a Maxwellian
electron spectrum in the regime with relatively long laser pulse
durations. Of course, in reality the details of the laser pulse as
well as of the target parameters are likely to have a noticeable
influence on the shape of the electron distribution, too.

We also want to point out that—beside the shape of
the electron energy distribution—there could also be other
explanations for the discrepancy between the results of the
plasma expansion model using a Maxwellian hot electron
energy distribution and the experimental results at ultrashort
laser pulses. A different scaling of the electron temperature as
a function of the laser intensity in the ultrashort pulse regime
might be a first reason (see Fig. 16). A deviation of the electron
temperature from the broadly used pondermotive scaling law
(38) was supposed in Ref. [98] and observed numerically for
ultrashort laser pulses in Ref. [99]. In a more general sense,
the assumption of a stationary electron distribution—which is
essential for the basic model (1)—may not be fulfilled in the
ultrashort pulse regime. To overcome these uncertainties, fur-
ther investigations of the hot electron spectra—experimentally
as well as theoretically—are necessary.

Furthermore, we want to note that the comparison of the
results from numerous experiments, which were carried out
on different laser systems, in respect to the parameter IL λ2

L
(as shown in Fig. 14) may be oversimplifying. It is clear
that—in addition to the quantity IL λ2

L ∼ a2
0—numerous other

parameters and their complex interplay are likely to influence
the interaction and, hence, the maximum ion energy. It has been
shown that parameters such as the laser pulse duration [100],
the focal spot size and the laser power [101], the temporal
shape of the laser beam and its prepulse intensity [83], the
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FIG. 16. (Color online) The laser intensity scaling of the electron
temperature in relation to the ponderomotive approximation (38)
under the condition of equal maximum ion energies from the adiabatic
plasma expansion with Maxwellian hot electrons, given by Eq. (27),
and from the hydrodynamic ansatz following Eq. (14). Thereby, the
result is shown for three values of the normalized target thickness
L/λD.

target thickness [9,83], etc., may have an impact on the ion
acceleration process.

Also, we note that our discussion of experimental findings
and the related intensity scaling of maximum ion energies
refers to laser pulse intensities below 1020 W cm−2. Recently
performed experiments at higher laser intensities [102] demon-
strate a different intensity scaling, if we compare the observed
maximum ion energies with the scaling law for the ultrashort
pulse experiments collected in Fig. 11 after its extrapolation
to higher intensity values. Moreover, the absolute numbers of
the maximum ion energy observed in Ref. [102] are lower
by almost one order of magnitude in comparison with the
numbers predicted by the scaling relation (15) applied to
intensities above 1020 W cm−2. The established disagreement
might be caused by different characteristics of the electron
heating process at these high laser intensities, for example.
Further efforts are needed to understand this in detail.

VI. SUMMARY

Starting from a hydrodynamic approach, which implies a
steplike energy distribution for the hot electrons, we calculated
a self-similar solution for the adiabatically expanding plasma.
It includes the well-known self-similar solution [1,2,39] for
the expansion under isothermal Maxwellian electrons as a
limiting case. Moreover, we were able to formulate empirical
expressions for the electric field strength, velocity and position
of the ion front. In analogy, we extended the study of Mora [57]
describing the adiabatic expansion of a plasma driven by hot
Maxwellian electrons.

Comparing the results of the different models, we have
found that the hydrodynamic approach leads to a remark-

ably different evolution of the ion acceleration process in
comparison with the models using Maxwellian distributions,
even though approximately the same initial parameters such
as temperature, density, and total thermal energy for the
hot electrons were assumed. Thereby it turned out that the
different shape of the hot electron energy distribution in the
hydrodynamical approach leads to a rapidly dropping electron
temperature at the ion front in contrast to the Maxwellian
models, which gives rise to much lower maximum ion energies.

Furthermore, we have compared our analytical estimates to
experimental results looking at the maximum kinetic energy
and the spectrum of the accelerated protons and ions. Here,
we obtained a surprisingly good agreement between results
for the maximum ion energy of the hydrodynamic model,
implying a steplike hot electron energy distribution, and the
data from experiments with laser pulse durations shorter than
80 fs. These model predictions fit to the measured ion energies
in absolute numbers as well as in matters of the intensity
scaling. In contrast, the plasma expansion models which are
based on a Maxwellian hot electron energy distribution do not
reproduce the experimentally observed intensity scaling.

Moreover, besides some exceptional examples, in the
majority of the investigated experiments, the measured spectra
are more likely described by the theoretical ion spectrum
linked to hydrodynamic approach rather than by the ion
spectrum associated with Maxwellian electrons. Based on that
insights we may suspect that non-Maxwellian electron energy
distributions are often involved in this kind of experiment.

One reason for the presence of non-Maxwellian electron
energy distributions in ultrashort pulse experiments might be
that during the generation of the hot-electron population by the
laser the pulse duration is too short to allow for the formation of
a distinct Maxwellian distribution of the electrons. Therefore,
we believe that the different shape of the electron phase-space
density gives rises to the observed discrepancy. Hence, we
reason that it is necessary to pay more attention to the
particular electron distribution function in future theoretical
studies and in experiments. This includes the investigation of
the Maxwellian character of the energy distribution itself, e.g.,
in dependence on the pulse length of the driving laser beam.
It comprises also the knowledge of the scaling laws for the
hot electron temperature in case of an obtainable equilibrium
distribution function.
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