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Two-dimensional particle-in-cell (PIC) simulations have been performed to demonstrate how chirping the
pump laser beam can make the seed backward Raman amplification more efficient. The PIC code OCEAN is
detailed and validated with theoretical analysis of the three-wave coupling. Particular attention is devoted to the
impact of numerical noise on Raman scattering. Once the numerical parameters are set, one- and two-dimensional
simulations exhibit the ability to suppress the pedestal pulse preceding the amplified seed laser beam and lower
the spontaneous Raman scattering by appropriately choosing the pump chirp value.
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I. INTRODUCTION

The backward Raman amplification has attracted much
interest as a candidate for the challenging development of the
next generation of high-power laser systems [1]. It consists
in amplifying and compressing in a plasma a Stokes-shifted
laser pulse (seed pulse) by counterpropagating a long duration
and a relatively-low-power laser beam (pump pulse) [2,3].
Using a plasma as a gain medium may allow one to achieve,
without irreparable damages, higher intensities than those
usually reached with the chirped pulse amplification technique
in solids or liquids. This innovative amplification technique
has already demonstrated its ability to produce high laser
intensities [3–5], but with a low efficiency of the pump to
seed energy transfer. It is essential to find the physical setup
able to optimize the process of backward Raman amplification
and to control the pulse quality.

The energy transfer rate from the pump laser beam to
the seed one is governed by the Langmuir plasma wave.
The higher the plasma wave amplitude, the stronger the
three-wave coupling rate and the more efficient the pump to
seed energy transfer. Excitation of the plasma wave is limited
by the wavebreaking process, which occurs as the electrons,
accelerated via the electrostatic field, reach a velocity close
to the phase velocity of the electrostatic wave. By perturbing
the collective motion of plasma electrons, the wavebreaking
makes the three-wave coupling less efficient. Therefore, the
stimulated Raman scattering of the pump beam from the
spontaneous noise has to be controlled so that it does not
break the plasma before the interaction between the pump and
the seed beams.

Some solutions have been proposed to enhance the back-
ward Raman amplification of the seed pulse and to suppress
the spontaneous Raman signal. Malkin et al. [6] have proposed
the use of a plasma with a longitudinal density gradient to
detune the phase mismatch between the pump beam, the
spontaneous scattering wave, and the Langmuir wave, avoiding
an amplification of the parasitic spontaneous Raman signal.
Ersfeld and Jaroszynski [7] have suggested that this detuning
be created by chirping the pump laser pulse. Both studies
have been conducted in the one-dimensional (1D) geometry
disregarding two-dimensional effects. Moreover, their analysis
was restricted to circularly polarized laser beams known to
reduce the electron plasma heating because of the absence

of the time oscillating ponderomotive force. Vieux et al. [8]
have experimentally studied the effect of pump chirping on
Raman amplification, but without looking for an optimization
of the Raman amplification. Chirping the pump laser beam to
optimize the backward Raman amplification has already been
suggested by Caird [9]; however, this study was conducted
with a gas cell instead of a plasma as a gain medium.

Recent two- and three-dimensional simulations [10,11]
have demonstrated favorable parameters for backward Ra-
man amplification in a low-density plasma. However, the
role of spontaneous Raman scattering amplification was not
discussed, nor was the role of plasma heating and detuning.
These issues are important for controlling the amplified pulse
shape and the prepulse.

In this paper we show how chirping the pump laser beam
can reduce the spontaneous Raman scattering and increase in
the same way the Raman amplification of the seed laser beam.
We briefly recall the linear and nonlinear regimes of the Raman
scattering. The PIC code OCEAN is described and applied to
the analytical results. Numerical simulations performed in 1D
and 2D geometries show how chirping the pump laser beam is
able to optimize the backward Raman amplification.

II. THEORETICAL ANALYSIS

The backward Raman scattering occurs when an incident
pump laser beam, with the frequency ω0 and the wave vector
�k0, decays into a plasma wave (ωp,e, �kp,e) and a backscat-
tered electromagnetic beam (ωs = ω0 − ωp,e, �ks = �k0 − �kp,e),

where ωp,e ≈ ωp,0 =
√

n0e
2/meε0 is the plasma frequency,

n0 is the plasma density, e and me are the electron charge
and mass, respectively, and ε0 is the dielectric permittivity
of vacuum. Neglecting the diffraction effects, the temporal
and spatial dynamics of these waves are described with the
following system of three dimensionless equations [2]:

[
∂

∂t
+ vg,p

∂

∂x

]
ap = −�aeas,

[
∂

∂t
− vg,s

∂

∂x

]
as = �aeap, (1)

[
∂

∂t
+ vg,e

∂

∂x

]
ae = �apas,
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where t and x are normalized to 1/ω0 and c/ω0, respectively.
The amplitudes of the pump, the seed beams, and the
Langmuir plasma wave are ap = 0.85

√
Ipλ2

0 (where Ip is
the pump laser intensity expressed in units of 1018 W/cm2

and λ0 is the pump wavelength expressed in microns),
as = 0.85

√
ω0/ωs

√
Isλ

2
0 (where Is is the seed laser intensity

expressed in units of 1018 W/cm2), and ae =
√

ω0/ωp,eE/Ec

(where Ec = meω0c/e is the Compton field amplitude and E

is the plasma electrostatic field), respectively. The three-wave
coupling factor, normalized to ω0, is � = 1

4
kp,ec

ω0

√
ωp,e

ωs
. The

group velocities of the scattered and pump beams, normalized
to c (the light velocity in vacuum), are vg,s = ksc/ωs and
vg,p = kpc/ωp, respectively, and vg,e = 3kp,ev

2
te/ωpec, with

vte the electron thermal velocity. The plasma wave velocity
is small and for all practical conditions it can be neglected,
so vg,e = 0 in what follows. These equations model also the
backward Raman amplification process when the scattered
beam is injected from the plasma’s right-hand side boundary
limit.

In the linear regime, the pump wave is assumed to not be
depleted by the Raman scattering so that its amplitude is kept
constant. The previous equations are then reduced to[

∂

∂t
− vg,s

∂

∂x

]
as = �0ae,

∂

∂t
ae = �0as, (2)

where �0 = �ap � 1
2ap(n0/nc)1/4 is the backward Raman

growth rate normalized to ω0 with nc = meε0ω
2
p/e2 the plasma

critical density for the laser pump. The solution of Eqs. (2)
reads

as(x,t) = as,0I0

[
2�0

vg,s

√
(L − x)vg,s(t − t∗) − (L − x)2

]
,

(3)

where I0(x) is the modified Bessel function of the first kind,
L is the plasma length, and t∗ is the time at which the seed
laser beam with the initial amplitude as,0 is injected at x = L.
It is supposed that t∗ corresponds to the time at which the
pump laser beam reaches the right end of the plasma, so that
t∗ ∼ L/vg,p.

When the Raman amplification is so strong that it con-
tributes to the depletion of the pump laser energy, the seed
laser amplitude is modeled with the system of equations (1),
where the plasma wave velocity vg,e is neglected. By setting
X = L − x and τ = t − L−x

vg,s
, we obtain

[
1 + vg,p

vg,s

]
∂ap

∂τ
− vg,p

∂ap

∂X
= −�aeas,

vg,s

∂as

∂X
= �aeap, (4)

∂ae

∂τ
= �apas.

The nonlinear stage occurs when the pump depletion
becomes noticeable. In this case, the amplitude of the seed
laser beam increases and its duration decreases with time. The
distance between the seed maximum and the pump pulse front
is also decreasing such that �ap/�τ � vg,p �ap/�X. The
spatial derivative term can then be neglected so that the first

and third equations (4) result in

1

1 + vg,p

vg,s

∂a2
e

∂τ
+ ∂a2

p

∂τ
= 0, (5)

as = 1

�ap

∂ae

∂τ
. (6)

Thus, according to (5) and (6), one can represent the solutions
in the form

ap = a0 cos(u/2), (7)

ae =
√

1 + vg,p

vg,s

a0 sin(u/2), (8)

as = 1

2�

√
1 + vg,p

vg,s

∂u

∂τ
, (9)

where u verifies the sine-Gordon equation

vg,s

∂2u

∂X∂τ
= �2a2

0 sin u. (10)

The general solution of this equation is unknown [12]. How-
ever, a variety of particular solutions have been discovered.
The signal amplification is described by the π -pulse solution
[2,13]. By setting z = 2�a0√

vg,s

√
Xτ , the sine-Gordon equation

reduces to

∂2u

∂z2
+ 1

z

∂u

∂z
= sin u. (11)

A numerical solution is presented in Fig. 1 by the black solid
curve, where the initial conditions are u(z → 0) = ε0 = 0.1
and ∂u/∂z(z → 0) = 0.

Malkin et al. [2] have suggested that for ε0 < 1, the solution
of the sine-Gordon equation can be approximated with the
expression u(z) = 4 tan−1(ε0e

z/4
√

2πz). The seed intensity
computed from the z derivative of this analytical expression
is displayed in Fig. 1 by the blue dashed curve. It exhibits
relatively good agreement with the first peak of the numerical
solution.

The amplitude of the seed pulse increases proportionally to
the plasma length while the pulse width decreases inversely
proportionally to the distance. This is the so-called π -pulse
solution [2].

FIG. 1. (Color online) Normalized seed intensity [ ∂u

∂z
/max(u)]2

obtained from numerical integration (black solid curve) and the
approximated solution (blue dashed curve) of Eq. (11).
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In the limit of strong pump depletion, which is of main
interest for the Raman amplification, �a0L/vg,s � 1, this
solution describes approximatively a linear increase of the
seed intensity with the coordinate. This can be explained
qualitatively as follows. The pump wave energy is fully
transferred to the probe laser beam so that the number of
photons lost by the pump laser beam �Np = Ip

h̄ωp

vg,s

vg,p
�t over

the interval �t = �X/vg,s is equal to the number of photons
gained by the seed wave �Ns = �Is

h̄ωs
τs (τs is the pulse duration

of the seed). This full energy transfer results in an amplification
factor equal to �Is/�t � Ip/τs .

III. NUMERICAL TOOLS

The numerical simulations have been performed with the
PIC code OCEAN, which models the laser-plasma interac-
tion in 1D and 2D geometries by simultaneously solving
the Maxwell equations and the Vlasov equation for each
charge species [14]. As for the PIC code PICLS [15], the
Maxwell-Ampère and Maxwell-Faraday equations are solved
with the directional splitting method, which consists in
successively solving these equations along each direction.
This numerical method presents the advantages of being
dispersionless along the pump propagation axis and stable
with a relatively large time step �t = c�x, where �x is the
mesh size. The macroparticles dynamics is relativistic and is
computed with the Boris pusher [14]. The current densities,
source terms of the Maxwell-Ampère equation, are solved
according to the charge-conserving scheme developed by
Esirkepov [16] with a form factor order equal to 3. The OCEAN

code is parallelized over a domain decomposition. With the
directional splitting technique, two-dimensional simulations
verify the Maxwell-Gauss equation with an accuracy close
to 0.001%.

A. Linear amplification

We compare the PIC code OCEAN results with the analytical
formula [Eq. (3)] by simulating the backward Raman ampli-
fication in a one-dimensional geometry. The pump and seed
laser pulses, modeled with plane waves, are characterized by
ap,0 = 0.05 and as,0 = 0.0005. The plasma is characterized
by a 100λp length (628.32c/ω0) and is composed of protons
and electrons with a temperature initially zero and a density
equal to 0.03nc. The seed laser pulse is temporally delayed by
t∗ ∼ L/vg,p so that it interacts with the plasma as the pump
laser beam reaches the right-hand boundary. The mesh size has
been set to �x = λp/20. We have chosen 2000 macroparticles
per mesh and the ions motion is frozen.

The solid curve in Fig. 2(a) displays the temporal evolution
of the seed laser amplitude numerically computed at x =
314.16c/ω0 (middle of the plasma). As soon as the seed laser
pulse reaches this position (around ω0t ≈ 1000), its amplitude
increases up to as/Ec = 0.026 and then decreases. The seed
amplitude value is kept lower than the pump one so that
the backward Raman scattering occurs in the linear regime.
We observe that the seed amplitude increase is perfectly
reproduced with the analytical formula given in Eq. (3) and
shown by the dashed line. The discrepancy between theoretical
and numerical results occurs around ω0t ≈ 1300, with the
latter displaying a saturation. It originates from the Langmuir
plasma wavebreaking [17], where electrons escaped from the
trapping waves suppress the Raman scattering. Neglecting the
electron temperature, we can approximate the wave amplitude
for which plasma breaks by ae,max = ne/2nc. Figure 2(b)
shows the electrostatic field computed at x = 314.16c/ω0.
We observe that the maximum wave amplitude is reached
around ω0t ≈ 1300, the time at which the seed amplitude
saturates. The saturation value is close to the expected value
ae,max = 0.015.

FIG. 2. Temporal evolution of (a) the seed laser amplitude and (b) the electrostatic field at the position x = 314.16c/ω0 for ne/nc = 0.03.
Numerical results are displayed by solid curves and theoretical backward Raman amplification is shown by a dashed curve.
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FIG. 3. (Color online) Phase space x-px for electrons at ω0t ≈ 1100 and 1400. Here m and c denote the electron mass and the light velocity
in vacuum, respectively.

The effect of plasma wavebreaking is illustrated in Fig. 3,
where the x-px phase space for electrons is shown before
(left) and after (right) the plasma wavebreaking time. In the
left panel, one can see the collective motion of electrons
in the electrostatic field. This plasma oscillation is essential
for the backward Raman amplification. Once electrons have
reached the phase velocity of the plasma wave, they are no
longer trapped in this collective oscillation and the plasma
wave breaks. This leads to strong electron heating and
acceleration in the forward direction, as illustrated in the right
panel.

The temporal evolution of the seed laser amplitude for
several plasma densities ne/nc = 0.001, 0.01, 0.02, and 0.03
is presented in Fig. 4. The analytical formula computed in the
linear regime reproduces well the amplification of the seed
laser beam before the plasma wave breaks. In agreement with
the theory [17], the saturation amplitude of the seed beam
increases as the plasma density increases. This originates from
the increase of the plasma wavebreaking amplitude with the
plasma density (ae,max = ne/2nc). This excellent agreement
between theoretical analysis and numerical simulations vali-
dates the PIC code OCEAN.

B. Noise level evaluation

Here we analyze the influence of the numerical noise on
the Raman scattering process. For this purpose, we look at
the reflectivity on the left boundary of the numerical box,
which corresponds to the ratio between the electromagnetic
energy flux leaving the plasma over the energy flux of the
pump laser entering it. The dependence of reflectivity on the
number of macroparticles per cell is illustrated in Fig. 5, where
the fluxes have been averaged over the pump optical period.
All cases display a peak in the reflectivity for early times.
It originates from the reflection of the pump laser beam on
the plasma edge compression produced as the pump laser
steep front enters the plasma. A modulation of the reflectivity
on the plasma period (τp,e = 36.321/ω0) corresponds to the
backward Raman scattering.

Let us now focus our attention on the 1D geometry results.
Increasing the number of macroparticles per cell from 10 to
500 reduces, for time shorter than 400ω−1

0 , the reflectivity
by a factor 10. This enables the reflectivity to reach values
close to the one computed from the Fresnel theory r =
( 1−n

1+n
)2, with n ≈ √

1 − ne/nc the plasma refractive index (for
ne/nc = 0.03, r = 7 × 10−5). Over this time interval, a small
part of the pump laser field is then reflected from the plasma
gradient. An increase in the reflectivity for longer time results
from the stimulated Raman scattering of the pump beam from
the spontaneous plasma wave fluctuations. This increase is
time delayed as the number of macroparticles per cell is
increased from 500 to 1000. It is due to the numerical noise
reduction as the number of macroparticles per cell increases.
The convergence is reached for 1000 macroparticles per cell.
The reflectivity is saturating around a value equal to 0.1. As
explained previously, this saturation comes from the plasma
wavebreaking. These 1D results clearly show that the number
of macroparticles per cell has to be sufficiently high in order
that the numerical noise does not enhance the pump reflection
on the plasma-vacuum interface and the backward Raman
scattering.

Now let us look at the 2D results displayed in Fig. 5 by
black curves. The level of noise and the reflectivity are lower
than those computed in a one-dimensional geometry. This
originates from the spatial distribution of the pump laser beam,
which is not a plane wave (as it is for 1D simulation) but a
cos2 distribution.

It is important to evaluate the impact of the steepness of
the pump laser front on the Raman scattering. The excitation
of the Raman instabilities has to be held on a low level before
the seed pulse interacts with the pump laser beam. The pump
pulse with a ramp time τ is modeled with

ap(t) = ap,0
t

τ
eiω0t for 0 � t � τ , (12)

ap(t) = ap,0 eiω0t for t � τ . (13)
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FIG. 4. Temporal evolution of the seed laser amplitude at the position x = 314.16c/ω0. Numerical results (solid curves) are compared with
the analytical formula (dashed curves) from the linear regime for ne/nc = 0.001 (a), 0.01 (b), 0.02 (c), and 0.03 (d).

Its spectrum, computed from the Fourier transform of Eq. (12),
is written as

|ãp(ω)| = ap,0τ√
2π

√
2 + θ2 − 2 cos(θ ) − 2θ sin(θ )

θ2
, (14)

with θ = (ω0 − ω)τ . In its drawing in Fig. 6, we observe that
the full frequency bandwidth at half maximum is equal to
10/τ . The steeper the pump laser front, the larger the frequency
bandwidth of excited waves. The Stokes wave is then notably
excited if the Raman frequency ωs belongs to the interval [ω0 −
5/τ,ω0]. This leads to the following condition of suppression
of the forward Raman scattering: τ/Topt > 0.8/

√
ne/nc, with

Topt the pump field optical period. By evaluating the wave-
number spectrum, which behaves as Eq. (14), we conclude
that only the forward Raman instability is excited by the pump
laser front.

Figure 7 displays the reflectivities obtained with several
pump ramp times. Choosing a ramp higher than 5Topt enables
the reflectivity decrease for the plasma densities higher than
1% of the critical density. This result agrees with the condition
τ/Topt � 0.8/

√
ne/nc. The decrease of excitation of Raman

instabilities with the ramp time increase is confirmed by the
bottom panel of Fig. 7, displaying the spectral dependence

of the electrostatic fields. Both forward (|kp,e| = 0.177 ω0/c)
and backward (|kp,e| = 1.793 ω0/c) Raman instabilities are
attenuated as the ramp time increases from 0.5Topt to 10Topt.

Once the numerical parameters have been set, we look at
the possibility of controlling the seed laser amplification by
chirping the pump laser field.

IV. CHIRPING THE PUMP LASER FIELD

The backward Raman amplification process results in the
energy transfer from the pump beam to the counterpropagating
seed pulse through the resonant three-wave coupling with the
Langmuir plasma wave. It is then essential that the pump laser
beam is not depleted during its propagation along the plasma
before reaching the seed pulse and the plasma is not heated
too much to optimize the amplification process. Moreover, it
is also important to limit the spontaneous Raman scattering
that may generate a pedestal pulse preceding the amplified
seed beam. Adding a chirp to the pump laser beam appears
to be an excellent tool to complete these requirements. It
is more simple in practice than producing a plasma density
gradient and enables the reduction of the spontaneous Raman
growth rate such that �C = �2

0/
√

�2
0 + (�ωp)2, where �ω is
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FIG. 5. (Color online) Reflectivity of the pump wave computed
in 1D and 2D simulations for different numbers of particles per cell.
Here ppm denotes particles per mesh cell.

the pump bandwidth and �0 is the Raman amplification rate
for an unchirped pump laser beam [17,18].

The chirp parameter α is defined as

α = 1

ω2
0

∂ω(t)

∂t
, (15)

with ω(t) the pump instantaneous frequency. The frequency
bandwidth of the pump laser beam is then �ωp ≈ αω2

0Tp,
where Tp is the pump pulse duration. The chirp value has to
be carefully chosen to optimize the Raman amplification. The
phase mismatch between the three waves has to be maintained
over the seed pulse propagation. This leads to the condition
�ωp � �ωs , where �ωs is the seed frequency bandwidth. The
seed temporal pulse in our simulation is chosen to be close to
a gate function with a Ts width so that its spectral bandwidth is
approximated by �ωs ∼ 8/Ts and the maximum chirp value is
thus limited by |α| < 8

(ω0Ts )(ω0Tp) . Moreover, the amplification

FIG. 6. Spectrum of the linear ramp of the pump laser field
[Eq. (12)] with θ = (ω0 − ω)τ .

FIG. 7. (Color online) Dependence of the reflectivity on the pump
raising time (top) and spatial Fourier spectra of the electrostatic fields
(bottom). Here FFT(Ex) denotes the Fourier transform of Ex.

of spontaneous Raman scattering has to be suppressed so that
we need �ωp > �0. This results in the minimum chirp value
|α| > �0

ω2
0Tp

.

To study the effect of a chirped pump laser beam on the
Raman amplification, we have performed 1D and 2D PIC
simulations with a numerical box set to 2000 × 800 cells
(80 × 32 μm2). The mesh size is equal to �x = �y = λp/20
(40 nm). The plasma is composed of protons and electrons
with an initial zero temperature, occupying the whole box.
Its density is equal to n0/nc = 0.03. The pump and seed
laser beams both have amplitudes equal to 0.1. The pump
laser beam is characterized by a front rise time over five
optical periods followed by a constant amplitude. Its duration
is equal to 637 fs. The seed laser pulse amplitude has a
cos2 temporal profile with a width equal to 50 fs. Both laser
beams have a cos2 spatial profile of the amplitude with a
width equal to 15.28 μm and centered in 15.3 μm. The
seed laser beam is temporally delayed 300 fs. The boundary
conditions are absorbing along the longitudinal axis and
periodic along the transverse one for both fields and particles.
These physical parameters correspond to the optimum chirp
values 1.3 × 10−5 � |α| � 4.5 × 10−5.

We focus our attention on 1D numerical results; here 2000
macroparticles per cell have been set. Figure 8(a) displays the
reflectivity computed for different values of the pump laser
chirp. Note that we have chosen to display results obtained
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FIG. 8. (Color online) Temporal evolution of (a) the reflectivity,
(b) the seed pulse amplitude, and (c) the seed pulse duration for
unchirped and chirped pump laser beams. The duration and the energy
of the seed laser beam have been set equal to zero for time earlier
than ω0t = 711 (time at which the seed beam enters the plasma).

with negative chirp values, but identical observation has been
made with positive chirp values. The Raman reflectivity is
effectively reduced and decreases as the chirp absolute value
increases. The reflectivity reduction is optimal for |α| > 10−4,
which is higher than the theoretical chirp limit ensuring the
phase mismatch between the three waves. In fact, this last value
has to be increased to 2.6×10−4 because we clearly observe in
Fig. 8(c) that the seed pulse duration is shortened to 9 fs as it
propagates in the plasma. Now considering the amplitude and
pulse duration of the seed beam in Figs. 8(b) and 8(c), we note
that choosing |α| = 5 × 10−4 makes the amplification less effi-
cient, which is in agreement with a three-wave coupling factor
lowering resulting from a phase mismatch. For this configura-
tion, the optimal chirp parameter is then equal to |α| = 10−4.
It indeed cancels the seed pulse amplitude saturation observed
for ω0t > 1300 in Fig. 8(b) when the pump laser beam is
unchirped. This is in agreement with the theoretical estimates.

These results are confirmed in the two-dimensional sim-
ulations in Fig. 9, with 100 macroparticles per mesh. As
shown in Fig. 5, the reflectivity computed for unchirped laser
beam is reduced in a 2D geometry. We retrieve the previous
results, which means a complete suppression of the reflectivity
due to the spontaneous Raman scattering and the absence
of the saturation in the seed laser beam amplification. The

FIG. 9. (Color online) Temporal evolution of (a) the reflectivity,
(b) the seed amplitude, and (c) the seed duration for unchirped and
chirped pump laser beams in 1D and 2D geometries. The duration
and the energy of the seed laser beam have been set equal to zero
for time earlier than ω0t = 711 (time at which the seed beam enters
the plasma). For the 2D geometry, the diagnostics were computed on
axis.

amplification rate is estimated to be 3.5 × 10−4, which is
close to the theoretical estimate Ip/τs = 5.5× 10−4. However,
as one can see in Fig. 9(b), before the wavebreaking-induced
saturation, the seed laser amplification is less efficient when
the pump laser beam is chirped. This is a direct consequence of
the spontaneous Raman scattering suppression, which results
in a lower plasma wave excitation and thus in a lower pump to
seed energy transfer. Figure 9(c) shows the temporal evolution
of the seed pulse duration computed on the axis where the
pump laser beam is maximal. As observed in 1D simulations,
we note a decrease of the pulse duration close to one optical
period.

Figure 10 displays the spatial distribution of the seed laser
beam amplitude as it enters and leaves the plasma. Along its
propagation in the plasma, the seed laser beam undergoes a
spatial compression and a temporal shortening resulting from
the nonlinear backward Raman amplification. As it reaches the
plasma ending, its pulse duration and spatial width are 5 and 2
times lower than the initial values, respectively. We also note
an increase of the intensity by a factor 20. The energy transfer
rate from the pump beam to the seed laser beam is equal to 2%.
Moreover, we note in Fig. 10 that the prepulse is suppressed
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FIG. 10. (Color online) Spatial distribution of the seed laser pulse
for two different times as it enters and leaves the plasma. The pump
laser beam is chirped (α = −1 × 10−4).

by the chirp and the seed spatial profile is kept smooth and
does not undergo any modulational instability.

In weakly collisional plasma, the filamentation instabilities
such as the ponderomotive [19] and the relativistic [20] ones
can lead the pump laser field to an unstable regime where it
undergoes a self-focusing effect and filamentation [18]. It is
essential to choose the laser and plasma parameters such that
those instabilities could not develop in order to preserve the
pump laser spatial distribution and keep the backward Raman
amplification efficient. The critical power over which the laser
pulse undergoes self-focusing is (in units of MW) Pcr = 34 ×
Te

√
1 − ne/nc/(ne/nc), (with Te the electron temperature

expressed in keV) for the ponderomotive instability and (in
units of GW) Pcr > 16.2/(ne/nc) for the relativistic one. The

associated focal length is Lfoc = zR/
√

P/Pcr − 1, with zR the
laser Rayleigh length.

In our simulations, the pump laser input power is close to
45 GW, much lower than the critical power for relativistic
self-focusing (Pcr = 540 GW), so that no self-focusing is
observed; the electron temperature is initially set to zero. These
parameters lead to excellent agreement between numerical
results obtained in a 1D geometry and those from two-
dimensional simulations. When the plasma density and/or
the pump laser power increase, particular attention should be
devoted to this instability, which could lead to a deterioration
of the backward Raman amplification.

V. CONCLUSION

The backward Raman amplification in linear and nonlinear
regimes was studied with a PIC code OCEAN. The numerical
simulations performed in a 1D geometry have shown excellent
agreement with analytical formulas, thus validating this code.
By focusing our attention on the number of particles per cell,
we have shown that numerical noise has an important impact
on the spontaneous Raman scattering and the backward Raman
amplification studies need PIC simulations with a lowered and
controlled numerical noise. The PIC simulations performed in
1D and 2D geometries have shown that spontaneous Raman
signal can be reduced, and even canceled, by properly chirping
the pump laser beam. This makes pump laser chirping a
convenient tool to control the prepulse and the pulse shape
of the amplified seed laser.
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