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We present a theory for the dynamical ion structure factor (DISF) and ion stopping power in an unmagnetized
collisional quantum plasma with degenerate electron fluids and nondegenerate strongly correlated ion fluids. Our
theory is based on the fluctuation dissipation theorem and the quantum plasma dielectric constant that is deduced
from a linearized viscoelastic quantum hydrodynamical (LVQHD) model. The latter incorporates the essential
physics of quantum forces, which are associated with the quantum statistical pressure, electron-exchange, and
electron-correlation effects, the quantum electron recoil effect caused by the dispersion of overlapping electron
wave functions that control the dynamics of degenerate electron fluids, and the viscoelastic properties of strongly
correlated ion fluids. Both degenerate electrons and nondegenerate strongly correlated ions are coupled with each
other via the space charge electric force. Thus, our LVQHD theory is valid for a collisional quantum plasma
at atomic scales with a wide range of the ion coupling parameter, the plasma composition, and plasma number
densities that are relevant for compressed plasmas in laboratories (inertial confinement fusion schemes) and in
astrophysical environments (e.g., warm dense matter and the cores of white dwarf stars). It is found that quantum
electron effects and viscoelastic properties of strongly correlated ions significantly affect the features of the DISF
and the ion stopping power (ISP). Unlike previous theories, which have studied ion correlations in terms of the
ion coupling parameter, by neglecting the essential physics of collective effects that are competing among each
other, we have here developed a method to evaluate the dependence of the plasma static and dynamical features
in terms of individual parameters, like the Wigner-Seitz radius, the ion atomic number, and the ion temperature.
It is found that due to the complex nature of charge screening in quantum plasmas, the ion coupling parameter
alone cannot be a good measure for determining ion correlation effects in a collisional quantum plasma, and such
a characteristic of a dense quantum plasma should be evaluated against each of the plasma parameters involved.
The present investigation thus provides testable predictions for the DISF and ISP and is henceforth applicable to
a wide range of compressed plasma categories ranging from laboratory to astrophysical warm dense matter.
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I. INTRODUCTION

Study of collective effects in strongly coupled nonideal
plasmas [1–6] is of great importance in almost all branches of
plasma physics research, ranging from the plasma diagnostics
by lasers and intense laser-matter interactions [7], dusty
plasmas with strongly correlated highly charged dust grains
[8], as well as laboratory and astrophysical warm dense matter
(WDM) [9]. A fundamental issue of the plasma diagnostics
in high-energy-density plasma physics research is an accurate
determination of the plasma parameters, such as the electron
number density and the ambient plasma temperature. Many
important properties of dense plasmas are the electrical and
thermal conductivities, optical properties, ionization, dielectric
polarization, electronic density correlation, and fusion cross
section. Those properties are strongly affected by the ion
and electron coupling parameters, which are denoted by
�i = Z2

i e
2/r0kBTi and �e = e2/r0kBTe, respectively, where

*Deceased.

Zi is the ion charge state, e the magnitude of the electron
charge, r0 = (3/4πni,e)1/3 the average interelectron spacing
or the Wigner-Seitz (WS) radius, kB the Boltzmann constant,
and Ti (Te) the ion (electron) temperature. Strong ion couplings
in a dense plasma can coexist with quantum mechanical effects
associated with electron degeneracy [10–12]. The latter comes
into the picture [13] when the electron thermal de Broglie
wavelength, �D = h̄/meVT , is comparable with r0, where h̄

is Planck’s constant divided by 2π , me the electron rest mass,
VT = √

kBTp/me the thermal speed of electrons due to their
random motion, and Tp the plasma temperature. Also, in a
dense quantum plasma, λD is much smaller than the Landau
length λL = e2/kBTp. Furthermore, in characterizing a dense
quantum plasma the degeneracy parameter �d = TFe/Tp,
where TFe is the electron Fermi temperature, also plays an
important role in determining the strength of the quantum
electron interactions.

In a quantum plasma with �d < 1 degenerate electrons
form quantum electron fluids, while nondegenerate ions
behave like viscoelsatic charged fluids due to their much
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smaller kinetic energy in comparison with that of the electrons.
On the other hand, in dense plasmas with �i > 1 the ions are
strongly correlated due to their lower thermal kinetic energy,
while degenerate electrons are mildly correlated because they
have relatively higher kinetic energy. However, ion degeneracy
and electron couplings could become important in extremely
cold dense matter, such as neutron stars [14], where the
electron number density typically exceeds 1035 cm−3 and
the plasma particle temperature is below 104 K. The plasma
regime with �d � �i � 1 is usually referred to as WDM.
Simulations have revealed that for a wide range of the plasma
number densities beyond solid density and the ion temperature
regimes with 1 < �i < 176, the plasma state is in liquid phase
with strongly correlated ions [15].

It is well known that the study of the structural properties
of alkali and alkaline earth plasmas, such as lithium and
beryllium, is of fundamental importance in high-energy-
density technologies. The ionic structure factor is a funda-
mental property of the plasma x-ray scattering cross sec-
tion. Pulsed-power-driven high-energy-density (PPD-HED),
Z-pinches, and inertial confinement fusion (ICF) techniques,
therefore, strongly rely on the basic knowledge of the ion
structure factor of matter in extreme conditions, such as high
temperature and densities. The static and dynamic structure
factor for high-temperature alkali and alkaline earth plasma has
been extensively studied in Ref. [16], using direct numerical
simulation methods based on the moment approach. On the
other hand, the study of the plasma state via the dynamical
ion structure factor (DISF) is also of fundamental importance
in compact astrophysical environments [17–19] and in WDM
[20,21]. For instance, information on structures of the cores of
giant planets like Jupiter [22–25] and compact stars like white
dwarfs may provide answers to a long sought question on the
evolution of stellar chains and phase transitions in extremely
dense hot matter [26]. It is also instructive to investigate the
effect of relativistic electron degeneracy, originally established
by Hoyle and Fowler [11], on strong couplings and ion
structures in dense quantum plasmas. The relativistic electron
degeneracy can lead to a distinct equation of state of matter
and the well-known Chandrasekhar mass limit [10]. It has also
been shown that the important interacting potentials, such as
the Coulomb and electron-exchange interactions, can lead to
significant corrections to the Chandrasekhar mass limit [27]
for white dwarf stars. In the past, based on the spectral analysis
of lithium, beryllium and graphite, Priftis et al. [28] reported
the first evidence for the plasmon scattering besides the usual
Compton and Rayleigh scattering. Recently, the importance
of quantum effects has been demonstrated by scattering of
light off electron plasma oscillations in WDM [29] created
by compressing plasma to near solid density by intense laser
beams [30]. This may be an indication of strong coupling ef-
fects in WDM and in strongly coupled quantum plasmas [31].

On the other hand, high-energy x-ray light sources or laser
pulsed power technologies have opened new windows for
investigating many collective processes [32–44], including ion
structure factors (ISFs) in strongly coupled plasma systems
[45–48]. The pair correlations in a metallic density regime
for a quantum electron fluid has been previously investigated
using the random phase approximation (RPA), including the
Coulomb and electron exchange effects. It has been remarked

that the RPA method provides good description of the plasmon
excitation mode only for the long-wavelength screening
phenomena, with its validity being limited to high electron
densities. The ineffectiveness of the RPA method becomes
evident from the fact that the pair-distribution function for
small separation between particles (higher electron densities)
becomes negative over the entire range of metallic densities
[49]. More recently, Shukla and Eliasson [43,50] have shown
that in quantum plasmas there appears to be a short-range
attractive force between ions due to local electron condensation
arising from the constructive interference of electron wave
functions on account of the quantum electron recoil effect
[38,39]. The short-range Shukla-Eliasson attractive force
[43,50], which is associated with a negative electric potential
distribution in the electron density regime surpassing solid
density and extending up to 1026 cm−3 [43,50], is capable
of bringing ions closer and responsible for the formation of
ion clusters. Such an effect, which is found to be present
for plasmas with densities even few times below that of
solid density, may provide a new ignition criteria for the
fast ignition scheme in future inertial confinement fusion
devices. Initial molecular dynamics (MD) simulations have
revealed ion clustering under such interactions [51]. The
ionic structure of one-component plasma (OCP) and Yukawa
systems have been extensively studied using computational
techniques based on classical Monte Carlo (MC), MD, and
density functional theory (DFT). However, the study of
quantum plasmas with strong ion couplings requires a detailed
theoretical analysis, since the standard investigations usually
do not account for important collective interactions. Such
interaction may occur between an ensemble of degenerate
electrons, strong correlations between nondegenerate ions, and
Coulomb collisions among electrons and ions. The best way to
make progress is to use the quantum hydrodynamical model
for degenerate electrons and a viscoelastic fluid model for
strongly correlated ions in a strongly coupled viscous quantum
plasma [52]. Recently Mithen et al. [53] have investigated the
extent of validity of the hydrodynamic description for ISFs
in a dense plasma and have concluded that such an approach
can be used to effectively model the ion dynamics in a dense
plasmas over a wide range of the plasma number densities that
can be experimentally probed.

In this paper we present a linear theory for DISF and
ISP in a collisional quantum plasma by using the dielectric
constant, which is deduced from a set of hydrodynamic
equations composed of the continuity, momentum, and Poisson
equations. In our model nonrelativistic electron momentum
transfer equation includes the electron inertial force and
the electric and quantum forces, as well as electron-ion
momentum transfer due to collisions, while the ion momentum
transfer equation captures the essential physics of the ion
correlation decay rate, the ion-electron momentum transfer
due to collisions, the shear and bulk ion fluid viscosities,
the electrostatic force, and the ion pressure gradient. The
fluctuation dissipation theorem in association with the present
dielectric constant for a dissipative quantum plasma provides
a complete understanding of spectral features of ion plasma
oscillations via the DISF and ISP in compressed plasmas
that are relevant for inertial confinement fusion (ICF) and
astrophysical environments.
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The manuscript is organized in the following fashion. In
Sec. II we present the governing viscoelastic quantum hydro-
dynamic (VQHD) equations for our unmagnetized quantum
plasma and derive the dielectric constant for electrostatic per-
turbations. Here we also numerically investigate the properties
of the real and imaginary parts of the dielectric constant
and highlight the role of the quantum forces (especially the
quantum recoil effect) and dissipative forces (viz., electron-ion
collisions) that are essential for depicting the new spectral fea-
tures of the ion plasma oscillations. The latter are responsible
for bringing new aspects of the DISF and ISP in a dense
quantum plasma. Section III contains a detailed investigation
of the dynamic and static ion structure factors. Analytical and
numerical results for the ISP are presented in Sec. IV. A brief
summary and conclusions are given in Sec. V.

II. THE GOVERNING EQUATIONS
AND THE DIELECTRIC CONSTANT

In this section we present our VQHD equations and use
them to obtain the dielectric constant of an unmagnetized
quantum plasma. The properties of the dielectric constant are
analyzed numerically.

A. The governing VQHD equations

We consider a collisional quantum plasma composed of
degenerate electron fluids and strongly correlated nondegen-
erate ion fluids. The strength of the ion coupling parameter
is defined by �i = 〈Upot〉/〈Ukin〉, where 〈Upot〉 and 〈Ukin〉 are
the average potential and kinetic energies of the ions that are
shielded by degenerate electrons, respectively. It should be
noted that for a quantum plasma to be in a condensed matter
state the ion coupling parameter can be as high as 170 [15].
The governing VQHD equations, including all significant
plasma interaction energies, such as the Coulomb, the quantum
electron pressure degeneracy, the quantum electron recoil,
electron-exchange, and electron correlations, is composed of
the continuity, momentum, and Poisson equations [41]:

dni,e

dt
+ ni,e∇ · ui,e = 0,

d

dt
= ∂

∂t
+ u · ∇,(

1 + τi

d

dt

)[
mini

dui

dt
+ Zieni∇φ − ∇Pi

+Zinimiνie(ui − ue)

]
= ηi[∇2ui + (ξi + ηi/3)∇(∇ · ui)],

me

(
d

dt
+ νei

)
ue − meνeiui

= e∇φ − 1

ne

∇PG + h̄2∇
2me

(



√
ne√

ne

)
,

∇2φ = 4πe(ne − Zini), (1)

where nj and uj are the number density and the fluid velocity of
the particle species j , respectively (j equals e for degenerate
electrons and i for nondegenerate ions), φ the electrostatic

potential, Pi = μinikBTi the ion pressure, μi the ion fluid
compressibility that depends on �i , and mi , τi , νei(νie), and
ηi(ξi) are the ion mass, viscoelastic relaxation time for the
ion fluid, electron-ion (ion-electron) collision frequency, and
ion shear (bulk) viscosity, respectively. We have neglected the
electron correlation decay rate and the electron fluid viscosities
because degenerate electrons are in a mildly coupled state. We
note that the electron fluid viscosity may be significant only
at much larger densities relevant to neutron-star crusts [54],
which we will ignore in the present analysis. Here we focus
on compressed plasmas with densities surpassing solid density
and below the core densities of white dwarf stars, which are
several orders of magnitude lower than that in neutron star
crusts. On the other hand, in our quantum plasma we have
Zinimiνie � nemeνei . Furthermore, under the assumptions
ω/ωpe,pi � ωpe,pi/νei,ie, where ωpe,pi = √

4πe2ne/me,i is
the plasma frequency of the species j = e,i, the electron
and ion fluids become collisionally decoupled. The parameter
PG = Pdeg + PC + Pxc includes all the dominant electron
interaction pressures, a detailed description of which follows.

The generalized quantum electron degeneracy pressure,
which incorporates the relativistic electron dynamics and is
valid for a much wider range of the electron number density,
is given by Chandrasekhar [12]:

Pdeg = πm4
ec

5

3h3
[R(2R2 − 3)

√
1 + R2 + 3sinh−1R] (2)

in which R = PFe/mec is the normalized relativistic Fermi
momentum used as a measure for the degree of plasma
degeneracy and is related to the plasma number density as R =
(ρ/ρc)1/3 with ρc � 2 × 106 g/cm3 is the normalizing plasma
mass density, and other quantities have their usual meanings.
It is observed that R = {0,∞} limits of the Chandrasekhar’s
generalized pressure correspond to non- and ultrarelativistic
degeneracy pressure cases with polytropic indices of �i =
{5/3,4/3}, respectively [10]. It has been shown that the plasma
dynamics may be significantly altered due to a change in
the equation of state [55] of matter by going from non- to
ultrarelativistic electron degeneracy regime.

The Salpeter’s Coulomb interaction among ions and elec-
trons [27] introduces another important correction to quantum
pressure, which is a negative contribution and has been shown
to slightly alter the Chandrasekhar’s mass-radius relation.
The mechanism of such a negative pressure is similar to
the cohesive binding present in most ionic lattice. Hence, a
quantum electron-ion plasma can act like ionic crystal giving
rise to ionic dielectric response, as will be apparent later. This
is different from the ordinary electronic (atomic) polarization
caused by asymmetric electron distribution around ions. In the
spherical and noninteracting Wigner-Seitz approximation, the
Coulomb negative pressure can be written as [27]

PC = −8π3m4
ec

5

h3

[
αZ

2/3
i

10π2

(
4

9π

)1/3]
R4, (3)

where α = e2/h̄c � 1/137 is the fine structure constant.
The electron-exchange pressure as a function of the
Chandrasekhar’s relativity parameter, R, is given by Salpeter
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and Zapolsky [27] as

Pxc = −2αm4
ec

5

h3

{
1

32
(β4 + β−4) + 1

4
(β2 + β−2)

− 3

4
(β2 − β−2) ln β − 9

16
+ 3

2
(ln β)2

− R

3

(
1 + R√

1 + R2

)[
1

8
(β3 − β−5) − 1

4
(β − β−3)

− 3

2
(β + β−3) ln β + 3 ln β

β

]}
, (4)

where β = R + √
1 + R2. It has been shown that the electron

exchange energy can play a dominant role in the electron
potential screening in quantum plasmas and together with
the quantum recoil effect caused by the Bohm force, FB =
−(h̄2∇/2me)(


√
ne/

√
ne), can lead to the Lennard-Jones-like

attractive force between ions of similar charge [41]. The
Shukla-Eliasson (SE) attraction is attributed to the electron
diffraction effect and the spacial localization of electron
density between ions of the same charge, which gives rise to a
similar effect as the Coulomb interaction pressure, mentioned
earlier, and the corresponding ion dielectric response in
quantum plasmas.

We now present the ion viscosity parameters of a quan-
tum plasma. Nandkumar and Pethick [56] have calculated
electrical conductivity, σ = nee

2/νeim
∗
e (based on a simple

Drude model), and the ion shear viscosity, ηi = neP
2
Feτi/5m∗

e

(m∗
e = me

√
1 + R2 being the relativistic electron mass), of

a quantum plasma, using the relativistic electron momentum
consideration in terms of Chandrasekhar’s well-known rela-
tivity parameter. This allows one to study the VQHD theory
in a wide range of the plasma number density, excluding the
effect of insignificant ξi in our quantum plasma. The important
parameters for the present analysis, namely, the electron-ion
collision frequency νei , the ion fluid viscosity ηi , and the
corresponding viscoelastic ion relaxation time τi , have been
estimated by Nandkumar and Pethick [56], based on the Monte
Carlo (MC) simulations and analytically expressed in terms of
the fitting formulas, given by

ηi � ρcR
5
0

ZiI2(1 + R2
0)

, νei =
4Zie

4meI1

√
1 + R2

0

3πh̄3 ,

I1 =
√

π

3
ln Z

1/3
i + 2

3
ln

(
1.3 + 2.3√

�i

)
− R2

0

2 + 2R2
0

,

I2 =
√

π

3
ln Z

1/3
i + 2

3
ln

(
1.3 + 2.3√

�i

)
− 1 + 2R2

0

2 + 2R2
0

+ 0.27R2
0

1 + R2
0

, (5)

where R0 = (ρ0/ρc)1/3 is the relativistic degeneracy parameter
with ρ0 = min0 being the average plasma mass density, and
R = R0(ρ/ρ0)1/3 is the plasma relativity parameter. The
ion coupling parameter can also be written in terms of
the relativity parameter as �i = 22.75 × 106Z

5/3
i R0/Ti .

The value of the ion coupling parameter below �i = 178
corresponds to the liquid state [15]. Therefore, a hydrogen
white dwarf star with the overall density ρ = 106 g/cm3 and

the ion temperature Ti = 106 K, despite the extreme mass
density, would be in a liquid state. At this stage, we introduce
an effective potential based on the generalized pressure,
which makes the calculations much easier. The corresponding
effective potential can be calculated as

�G = 1

c2

∫
dRPG(R)

n
dR

=
√

1 + R2 − ζR + α

2π

(
R − 3sinh−1R√

1 + R2

)
, (6)

where ζ = 31/3(2α/5)(2Zi/π )2/3.

B. The plasma dielectric constant

In this section we obtain the dielectric constant for our quan-
tum plasma by linearizing the VQHD equations. Accordingly,
we let nj = n0 + nj1, where nj1 � n0, and suppose that nj1

and φ are proportional to exp[−i(ωt − k · r)], where ω and k
are the angular frequency and the wave vector of the electro-
static disturbances. Thus, letting ∂/∂t = −iω and ∇ = ik in
Eqs. (1)–(4) and manipulating the resultant equations, we ob-
tain the dielectric constant ε(ω,k) = 1 + χe(ω,k) + χi(ω,k),
where χe(ω,k) and χi(ω,k) are the dielectric susceptibility of
the electron and ion fluids, respectively. The dimensionless
susceptibilities for the electron and ion fluids are, respectively,

χe(ω,k) ≈ [u4
Bk4 + u2

Qk2 − ω2 − iνω]−1,

χi(ω,k) ≈
{

2iηk2

3(1 − iτω)R3
0

− μω2

}−1

, (7)

where the angular frequency ω and the wave vector k are in
units of the ion plasma frequency ωpi = (4πZ2

i n0e
2/mi)1/2

and 2π/rB , respectively. Here rB = h̄2/mee
2 is the Bohr

radius of an hydrogen atom and μ = mi/me. In deducing
Eq. (7) we have assumed that the phase velocity of the
electrostatic oscillations is much larger than the ion thermal
speed (μikBTi/mi)1/2, and the wave frequencies are much
smaller that ω2

pe/νei and ω2
pi/νie. Other parameters are denoted

as

u2
Q = γ 2

{
R2

0

3
√

1 + R2
0

− ζR0

3

+ α

2π

[
R0

3
− R0

1 + R2
0

+ R2
0sinh−1R0(
1 + R2

0

)3/2

]}
,

u4
B = γ 4H 2, (8)

where γ = c/(rBωpe) and H = h̄ωpe/(2mec
2) is the

dimensionless quantum diffraction parameter. We note that
in the above definitions we have used the scaled ion fluid
viscosity, as well as the corresponding ion relaxation time and
the electron-ion collision parameter is

ν = νei

ωpe

= 1.75 × 1016

ωpe

ZiI1

√
1 + R2

0,

(9)

τ = τiωpe = 2 × 10−17ωpe

ZiI2

√
1 + R2

0

, η = γ ηi

ρc

= γR3
0

ZiI2
(
1 + R2

0

) .
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FIG. 1. (Color online) Variation of viscosity, η and electron-ion collision parameters, ν with respect to the relativistic degeneracy parameter,
R0, for different plasma composition, i.e., for (a) Zi = 1,6,12,26 and (b) Zi = 3,4,5,6 and Ti = 104 K for both plots. The thickness of curves
is used as a criterion for an increase in the varied parameter.

In Fig. 1 we display the variations of the normalized
electron-ion collision frequency, ν, and normalized viscosity
parameter, η, in terms of the relativistic degeneracy parameter,
R0, for different plasma compositions. It is noted that with
increase in the relativistic degeneracy parameter, R0 (or the
plasma number density), the electron-ion collision frequency
decreases sharply, while the ion fluid viscosity increases, first
giving rise to a maximum value in extreme nonrelativistic
degenerate density regime, R0 < 0.1, relevant for Jupiter-like
planet cores and a WDM scheme, and finally reaches its
lowest values for the relativistic density regime, R0 > 1,
corresponding to density of typical white dwarfs. On the other
hand, the increase in the ion atomic number values is found to
cause an increase in the electron-ion collision frequency, for a
given value of the relativistic degeneracy parameter value, R0,
but a sudden decrease in the ion fluid viscosity.

The dielectric constant is an important quantity, which can
be used to calculate the spectral features of the electron plasma
oscillations, ion structure factors, and ion stopping power in
plasmas. The real and imaginary parts of the dielectric constant
are correlated via the well-known Kramers-Kronig relations

Re[ε(k,ω)] = 1

π
P

∫ +∞

−∞

Im[ε(k,ω)]

ω′ − ω
dω′,

(10)

Im[ε(k,ω)] = − 1

π
P

∫ +∞

−∞

Re[ε(k,ω)]

ω′ − ω
dω′,

where Re and Im refer to the real and imaginary parts of the
dielectric constant, respectively, and P denotes the Cauchy
principal value. The plots in Figs. 2 and 3 display the correlated
real and imaginary parts of the dielectric constant for nonrel-
ativistic and relativistic degenerate plasma density regimes,
indicating a pronounced plasmon excitation resonance (PER),
for a given wave number. A comparison of Figs. 2 and 3
for the effect of plasma number density on PER frequency
[plots (a) and (b) in each figure] reveals that in both cases an
increase in the plasma number density leads to the sharpening
and intensifying of the PER peak and causing the shift of the

excitation frequency to lower values. However, such an effect
is more pronounced in the nonrelativistic degeneracy regime.
Concerning the effect of the ion atomic number, one observes
that an increase in the ion atomic number, in contrast to the case
of the plasma number density variations, leads to a spreading
and mitigation of the PER peaks, again shifting its frequency
to lower values [e.g., compare plots (c) and (d) in each
figure]. This feature is more distinguished in the nonrelativistic
degeneracy regime compared to that of the relativistic one.
Finally, from Figs. 2 (panels e and f) and 3 (panels e and f) we
observe that an increase in the plasma ion temperature leads to
a spread and lowering of PER peaks in both regimes, although
this is more pronounced in the nonrelativistic case as compared
to the relativistic case. It is thus generally concluded that
the plasma parameter variation affects the plasma dielectric
response more in the nonrelativistic degeneracy regime than
in the relativistic one. Much more physical information can
be deduced from the complex dielectric function such as
the frequency dependent conductivity and optical properties
of the plasma under investigation, for a wide range of
plasma density and composition. For instance, the plasma
dielectric function is related to the frequency dependent plasma
conductivity via ε(ω,k) = 1 + 4πiσ (ω,k)/ω with σ (ω) =
σ0/(1 − iωτ ), where σ0 = n0e

2τ/me and τ are the Drude
DC-conductivity and electron-ion collision time, respectively.
Also, the complex index of refraction is related to the dielectric
function by n(ω) = √

ε(ω). For normal-angle propagation the
optical reflectivity, r(ω), and absorption coefficient, a(ω), are
given as

r(ω) = [1 − Re
√

ε(ω)]
2 + Im

√
ε(ω)

[1 + Re
√

ε(ω)]
2 + Im

√
ε(ω)

,

a(ω) = 2ωIm
√

ε(ω)

c
. (11)

On the other hand, the absorption coefficient, a(ω), is
related to the skin depth δ(ω) = 2/a(ω) of the plasma. The
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FIG. 2. (Color online) Dielectric linear response (real and imaginary parts) in nonrelativistic degenerate density regime of a viscous
collisional quantum plasma for various plasma parameters. The corresponding data used for plots (a) and (b) are Zi = 2, n0 = (3.8,12.7,30.2) ×
1025 cm−3, k = 1, Ti = 104 K, for plots (c) and (d) are Zi = 1,2,3, n0 = 12.7 × 1025 cm−3, k = 1, Ti = 104 K, and for plots (e) and (f) are
Zi = 2, n0 = 12.7 × 1025 cm−3, k = 1, Ti = (103,104,105) K. The increase in thickness of curves in each plots indicates the increase in the
varied parameter.

frequency-dependent electromagnetic wave attenuation then
is given by the well-known relation I (ω) = I0 exp[−x/δ(ω)].
Comparing Figs. 2 and 3, it becomes evident that the plasma

absorption frequency band is much sharper for relativistic
degenerate regime compared to that of nonrelativistic one.
By close inspection of these figures it is revealed that the
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FIG. 3. (Color online) Dielectric linear response (real and imaginary parts) in relativistic degenerate density regime of a viscous collisional
quantum plasma for various plasma parameters. The corresponding data used for plots (a) and (b) are Zi = 2, n0 = (5.9,47.2,159.3) × 1029

cm−3, k = 1, Ti = 106 K, for plots (c) and (d) are Zi = 1,2,3, n0 = 47.2 × 1029 cm−3, k = 1, Ti = 106 K, and for plots (e) and (f) are Zi = 2,
n0 = 47.2 × 1029 cm−3, k = 1, Ti = (104,105,106) K. The increase in thickness of curves in each plot indicates the increase in the varied
parameter.

absorption-frequency width decreases by an increase in the
plasma number density, while it is broadened by increase
in either plasma ion atomic number or its temperature, in

both degeneracy regimes. It is worth noting that two distinct
frequency limits can be identified for a degenerate electron
fluid in the Drude nearly free-electron conductivity model. In
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the low-frequency limit, where ωτ � 1, the dielectric function
becomes completely imaginary. On the other hand, in the
high-frequency limit, ωτ � 1, one can define a plasma edge
corresponding to a critical high-frequency limit, (ωcr ), below
which the plasma exhibits a perfect reflectivity [r(ω) = 1,
when we set ε(ω) < 0 in Eq. (11)]. For ω > ωcr we have
ε(ω) > 0, which corresponds to the zero absorption, where
0 < r(ω) < 1. It is also noted that the plasma dispersion
relation is also obtained by setting; Re[ε(ω,k)] = 0. The
optical and conductivity plasma parameters are of vital
importance, particularly for astrophysical dense plasmas, the
detailed calculation of which is out of the scope of the current
investigation.

III. THE DYNAMIC AND STATIC
ION STRUCTURE FACTORS

Practical information on ion correlations and phase tran-
sitions in a dense quantum plasma can be deduced by using
our dielectric constant in a detailed calculation of the dynamic
ion structure factor (DISF). Figure 4 depicts the variation of
the DISF against changes in the plasma parameters. In the
present analysis and for small momentum transfer of photons
to degenerate electrons, the scattering wave number k is related
to the scattering angle θ via k = 2E0 sin θ/h̄c, where E0 is the
incident laser beam energy and c the speed of light in vacuum.
The DISF of a plasma with strongly correlated plasma particles
represents a description of how strongly correlated electrons
or ions scatter an incident electromagnetic radiation against
a well-defined frequency spectrum of a plasma system. It is
also the quantity describing the inelastic x-ray scattering cross
section from a dense plasma or from a simple liquid. The DISF
can be directly calculated by using the dielectric constant, via
the fluctuation-dissipation theorem, as

Sω(k)

S0
= k2nB(ω) Im

[
− 1

ε(ω,k)

]
,

nB(ω) = 1

1 − exp(−h̄ω/κTi)
. (12)

It is noted that the DISF, as given by Eq. (12), contains
all the information relevant to both degenerate electron fluids
and strongly correlated ion fluids via the dielectric con-
stant ε(ω,k). The DISF obeys the relation Sω(k)/S−ω(−k) =
exp(−h̄ω/κTi). The latter predicts an asymmetry in the ion
structure factor with respect to ω and k, which usually can be
observed in experiments. The asymmetry in the DISF is a com-
mon feature (reported by MD simulations) clearly observed in
Fig. 5 and due to the existence of inelastic (Compton) and
elastic (Rayleigh) scattering of light [21] off tightly or weakly
bound electrons, respectively, since the DISF is directly related
to spectrally resolved Thomson scattering light signal via
the cross-sectional relation, d2δ/d�dω = AδT Sω(k), where
δT � 0.665 × 10−24 cm2 is the usual Thomson cross section
and A is a normalizing constant. It is observed from Figs. 5(a)
and 5(b) that such an asymmetry is reduced by an increase in
the ion temperature. The variation of the asymmetric plasma
response in the x-ray regime with respect to the plasma
parameter change is shown in Figs. 5(c) and 5(d). It is found
that the variation of these parameters has only a slight effect

on the asymmetry of the quantum plasma response. However,
it is evident that an increase in both the plasma number density
and the ion atomic number leads to a significant change in the
plasma wave excitation resonance strength and sharpness. It is
worth comparing the resonance frequency of about ω � ±1 to
the one reported by Plagemann et al. [21] for the response of
WDM with the electron number density of order 1023 cm−3.

On the other hand, using the sum rule and integrating over
the full spectrum, it is possible to calculate the static ion-
structure factor (SISF) from the DISF. The result is

S(k)

S0k

=
∫ +∞

−∞
Sω(k)dω. (13)

The pair correlation function (PCF), g(r), which provides
information on density distribution in real space, is related
to SISF as

S(k) = 1 + n

∫
[g(r) − 1] exp(ik · r)dr. (14)

In a crude approximation for dilute plasmas, the ion PCF
is related to the interionic potential, φi(r) through g(r) �
exp[eφi(r)/κTi]. Hence, it is evident that the presence of well-
defined peaks in the SISF is an indication of strong correlations
among ions and their structural ordering in a quantum plasma.
Figure 6 exhibits the scattering profile for different plasma
fractional parameter variations. Comparing different plots in
Fig. 6, we find that ion correlations are strengthened by an
increase or decrease in the plasma number density or ion
atomic number (compare the left and right columns in this
figure). It is further observed from this figure that there is
a lower electron density value where ion agglomeration and
ion ordering starts to appear. For a plasma number density
lower than that of solid density (ne � 6 × 1020 cm−3) there
is no indication of ion correlations [e.g., see Fig. 6(b)], while
for (compressed beryllium) density of ne � 7.4 × 1025 cm−3

strong SISF peaks indicate a higher degree of long-range ion
correlations. Thus, there appears to be a rule in that an increase
of the plasma number density or ion atomic number might
lead to sharpening or weakening of the scattering intensity
pattern in the SISF of a collisional quantum plasma. This
clarifies an important fact that although the ion coupling
parameter is directly proportional to the ion atomic number, it
cannot be a good measure for ion correlations or liquid-solid
phase transitions due to the complex nature of the quantum
plasma charge screening that has been reported by Shukla and
Eliasson [43,50] and Akbari-Moghanjoughi [57].

Figure 7 reveals the fundamental effect of the quantum
electron wave function dispersion (viz. tunneling of electrons
through the Bohm potential), which leads to the Shukla-
Eliasson attractive potential between ions, on the SISF of a
quantum plasma. It is clearly confirmed that in the presence
of the quantum electron wave function dispersion effect fine
fringes appear in the structure of ions, which are indicative of
the fact that the quantum electron wave function interference
leads to stronger correlations among the plasma ions, a feature
which is absent in classical plasmas. Figure 6(d) clearly shows
that such a detailed correlation pattern starts at expected solid
density of ne � 1022 cm−3, where the quantum electron recoil
effect becomes dominant.
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FIG. 4. (Color online) Plots of the dynamic ion structure factor for collisional quantum plasma against different plasma parameters, while
one is varied and others kept fixed in each plots. The corresponding data for plots are (a) Zi = 2, n0 = (0.47,3.8,12.7) × 1025 cm−3, ω = 2,
Ti = 104 K, (b) Zi = 1,2,3, n0 = 3.8 × 1025 cm−3, ω = 2, Ti = 104 K, (c) Zi = 2, n0 = (0.47,3.8,12.7) × 1025 cm−3, k = 1, Ti = 104 K, and
(d) Zi = 1,2,3, n0 = 3.8 × 1025 cm−3, k = 1, Ti = 104 K. The increase in thickness of curves in each plots indicates the increase in the varied
parameter.

IV. THE ION STOPPING POWER

The problem of energy loss has the most prominent
application in ion-beam-induced inertial confinement fusion
(ICF) in dense solid targets. The current scheme for ICF
programs requires a detailed and accurate study of the energy-
loss process for a wider density and plasma composition,
which includes all the quantum interaction effects. Basic
treatment of the problem, in terms of the equilibrium polar-
ization or dielectric function, is based on the scattering rate,
Sr(k,ω) = (4πZie

2/k2)2(2π/h̄2)Sω(k). The energy-loss rate,
for energy and momentum transfers, h̄ω = E(p′) − E(p) and
h̄k = p′ − p, is then given as

dE

dt
=

∫
Sr(k,ω)

2πh̄
h̄ωd3p

=
(

Zie

π

)2 ∫
ωN (ω)

k2
Im

[ −1

ε(k,ω)

]
d3k. (15)

Note that range of the integral is over both negative (loss
processes) and positive (gain processes) frequencies. Use of
the properties of distribution function, N (−ω) + N (ω) = 1,
and the dielectric function, ε(k, − ω) = ε∗(k,ω), leads to
a simplified expression for the stopping power, Sp =
−dE/dl = −(1/Vp)dE/dt , where Vp is the projectile ion
speed.

Let us now present a brief study of the ion stopping power
(Sp = −dE/dl) and the effects of plasma parameters on the
energy loss of an ion projectile in the generalized collisional
quantum plasmas. The ion stopping power can provide useful
information on interactions between an ion beam and dense
quantum plasmas. The basic theory for the stopping power
has been developed by Fermi and Teller [58]. However, since
then, there has been an extensive amount of research and
development on the study of stopping power of a projectile
in dense degenerate plasmas [59–63]. In terms of equilibrium
dielectric function, the ion stopping power can be written
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FIG. 5. (Color online) Asymmetry in plasma frequency response due to a detailed balance effect in degenerate electron fluid. The dynamic
collective x-ray scattering in our viscous quantum plasma and its energy variations against different plasma parameters. The corresponding data
for plots are (a) Zi = 6, R0 = 0.02, Ti = 5 × 104 K, (b) Zi = 6, R0 = 0.02, and Ti = 20 × 104 K (c) Zi = 3, n0 = (2,3,4.3) × 1023 cm−3,
λ = 1 Å, Te = 10.3 eV, and (d) Zi = 1,2,3, n0 = 3 × 1023 cm−3, λ = 1 Å, Te = 10.3 eV. The increase in thickness of curves in each plots
indicates the increase in the varied parameter.

as [64]

Sp(vp,Zi,Zp,n)

S0p

= −Z2
p

v2
p

∫ ∞

0

dk

k

∫ kvp

0
Im[ε−1(ω,k)]ω dω,

(16)

where Zp is the projectile charge state and vp is the normalized
(by ωpe/kb, with kb = 2π/rB ) projectile speed. In quantum
plasmas, with free-electron fluid and static ions, the dynamic
dielectric function, ε(k,ω), in the random phase approximation
(RPA) has been calculated by Lindhard for arbitrary electron
degeneracy, which is expressed as

εRPA(k,ω) = 1 + 1

πz3kFe

[g(u + z) − g(u − z)],
(17)

g(x) =
∫ ∞

0

y dy

exp(βEFey2 − βμ) + 1
ln

(
x + y

x − y

)
,

where EFe, kFe, and μ are the Fermi energy, momentum, and
chemical potential, respectively, and β = 1/κTe, u = ω/kvFe,
and z = k/2kFe. The divergence of the Lindhard dielectric
function at z = 0 (k = 2kFe) for a zero-temperature Fermi

electron-gas model is known to lead the Freidel oscillation
[65], due to discontinuity of density of states (DOS) at the
Fermi surface. It is well known that the RPA approximation
does not provide sufficiently accurate results for coupled
plasmas with electron-ion and electron-electron interaction
effects [66]. It has been recently shown that [43,50] the electron
exchange-correlation effects in combination with the quantum
recoil phenomenon can lead to significant modification of
charge screening in quantum plasmaa and ion attractive
correlations via modification of the static dielectric function.
Singwi et al. [49,67,68] have extended the RPA dielectric
function to include also the electron correlation effects.
Another generalization [69] includes the effect of fluctuation
in order to remove the nonanaliticity of the Lindhard dielectric
function at k = 2kFe by taking into account the short-range
electron-impurity scattering effects. Our unique hydrodynamic
theory, based on fluctuation-dissipation approximation, be-
sides the electron exchange and correlation effects, takes into
account the important ionic Coulomb attractions, viscosity,
and electron-ion collision effects and extends the previous
investigation to relativistically degenerate density regimes
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FIG. 6. (Color online) Static ion structure factors (which are related to the beam scattering intensity) and the effect of different plasma
parameters on the ion correlation patterns, while only one plasma parameter is varied in each plot and others are fixed, Zi for the first
column and n0 for the second one. The position and sharpness of peaks in each plot is related to the inverse of quasi-lattice spacing and
strength of ion correlations, respectively. The corresponding data for plots are (a) Zi = 2, n0 = 5.9 × 1023 cm−3, Ti = 5 × 103 K, (b) Zi = 4,
n0 = 5.9 × 1020 cm−3, Ti = 104 K, (c) Zi = 6, n0 = 5.9 × 1023 cm−3, Ti = 5 × 103 K, (d) Zi = 4, n0 = 1.6 × 1022 cm−3, Ti = 104 K, (e)
Zi = 10, n0 = 5.9 × 1023 cm−3, Ti = 5 × 103 K, and (f) Zi = 4, n0 = 7.4 × 1025 cm−3, Ti = 104 K.

beyond the existing theories. It is also observed that the
generalized dielectric function, obtained here, is analytical for
all wave numbers and frequencies. Current theory can provide

valuable information on the fusion cross section in superdense
plasmas such as those encountered in compact stellar cores
and neutron star crusts.
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FIG. 7. (Color online) The effect of the quantum electron wave function dispersion (due to the Bohm potential, VB ) on the static ion
structure factor of a collisional quantum plasma. Plots (a) and (b) correspond to static ion structure factor without and with the Bohm potential
effect, respectively. Other data used for both plots are Zi = 10, n0 = 4.7 × 1024 cm−3, Ti = 5 × 103 K.

In current hydrodynamic quantum plasma model, the
ion stopping process can be due to both collective and
individual interactions among plasma species. The two most
important mechanisms are the ion dragging due to the dynamic
charge screening and the wake potential, which are collective
phenomena, ruled by delicate interplay between electron
exchange correlation, quantum statistical pressure, and quan-
tum electron recoil effects leading to ion-ion correlations
via the Shukla-Eliasson attractive force [43,50]. Also, the
well-known phenomenon of the plasma polarization affects the
ion stopping by the reverse field produced during the motion
of a test ion projectile in the plasma (wake potential). In our
model the electron-ion collisions and the ion-ion viscosity
can play important roles, particularly in the nonrelativistic
degenerate density regime, as deduced from Fig. 1. Nitta
et al. [70], by using the simplified linear dielectric response
model, have shown that the ion-wave excitations can play a sig-
nificant role in the stopping power of classical two-component
plasmas.

By using the generalized dielectric function, obtained in
previous sections, we have numerically evaluated the ion
stopping power for various quantum plasma parameters, such
as the number density, plasma composition, projectile speed,
and plasma ion temperature. Figure 8 displays the results
of this numerical simulation. The projectile velocity for the
maximum ion stopping power is observed to significantly vary
with the change in different plasma parameter values. For
instance, the ion stopping power is found to decrease with the
increase in the plasma ion atomic number, while it is observed
to increase with increase of the plasma number density [e.g.,
see Figs. 8(a) and 8(b)]. It is also found that the increase in the
plasma ion atomic-number slightly lowers the corresponding
projectile speed for the maximum stopping speed. This is also
the case when the plasma number density increases. On the
other hand, Fig. 8(c) reveals that the ion stopping power in a
quantum plasma is slightly decreased by the increase of the ion
temperature. Figure 8(d) further reveals that the ion stopping

power increases drastically by the increase in the projectile
charge state, Zp.

V. SUMMARY AND CONCLUSIONS

In this paper, we have presented a theory for the dynamical
ion structure factor (DISF) and ion stopping power (ISP) in
a dense quantum plasma composed of mildly coupled degen-
erate electron fluids and strongly coupled nondegenerate ion
fluids. Thus, we have used the quantum electron momentum
equation with appropriate electrostatic and quantum forces
(viz. associated with the quantum statistical pressure mim-
icking electron degeneracy, electron-exchange and electron
correlation effects, and the quantum recoil effect arising from
entanglements of electron wave functions over atomic scales),
as well as the viscoelastic ion momentum equation including
the ion correlation decay rate and the ion fluid viscosity
effect. The momentum equations, which are closed with the
continuity and Poisson equations, are then used to derive
an expression for the dielectric constant of the collisional
quantum plasma. The real and imaginary parts of the dielectric
constant reveal the frequency spectra that are significantly
affected by the quantum recoil effect and that play a decisive
role in the description of the DISF and ISP. Our numerical
results for the latter reveal that the ion coupling parameter, �i ,
alone is not a good parameter for measuring ion correlations
(as is usually assumed in the literature), but the effects of
the plasma composition, the ion temperature and the average
electron number density on ion correlations must be evaluated
separately in our collisional quantum plasma. Specifically, our
investigation of the DISF reveals long-range ion correlations
due to the quantum recoil effect. Furthermore, ISP illustrates
the important effects of quantum electron properties and
collective ion plasma oscillations within the framework of
our two-fluid approach. It is expected that ISP should play
a very important role for ion energy loss in ICF and in
WDM. In conclusion, we stress that the present investigation
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FIG. 8. (Color online) The profiles for the ion stopping power for varied ion projectile speed (the maximum stopping speeds are shown by
maximum values in each plot) in terms of different plasma parameters in a nonrelativistic-degenerate density regime of viscous quantum plasma.
Only one parameter is varied in each plot with the changes indicated by the change in the thickness of the curve in each plot. The corresponding
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Ti = 5 × 103 K, (c) Zi = 6, Zp = 2, n0 = 5.9 × 1023 cm−3, Ti = (5,50,500) × 103 K, and (d) Zi = 2, Zp = 1,2,3, n0 = 5.9 × 1023 cm−3,
Ti = 5 × 103 K.

of the DISF and ISP should provide valuable information on
the plasma x-ray scattering cross section, which is important
for pulsed-power-driven high-energy-density, Z pinches, and
inertial confinement fusion techniques and provide useful
insight into the spectral features of the electrostatic oscillations

in high-energy-density matter and in astrophysical environ-
ments (e.g., WDM and white dwarf stars), where the electron
number densities are far beyond solid density and the plasma
electrons are degenerate while ions are in a strongly correlated
nondegenerate state.
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