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Equations of state and transport properties of warm dense beryllium:
A quantum molecular dynamics study
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We have calculated the equations of state, the viscosity and self-diffusion coefficients, and electronic transport
coefficients of beryllium in the warm dense regime for densities from 4.0 to 6.0 g/cm3 and temperatures
from 1.0 to 10.0 eV by using quantum molecular dynamics simulations. The principal Hugoniot curve is in
agreement with underground nuclear explosive and high-power laser experimental results up to ∼20 Mbar. The
calculated viscosity and self-diffusion coefficients are compared with the one-component plasma model, using
effective charges given by the average-atom model. The Stokes-Einstein relationship, which connects viscosity
and self-diffusion coefficients, is found to hold fairly well in the strong coupling regime. The Lorenz number,
which is the ratio between thermal and electrical conductivities, is computed via Kubo-Greenwood formula and
compared to the well-known Wiedemann-Franz law in the warm dense region.
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I. INTRODUCTION

The nature of compressed matter is of considerable interest
for many fields of modern physics, including astrophysics [1],
inertial confinement fusion (ICF) [2,3], and other related fields
[4]. Materials under a pressure greater than a few Mbar can
be driven into a strongly coupled, partially ionized fluid state,
which is defined as the so-called warm dense matter (WDM).
Theoretical modeling and experimental detection of the high-
pressure behavior of WDM are of great challenge and are
being intensively investigated. Among various kinds of WDM,
warm dense beryllium (Be) is of particular current interest.
The equations of state (EOS) and transport properties of Be
are very important in ICF, due to its appearance in the ablator
of the deuterium-tritium (D-T) capsule. The compressibility
of the capsule, laser absorption, and instability growth at the
fuel-ablator interface sensitively depend on the thermophysical
properties of Be [5].

The EOS of Be at shock Hugoniot up to ∼18 Mbar
have been accessed by strong shock waves generated by
underground nuclear explosives [6,7]. Then, it is also possible
to probe similar pressure range in the laboratory by high-
intensity laser [8]. Despite the success of these techniques
in detecting wide range EOS of typical matters, one should
note that after several decades, only seven Hugoniot points
are available for Be, and more experimental data are desired
for building successful theoretical models, such as interatomic
potentials or chemical models currently used in SESAME EOS
[9]. Apart from the EOS, the atomic diffusion coefficients and
fluid viscosity are key ingredients to control hydrodynamic
instabilities near interfaces [10–12]. The electronic dynamic
conductivity, from which dielectric function can be obtained,
determines a series of interactions between laser and matters
[13,14]. Due to these key issues to be addressed, therefore,
the thermophysical properties of Be in the warm dense region
are highly recommended to be understood in a systematic and
self-consistent way.

*Corresponding author: zhang_ping@iapcm.ac.cn

In the present work, quantum molecular dynamics (QMD)
simulations [15,16], where electrons are fully quantum
mechanically treated by finite-temperature density functional
theory (FT-DFT), have been introduced to study warm dense
Be. The EOS have been extracted from a series of simulations,
which were performed for a canonical ensemble (NVT)
with temperature, volume of the simulation box, and particle
number therein as given quantities. Then, the Hugoniot curve
is calculated from the Rankine-Hugoniot relation. The self-
diffusion coefficient and viscosity have been computed from
the trajectory by the velocity and the stress tensor autocorrela-
tion function. The dynamic conductivity, from which the DC
conductivity and electronic thermal conductance are derived,
has been obtained from Kubo-Greenwood formula. The rest
of the paper is organized as follows. In Sec. II, we briefly
describe the QMD simulations and computational method in
determining the atomic transport properties and electronic
dynamic conductivity. In Sec. III, discussions are presented
for the EOS and transport properties. In Sec. IV, we present
our conclusions.

II. COMPUTATIONAL METHOD

A. Quantum molecular dynamics

Our QMD simulations employed the Vienna ab initio
Simulation Package (VASP) [17,18]. A series of volume fixed
supercells including N atoms, which are repeated periodically
throughout the space, form the elements of our calculations.
Introducing Born-Oppenheimer approximation, electrons are
quantum mechanically treated through plane-wave FT-DFT.
The interaction between electron and ion is presented by
a projector augmented wave (PAW) pseudopotential. The
exchange-correlation functional is determined within Perdew-
Burke-Ernzerhof generalized gradient approximation. The
ions move classically according to the forces from the electron
density and the ion-ion repulsion. The system is kept in
local thermodynamic equilibrium with equal Te and Ti . The
electronic temperature is kept fixed through Fermi-Dirac
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distribution of the electronic states, and the ion temperature
is secured through Nosé-Hoover thermostat [19].

We have chosen 216 atoms in the unit cell with periodic
boundary condition. A range of densities from ρ = 1.84
g/cm3 to 6.0 g/cm3 and temperatures from T = 300 K
to T = 120 000 K are selected to highlight main Hugoniot
regions. The convergence of the thermodynamic quantities
plays an important role in the accuracy of QMD simulations.
In the present work, a plane-wave cutoff energy of 800 eV is
employed in all simulations so that the pressure is converged
within 2%. We have also checked out the convergence with
respect to a systematic enlargement of the k-point set in
the representation of the Brillouin zone. The correction of
higher-order k points on the EOS data is slight and negligible.
In the molecular dynamics simulations, only the � point of
the Brillouin zone is included, while 4 × 4 × 4 Monkhorst-
Pack scheme grid points are used in the electronic structure
calculations. The dynamic simulations have lasted 10 ∼ 20 ps
with time steps of 0.5 ∼ 1.0 fs according to different conditions.
For each pressure and temperature, the system is equilibrated
within 1 ∼ 2 ps. The EOS data are obtained by averaging over
the final 5 ps molecular dynamic simulations.

B. Transport properties

The self-diffusion coefficient D can either be calculated
from the trajectory by the mean-square displacement

D = 1

6t
〈|Ri(t) − Ri(0)|2〉, (1)

or by the velocity autocorrelation function

D = 1

3

∫ ∞

0
〈Vi(t) · Vi(0)〉dt, (2)

where Ri is the position and Vi is the velocity of the ith nucleus.
Only in the long-time limit, these two formulas of D are
formally equivalent. Sufficient length of trajectories has been
generated to secure a null contribution to the integral, and the
mean-square displacement away from the origin consistently
fits to a straight line. The diffusion coefficients obtained
from these two approaches lie within 1% accuracy of each
other, here, we report the results from velocity autocorrelation
function.

The viscosity

η = lim
t→∞ η̄(t), (3)

has been computed from the autocorrelation function of the
off-diagonal component of the stress tensor [20]

η̄(t) = V

kBT

∫ t

0
〈P12(0)P12(t ′)〉dt ′. (4)

The results are averaged from the five independent off-
diagonal components of the stress tensor Pxy , Pyz, Pzx ,
(Pxx − Pyy)/2, and (Pyy − Pzz)/2.

Different from the self-diffusion coefficient, which involves
single-particle correlations and attains significant statistical
improvement from averaging over the particles, the viscosity
depends on the entire system and thus needs very long
trajectories to reach statistical accuracy. To shorten the length
of the trajectory, we use empirical fits [21] to the integrals of

the autocorrelation functions. Thus, extrapolation of the fits to
t → ∞ can more effectively determine the basic dynamical
properties. Both of the D and η̄ have been fit to the functional
in the form of A[1 − exp(−t/τ )], where A and τ are free
parameters. Reasonable approximation to the viscosity can be
produced from the finite time fitting procedure, which also
serves to damp the long-time fluctuations.

The fractional statistical error in calculating a correlation
function C for molecular-dynamics trajectories [22] can be
given by

�C

C
=

√
2τ

Ttraj
, (5)

where τ is the correlation time of the function, and Ttraj is the
length of the trajectory. In the present work, we generally fitted
over a time interval of [0, 4τ − 5τ ].

C. Dynamic conductivity

The key to evaluate the electrical transport properties is the
kinetic coefficients. They are calculated using the following
Kubo-Greenwood formulation:

σ̂ (ε) = 1

�

∑
k,k′

|〈ψk|v̂|ψk′ 〉|2δ(εk − εk′ − ε), (6)

where 〈ψk|v̂|ψk′ 〉 are the velocity matrix elements, � is the
volume of the supercell, and εk are the electronic eigenvalues.
The kinetic coefficients Lij in the Chester-Thellung version
[23] are given by

Lij = (−1)i+j

∫
dεσ̂ (ε)(ε − μ)(i+j−2)

(
− ∂f (ε)

∂ε

)
, (7)

where μ is the chemical potential and f (ε) is the Fermi-Dirac
distribution function. The electrical conductivity σ is obtained
as

σ = L11, (8)

and electronic thermal conductivity K is

K = 1

T

(
L22 − L2

12

L11

)
, (9)

where T is the temperature. Equations (8) and (9) are energy
dependent, then the electrical conductivity and electronic
thermal conductivity are obtained through extrapolating to
zero energy. In order to get converged transport coeÀfficients,
ten independent snapshots, which are selected during one
molecular dynamic simulation at given conditions, are selected
to calculate electrical conductivity and electronic thermal
conductivity as running averages.

III. RESULTS AND DISCUSSION

A. The equations of state

Wide range EOS (ρ from 4.0 to 6.0 g/cm3 and temperatures
of 1 ∼ 10 eV) have been calculated according to QMD
simulations, and the internal energy E (eV/atom) and pressure
P (GPa) are fitted by expansions in terms of density (g/cm3)
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TABLE I. Expansion coefficients Aij for the internal energy E

(eV/atom).

Ai,j j = 0 j = 1 j = 2

i = 0 0.4369 0.5386 0.3149
i = 1 −0.7316 1.1936 −0.1149
i = 2 0.3215 −0.1241 0.0117

and temperature (eV) as follows:

E =
∑

Aijρ
iT j , (10)

P =
∑

Bijρ
iT j . (11)

The fitted coefficient for Ai,j and Bi,j are summarized in
Tables I and II. Here, the internal energy E at 1.84 g/cm3

and T = 300 K has been taken as zero.
Based on the fitted EOS, the principal Hugoniot curve can

be derived from the Rankine-Hugoniot equation, which is the
locus of points in (E,P,V ) space satisfying the condition

(E0 − E1) + 1
2 (V0 − V1)(P0 + P1) = 0, (12)

where the subscripts 0 and 1 denote the initial and shocked
state, respectively. This relation follows from conservation
of mass, momentum, and energy for an isolated system
compressed by a pusher at a constant velocity. In the canonical
(NVT) ensemble in which both E and P are temperature
dependent, the locus of states which satisfies Eq. (12) is
the so-called principal Hugoniot, which describes the shock
adiabat between the initial and final states.

The Hugoniot curve is shown in Fig. 1, where previous
theoretical and experimental results are also provided for
comparison. In the warm dense region, the nature of the
continuous transition from condensed matter to dense plasma
remains an outstanding and interesting issue in high-pressure
physics. One way to address this issue is to measure EOS in the
range of 0.1 to 5 TPa. The high shock pressures required to span
this range have been reached traditionally with strong shock
waves generated by underground nuclear explosives [6,7],
then accessed by high intensity lasers [8]. Good agreement
is found from Fig. 1 between our QMD-determined EOS
and those obtained experimentally. The present QMD EOS
indicates a smooth transition from condensed matter to plasma
at temperatures from 1.0 eV to 10.0 eV, where we do
not find any signs that suggest a first-order plasma phase
transition. Theoretically, SESAME EOS [9] also shows an
overall accordance with our results. On the contrast, the
Hugoniot curve by multiphase EOS is softer at ρ ∼ 6 g/cm3,
which documents an inaccurate matching of mixed theoretical
models [24].

TABLE II. Expansion coefficients Bij for pressure P (GPa).

Bi,j j = 0 j = 1 j = 2

i = 0 −17.9930 10.2237 −0.7659
i = 1 −62.4972 24.4101 0.3885
i = 2 38.7063 −0.2107 −0.0218

FIG. 1. (Color online) Hugoniot curve computed by QMD
simulations (solid red line) are compared with previous results.
Underground nuclear explosive experiments by Nellis et al. [7] and
Ragan III [6] are labeled as open square and triangle. High power laser
results by Cauble et al. [8] are shown as open circles. SESAME [9] and
multiphase EOS [24] are shown as dashed black line and dotted blue
lines, respectively.

B. Diffusion and viscosity

We have performed ab initio quantum-mechanical simu-
lations with the FT-DFT method to benchmark the dynamic
properties of Be in the WDM regime. An example of the
QMD results for the self-diffusion coefficient and viscosity
of 5.0 g/cm3 at temperatures of 1.0, 5.0, and 10.0 eV are
displayed with their fits in Fig. 2. The current simulations have
the trajectory of 10 ∼ 20 ps and correlation times between
100 and 200 fs. The computed error lies within 10% for
the viscosity. Due to the fitting procedure and extrapolation
to infinite time a total uncertainty of ∼20% is estimated by
experience. Since the particle average gives an additional 1√

N

advantage, the error in the self-diffusion coefficient is less
than 1%.

Idealized models, such as the one-component plasma
(OCP) model, concern the interaction through the Coulomb
potential within a neutralizing background of electrons. A
large number of molecular dynamics and Monte Carlo sim-
ulations based on the OCP model [25–30] have demonstrated
that physical properties like diffusion and viscosity can be
represented in terms of coupling coefficient, which is defined
by the ratio of the potential to kinetic energy

� = Z2e2

akBT
, (13)

where Ze is the ion charge, and a = (3/4πni)1/3 is the
ion-sphere radius with ni = ρ/M the number density. A
memory function has been used by Hansen et al. [30] to
analyze the velocity autocorrelation function to obtain the
diffusion coefficient for the classical OCP

D

ωpa2
= 2.95�−1.34, (14)

with ωp = (4πni/M)1/2Ze being the ion plasma frequency.
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FIG. 2. (Color online) Self-diffusion coefficient (a) and viscosity (b) as a function of time at a density of 5.0 g/cm3 and different temperatures
of 1.0 (triangles), 5.0 (circles), and 10 eV (squares). The fits (lines) are performed for a sample window of [0,4τ -5τ ].

Bastea [25] has performed classical molecular-dynamics
simulations of the OCP and fits his results to the form

η

niMωpa2
= A�−2 + B�−s + C�, (15)

with s = 0.878, A = 0.482, B = 0.629, and C = 0.00188.
As the OCP model is restricted to a fully ionized plasma,
determination of the ionization degree for WDM permits an
extension of the OCP formulas to cooler systems. A reasonable
choice is to replace Z in Eq. (13) with an effective charge Z̄.
As a consequence, we have introduced average-atom (AA)
model [31], which solves the Hartree-Fock-Slater equation
in a self-consistent field approximation assuming a finite
temperature. In the densities and temperatures we explore,
the effective charge Z̄ is 2.0, which corresponds to the case of
full ionization of the 2s electrons.

QMD and OCP results for the self-diffusion coefficient,
at the density of 5.0 g/cm3, are shown in the left panel
in Fig. 3. The tendency for the self-diffusion coefficient
with respect to temperature is similar for QMD simulations
and OCP model. However, the OCP model predicts a larger
value of the diffusion coefficient compared to QMD results
(∼1.5 times bigger). Results for the viscosity, which consist of

contributions.from interatomic potential and kinetic motion of
particles, are plotted in the right panel of Fig. 3. The minimum
of viscosity along temperature can be attributed to a combined
effect, that is, contribution from interatomic potential, which
decreases with temperature, while contribution from kinetic
motion increases with temperature. The OCP model indicates
the local minimum around 2.0 eV, and QMD suggests the
location around 3.0 eV.

The Stokes-Einstein relation gives a connection between
the diffusion and shear viscosity

FSE[D,η] = Dη

kBT n
1/3
i

= CSE, (16)

where FSE is a shorthand notation for the relationship between
the transport coefficients and CSE is a constant. Several
prescriptions [32] for determining CSE are available. Chisolm
and Wallace [33] have provided an empirical value of 0.18 ±
0.02 from a theory of liquids near melting. On the other hand,
CSE, which has been derived based on the motion of a test
particle through a solvent, was assumed to range from 1/6π

[34] to 1/4π [35] depending on the limits of the slip coefficient
from infinity (stick) to zero (slip). Here, we have examined
the behavior of Be over the various regimes we explore. As

FIG. 3. Self-diffusion coefficient (a) and viscosity (b) as a function of temperature at a density of 5.0 g/cm3. Only statistical error has been
considered here.
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FIG. 4. (Color online) Examination of the Stokes-Einstein re-
lation along the coupling parameter in the warm dense region.
Predictions by Chisolm and Wallace [33] are shown as dotted blue
region and denoted as CW in the figure. The flat dashed cyan
lines show the constant values of CSE for stick and slip boundary
conditions [34,35].

shown in Fig. 4, we have plotted the Stokes-Einstein expression
FSE(D,η) as a function of the coupling parameter � using the
diffusion coefficients and viscosities from QMD simulations
at densities of 4 ∼ 6 g/cm3 and temperatures from 1 ∼ 10 eV.
As the expected fitting error of ∼20% for the viscosity, the
QMD results are bounded by the classical values of CSE from
below (slip limit) and the Chisolm-Wallace liquid metal value
from above at temperatures below 7.0 eV (corresponding to
� > 4.0). The function FSE[D,η] at the higher temperature
evinces a sharp increase with temperature. The near-linear
rise of the diffusion coefficient with temperature in the whole
region basically cancels the temperature dependence of the
denominator. As a consequence, the behavior of FSE[D,η]
is dominated by the viscosity, which rises sharply at high
temperatures as shown in Fig. 3. As mentioned above, this
abrupt bend in the viscosity with temperature reflects a change
from potential- to kinetics-dominated regimes.

C. Lorenz number

We have also computed the Lorenz number defined as

L = K

σT
= γ

e2

k2
B

, (17)

where K and σ are the thermal and electrical conductivities,
respectively. γ depends on the screened potential and corre-
sponds to the scattering of the electrons [23]. In a degenerate
(θ � 1) and coupled plasma (� � 1), L or γ is a constant
(π2/3), reaching the ideal Sommerfeld number, which is
the value valid for metals, and the Wiedemann-Franz law
is recovered in an elastically interacting electron system. As
temperature is very high, the WDM enters into a nondegenerate
case (θ 
 1 and � � 1), the Lorenz number reaches the value
of kinetic matter (4 or 1.5966 depending on the e-e collisions).
In the intermediate region, no assumptions can be found for
predicting the Lorenz number and one cannot deduce the
thermal conductivity from the electrical conductivity by using
Wiedemann-Franz law.

FIG. 5. (Color online) Calculated Lorenz number γ as a function
of degenerate parameter θ . The ideal Sommerfeld number is plotted
as dotted line in the figure.

In Fig. 5 we show the behavior of γ as a function of the
degeneracy parameter θ (θ = kBT /EF , with Fermi energy
EF = h̄2 (3π2ne)2/3

2me
and electron density ne). Here, we should

stress that in QMD simulations, the electrical conductivity σ

and electronic thermal conductance K can be directly evalu-
ated without using any assumption of Lorenz number, which
is highly dependent on the two nondimensional parameters θ

and �. In the present warm dense regime, the Lorenz number
oscillates around the Sommerfeld limit at low temperatures,
and as θ increases, a departure of the Lorenz number from the
ideal value can be observed from Fig. 5.

IV. CONCLUSION

In the present work, clear chains have been demonstrated
in investigating the thermophysical properties of warm dense
Be. The EOS has been calculated through ab initio molecular
dynamic simulations, and smooth functions have been con-
structed to fit the QMD wide range EOS data, which show
good agreement with the underground nuclear explosive and
high pulsed laser experimental results. Based on Green-Kubo
relation, the self-diffusion coefficients and viscosity have
then been determined, and as a reference, the OCP model
with an effective charge determined from the average-atom
model has also been employed. A Stokes-Einstein relation
between the viscosity and diffusion coefficient holds the
general feature of liquids as predicted by Chisolm and Wallace
in the strong coupling region (� > 4) while a sharp increase
has been observed as temperature rises. The Kubo-Greenwood
formula provides an efficient way to study the electrical
conductivity and electronic heat conductance in the warm
dense regime. Through QMD simulations we have shown
that the Wiedemann-Franz law is satisfied for the degenerate
regime. Our present results are expected to shed light on the
hydrodynamic modeling of target implosions in ICF design.
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