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We explore, via analytical and numerical methods, the Kelvin-Helmholtz (KH) instability in relativistic magne-
tized plasmas, with applications to astrophysical jets. We solve the single-fluid relativistic magnetohydrodynamic
(RMHD) equations in conservative form using a scheme which is fourth order in space and time. To recover the
primitive RMHD variables, we use a highly accurate, rapidly convergent algorithm which improves upon such
schemes as the Newton-Raphson method. Although the exact RMHD equations are marginally stable, numerical
discretization renders them unstable. We include numerical viscosity to restore numerical stability. In relativistic
flows, diffusion can lead to a mathematical anomaly associated with frame transformations. However, in our
KH studies, we remain in the rest frame of the system, and therefore do not encounter this anomaly. We use
a two-dimensional slab geometry with periodic boundary conditions in both directions. The initial unperturbed
velocity peaks along the central axis and vanishes asymptotically at the transverse boundaries. Remaining
unperturbed quantities are uniform, with a flow-aligned unperturbed magnetic field. The early evolution in the
nonlinear regime corresponds to the formation of counter-rotating vortices, connected by filaments, which persist
in the absence of a magnetic field. A magnetic field inhibits the vortices through a series of stages, namely,
field amplification, vortex disruption, turbulent breakdown, and an approach to a flow-aligned equilibrium
configuration. Similar stages have been discussed in MHD literature. We examine how and to what extent these
stages manifest in RMHD for a set of representative field strengths. To characterize field strength, we define a
relativistic extension of the Alfvénic Mach number MA. We observe close complementarity between flow and
magnetic field behavior. Weaker fields exhibit more vortex rotation, magnetic reconnection, jet broadening, and
intermediate turbulence. Sufficiently strong fields (MA < 6) completely suppress vortex formation. Maximum
jet deceleration, and viscous dissipation, occur for intermediate vortex-disruptive fields, while electromagnetic
energy is maximized for the strongest fields which allow vortex formation. Highly relativistic flows destabilize
the system, supporting modes with near-maximum growth at smaller wavelengths than the shear width of the
velocity. This helps to explain early numerical breakdown of highly relativistic simulations using numerical
viscosity, a long-standing problem. While magnetic fields generally stabilize the system, we have identified many
features of the complex and turbulent reorganization that occur for sufficiently weak fields in RMHD flows, and
have described the transition from disruptive to stabilizing fields at MA ≈ 6. Our results are qualitatively similar
to observations of numerous jets, including M87, whose knots may exhibit vortex-like behavior. Furthermore, in
both the linear and nonlinear analyses, we have successfully unified the HD, MHD, RHD, and RMHD regimes.
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I. INTRODUCTION

The Kelvin-Helmholtz (KH) instability arises when a per-
turbation is applied to a flow that exhibits a transverse (shear)
variation in flow speed, either continuous or discontinuous.
The KH instability was discovered independently by Lord
Kelvin in 1871 and by Helmholtz in 1868. Helmholtz [1]
provided a qualitative discussion of the interaction between
two vertically stratified fluids having different densities. Kelvin
[2] studied this instability in the geophysical context of wind-
water interactions or, more generally, a fluid and an air current
in relative motion. This problem was further illuminated by
Munk [3], who found a critical wind velocity of 6.5 m/s
above which white caps suddenly emerge. An experimental

*nhamlin@physics.ucla.edu
†win@ucla.edu

demonstration of the KH instability was provided by Francis
[4] for an air-oil interface. This has been extended to the
problem of vertical stratification of air currents in the Earth’s
atmosphere, e.g., Chandrasekhar [5], Case [6], Dyson [7],
Drazin [8], Drazin and Howard [9]. There have been many
more recent studies of interactions between atmospheric air
currents, e.g., Maslowe [10] and Swaters [11].

The KH instability has also been widely studied in many
areas of astrophysical interest, including astrophysical jets,
and interactions within the Earth’s magnetosphere, e.g., Pu
and Kivelson [12], Kivelson and Pu [13], Otto and Fairfield
[14], and Faganello et al. [15]. Comparisons between jet
observations and simulations have suggested that the KH
instability may play an important role in jet morphology,
including vortices, helical structures, filamentary features,
etc. [16–20]. Apparent superluminal motion (i.e., behavior that
gives the appearance of being greater than the speed of light,
but is an effect of phase velocity), and relativistic boosting,
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demonstrate that many of these jets have highly relativistic
flows [21], while the presence of magnetic fields is strongly
supported by the commonly accepted model for jet formation
from active supermassive black holes [22–24]. Relativistic
boosting refers to large increases in observed spatial and
temporal frequencies originating from sources whose speeds
are comparable to the speed of light.

It is therefore of great interest to numerically simulate the
KH instability in relativistic magnetized jets. However, the
assumptions of relativity and magnetization greatly complicate
the conservative equations used in simulations and, until 2006,
the growth of the KH instability had not been accurately
simulated in the RMHD regime, according to Bucciantini
and Del Zanna [25]. This is largely due to the difficulty
of recovering the primitive relativistic magnetohydrodynamic
(RMHD) variables mass density, velocity, and pressure from
the derived conserved mass, momentum, and energy densities,
which must be done at each time step of a simulation. Unlike
their nonrelativistic counterparts, the RMHD equations can not
be inverted algebraically, and therefore require a numerical
relaxation scheme. Our study uses a scheme developed by
Newman [26], which is considerably more accurate and rapidly
convergent than previous such schemes, such as the Newton-
Raphson method, and is described briefly in Appendix B.

Many studies have explored the evolution of the KH
instability in the MHD regime, and have identified various
stages of nonlinear vortex inhibition by a magnetic field
[14,27–29]. However, for the reasons mentioned above, this
phenomenon has not been extensively studied in the RMHD
regime. By overcoming the aforementioned difficulties of
recovering the primitive RMHD variables from the conserved
quantities, we have studied the nonlinear evolution of the KH
instability in RMHD for a set of representative field strengths.
In particular, for each field strength, we have examined in
detail the manner and extent of manifestation of various stages
of vortex inhibition. We have identified a class of bifurcations,
which is to say, energy-transfer processes (viscous dissipation,
maximization of electromagnetic energy) which are optimized
for intermediate field strengths. We have also described the
complexity of turbulent reorganization associated with the
broad regime of vortex-disruptive fields, and demonstrated
convergence in nonlinear evolution between strongly vortex-
disruptive and vortex-suppressing fields. Some MHD studies
(e.g., Baty et al. [29]) have used the Alfvénic Mach number
to characterize the strength of the magnetic field. We have
demonstrated that within a regime of moderately relativistic
flow speeds, the influence of a magnetic field in RMHD is
correlated with a suitably defined relativistic extension of the
Alfvénic Mach number. Finally, we have identified potential
comparisons of our results to various astrophysical jets, and
have unified the HD, MHD, RHD, and RMHD regimes in both
linear and nonlinear analyses.

It should be noted that throughout this paper when we
refer to “unperturbed” quantities, we mean the initial value
or distribution of a quantity prior to perturbing the system in
an eigenmode. Also, we frequently refer to the “deceleration”
of the flow as the simulation progresses. The maximum and
average flow speeds both decrease over time. However, the
relativistic momentum, given in Sec. IV, is still conserved. The
relativistic momentum depends not only on velocity, but also

on such quantities as density and pressure, the average values
of which increase over time, as we will see in Sec. VIII G.
Having provided a motivation for our research, we now
proceed with a survey of some of the salient literature on
the KH instability and its role in the modeling of astrophysical
jets.

II. PRIOR RESEARCH

Here, we survey some of the previous research of the KH
instability. The KH instability has been explored extensively
in the hydrodynamic (HD), relativistic hydrodynamic (RHD),
and magnetohydrodynamic (MHD) regimes in both linear and
nonlinear analyses. Linear analyses have also been performed
in the relativistic magnetohydrodynamic (RMHD) regime. The
KH instability has been applied to astrophysical jets in the
HD, RHD, and MHD regimes. Recent numerical advances
have allowed for general modeling of these jets in RMHD.
However, owing to the aforementioned numerical difficulty of
recovering the primitive RMHD variables from the conserved
quantities, there are not many detailed numerical studies of
the nonlinear development of the KH instability in RMHD
plasma flows, with potential applications to astrophysical jets.
Following, we summarize the salient features of the different
areas of research mentioned above.

Chandrasekhar [5] derived an expression for the growth rate
of the KH instability for two incompressible magnetohydro-
dynamic (MHD) fluids separated by a tangential discontinuity
(TD). Let the fluids have unperturbed densities ρ1 and ρ2,
unperturbed flow velocities vz1 and vz2, and unperturbed
magnetic fields B1 and B2. When the flow is perturbed by
a disturbance with wave vector k, the resulting growth rate is

ωi =
√

ρ1ρ2k2
z (vz2 − vz1)2

(ρ1 + ρ2)2
− (k · B1)2 + (k · B2)2

4π (ρ1 + ρ2)
. (1)

This expression tells us that the magnetic field reduces the
growth rate of the instability and, in this sense, is analogous
to surface tension stabilizing the surface of the ocean to
disturbances caused by wind. In order for the perturbation to
grow, its wave vector must perform work to bend the field
lines, and this work is proportional to the inner products
with the fields, shown above. There is also a minimum
velocity difference in order for instability, which is larger for
larger field strengths. Beyond this threshold, the growth rate
increases with increasing relative velocity. An incompressible
fluid has an effectively infinite sound speed. However, for
a compressible fluid (which has finite sound speed) with
a tangential discontinuity (TD), Pu and Kivelson [12] and
Kivelson and Pu [13] showed that in addition to a lower-critical
velocity difference for instability, there is also an upper-critical
velocity difference, so that instability only occurs between
these two critical values (for given fixed values of the other
parameters). The lower-critical velocity difference, and growth
rates at low flow speeds, are accurately predicted by the above
expression for incompressible flows. Ferrari et al. [30] studied
the KH instability for a TD in RMHD, considering cases in
which the displacement current was neglected.

Bodo et al. [31] studied the KH instability with a TD in
RHD, and found that for uniform unperturbed density and
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pressure, and in a frame in which the flow velocities are equal
and opposite, the dispersion relation can be solved analytically
for the growth rate. They found that the stability criterion can
be written in terms of a relativistic extension of the Mach
number, which they defined as

Mrel = vz0γ

csγs

, where

γ = 1√
1 − v2

z0/c
2
, γs = 1√

1 − c2
s /c

2
, (2)

where vz0 and −vz0 are the equal and opposite flow speeds, cs

is the relativistic sound speed, and γ and γs are the respective
Lorentz factors. Bodo et al. [31] found that for flow-aligned
perturbations, the KH instability is suppressed when Mrel >√

2. This is analogous to the HD case, for which the system is
stabilized to these perturbations when the nonrelativistic Mach
number vz0/cs is larger than

√
2. For purposes of comparison

with our study, the more relevant frame is that in which one
of the fluids is stationary (i.e., the ambient medium), and one
fluid moves at a velocity uz0 with respect to the other, where

uz0 = 2vz0

1 + v2
z0/c

2
. (3)

We can define Mu,rel in terms of uz0 in the same manner
that we define Mrel in terms of vz0, and we find that instability
to flow-aligned perturbations is suppressed at all sound speeds
when Mu,rel > 4. We will see in Sec. VI that when the TD
is replaced by a shear variation, instability to flow-aligned
perturbations extends to much higher Mach numbers than this.

Linear analyses of the KH instability, in the presence of a
continuous velocity shear instead of a TD, were performed in
HD by Blumen [32], Blumen et al. [33], and Ray [34], among
others, in RHD by Birkinshaw [35], among others, and in
MHD by Miura and Pritchett [36], Kivelson and Pu [13], and
Choudhury and Lovelace [37], among others. These studies
have identified several differences between a TD and a velocity
shear. The first is the dependence of growth rate on wave
number. In the case of a TD, the growth rate increases linearly
with wave number. In the case of a velocity shear, there is
generally a wave number corresponding to maximum growth,
and a larger wave number above which the system is stabilized
(corresponding to a wavelength which is roughly equal to
the width of shear variation). The second difference is that
instability to a given perturbation orientation can extend to
much higher Mach numbers than is the case for a TD. We
will observe these properties in Sec. VI, along with further
destabilization due to highly relativistic flow speeds.

Nonlinear simulations of the KH instability have been
performed in MHD by Malagoli et al. [38], Frank et al. [27],
Keppens et al. [39], Ryu et al. [28], Otto and Fairfield [14],
Baty et al. [29], Faganello et al. [15], among others. These
studies have frequently identified vortex formation in the early
nonlinear regime, followed by field-induced vortex disruption,
magnetic reconnection, turbulent breakdown, and relaxation
to an equilibrium state. We examine in detail how and to
what extent these stages manifest in RMHD for a set of
representative field strengths.

The KH instability has often been invoked in the modeling
of extragalactic astrophysical jets. Bicknell and Begelman [20]
used the KH instability to interpret the structure of the radio
jet M87. Hardee [17,18] used the KH instability to model the
ribbons and threads in the jet 3C 120. Lobanov and Zensus [19]
used the KH instability to model the cosmic double helix in
the jet 3C 273. These studies strongly suggest that the KH
instability plays an important role in jet development. General
modeling of jet evolution has been performed in RHD by such
authors as Duncan and Hughes [40] and Marti et al. [41], and
more recently in RMHD by such authors as Koide et al. [42],
Leismann et al. [43], and Mignone et al. [44]. These RMHD
studies have improved due to numerical advances which
improve the accuracy and precision with which the primitive
variables can be recovered from the conserved quantities in the
single-fluid RMHD equations. However, these RMHD studies
have not focused on the role of the KH instability with the level
of detail that we examine in our study. Although our study
focuses on the physics governing the nonlinear development
of a sheared plasma flow in RMHD, our results have potential
applications to numerous astrophysical jets. Furthermore, in
both our linear and nonlinear analyses of this problem, we
have unified the behavior in the HD, MHD, RHD, and RMHD
regimes.

We have discussed the manner in which our study builds
upon existing research. We now present the physical model of
our system.

III. PHYSICAL MODEL

Here, we discuss the assumptions involved in the model of
our system. The fluid in this study is relativistic, magnetized,
and hydrodynamic (RMHD). The fluid is also compressible,
infinitely conducting, adiabatic, and has an isotropic pressure
tensor. These are the assumptions made in most single-fluid
MHD and RMHD studies [14,27,28,36,38], including those
that involve simulations of jets [40,42,44].

We assume a two-dimensional slab geometry in the x-z
plane, where z is the flow direction and x the shear direction.
The unperturbed pressure and density are uniform. The
unperturbed magnetic field is uniform and aligned with the
flow direction (the z direction). The unperturbed velocity has
the “Bickley jet” shear variation [45]

vz(x) = vz0 sech2(x/r0). (4)

This profile, also sometimes referred to as the “sech-
squared” velocity profile, has the appearance of a Gaussian
profile, vanishing asymptotically at the exterior boundaries,
peaking in the center, and symmetric about the center. The
boundary conditions are periodic in the x and z directions.
Thus far, the Bickley jet has been used in meteorological
and oceanographic studies of incompressible, nonrelativistic,
unmagnetized fluids. Bickley [45] originally derived this
profile as a solution to the Prandtl boundary layer equations
(i.e., the HD single-fluid equations in the presence of a viscous
boundary layer). Savic [46] used the Bickley jet to model
vortex motion in gaseous jets. This profile was also used by
Lipps [47] to study the stability of mid-latitude atmospheric
jets, by Stern [48] to study oceanic thermocline jets (the
“thermocline” layer is the depth corresponding to the largest
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temperature gradient), and to examine wakes behind large
obstacles, as done by Mattingly and Criminale [49]. The
Bickley jet has been used in meteorological studies by Howard
and Drazin [50], Maslowe [10], and Swaters [11], among
others.

However, the salient research of the Kelvin-Helmholtz
instability, as it applies to compressible, magnetized, or
relativistic fluids, has not thus far used a Bickley jet profile,
nor has it been applied to astrophysical jets. Rather, prior
studies have often used a slab geometry with a single transition
layer between jet and ambient medium [14,27,36,38], typically
a hyperbolic tangent profile. Other studies have used a
cylindrical geometry [18,41–44], which allows for a more
complete exploration of the jet cross section. However, the
RMHD cylindrical studies tend to focus on more general
aspects of jet evolution, rather than the specific role of the
KH instability. This is largely due to the many numerical
difficulties that arise when the RMHD conservation-diffusion
equations are modeled in cylindrical geometry in the presence
of a velocity shear. By allowing for the use of a slab geometry,
the Bickley jet profile avoids many of these difficulties, while
spanning an entire cross section of the jet, and providing a
built-in mechanism for validating the numerical accuracy of
the solutions by ascertaining that certain symmetry properties
are preserved throughout the evolution. One example is a
condition on the vorticity, i.e., the curl of the velocity.

Having discussed the basic properties of our plasma flow,
we now present the single-fluid RMHD equations that govern
its evolution.

IV. EQUATIONS

We use the single-fluid RMHD equations of Anile [51]
in conservative form. Let ρ, P , and w denote the density,
pressure, and enthalpy, respectively, in the proper frame of the
fluid, which has adiabatic index �. Then, we have

w = ρc2 + �P

� − 1
. (5)

Let β = v/c denote the fluid velocity, and γ = (1 − β2)−1/2

the Lorentz factor. Let B denote the magnetic field in the
stationary frame. Then, we define the covariant velocity uμ

and covariant magnetic field bμ according to

uμ = γ (1,β), b0 = γ (β · B),
(6)

bi = Bi + γ 2 (β · B) βi

γ
.

The governing single-fluid equations are given by

∂

∂xμ
ημ = 0,

∂

∂xμ
τμν = 0,

∂

∂xμ
Gμν = 0, (7)

where

ημ = ρuμ, τμν = (w + b2)uμuν +
(
P + b2

2

)
gμν − bμbν,

(8)
Gμν = bμuν − bνuμ, xμ = (ct,r).

The first of Eqs. (7) describes mass transport. The time
component of the second equation describes energy transport,
while the spatial components of the second equation describe

momentum transport. The time component of the third
equation states that B has zero divergence, while the spatial
components of the third equation constitute Faraday’s law. This
is the covariant version of the equations, which is used in the
RMHD studies of Leismann et al. [43], Mignone et al. [44],
Komissarov [52], Balsara [53], Mignone et al. [54], Zrake
and MacFadyen [55], among others. In the nonrelativistic
limit (γ → 1, ρc2 � P ), we recover the MHD single-fluid
equations. In the unmagnetized limit (b → 0), we recover the
RHD equations. In the unmagnetized nonrelativistic limit, we
recover the HD equations.

We have presented the equations that govern the evolution
of a fluid in RMHD. We now apply these equations to our
model. In the next section, we discuss how we linearize these
equations in order to construct a numerical perturbation in
which to launch our system at the start of a simulation.

V. CONSTRUCTING A NUMERICAL MODE

Here, we describe the method for launching the system in a
numerical eigenmode. We linearize the RMHD equations (7)
in the presence of the unperturbed velocity shear given by (4),
and thereby derive the relations characterizing a linear mode
of the KH instability in RMHD. We restrict our attention to
the x-z plane, so that there are no components, nor is there
any evolution, in the y direction. We consider a fluid which is
compressible, adiabatic, isotropic, and infinitely conducting.
The fluid has a uniform unperturbed density ρ0, a uniform
unperturbed pressure P0, and flows in the z direction with some
unperturbed velocity profile vz0(x), where x is the direction
transverse, or shear, to the flow. The fluid is immersed in a
uniform unperturbed magnetic field B0 = Bz0 ẑ aligned with
the flow direction. This is the equilibrium situation. We then
perturb the fluid with a perturbation aligned with the flow,
having wave number kz. In the linear regime, the system can
be described by

ρ(x,z,t) = ρ0 + δρ(x) exp[i(kzz − ωt)],

P (x,z,t) = P0 + δP (x) exp[i(kzz − ωt)],

vx(x,z,t) = δvx(x) exp[i(kzz − ωt)],
(9)

vz(x,z,t) = vz0(x) + δvz(x) exp[i(kzz − ωt)],

Bx(x,z,t) = δBx(x) exp[i(kzz − ωt)],

Bz(x,z,t) = Bz0 + δBz(x) exp[i(kzz − ωt)].

When these linearized forms are inserted into Eqs. (7), we
obtain a second-order ordinary differential equation (ODE) in
the perturbation to the total pressure (magnetic plus thermal),
which we denote δPb:

2(x)
d

dx

[
1

2(x)

dδPb

dx

]
+ k2

x(x)δPb(x) = 0, (10)

where

δPb(x) = δP (x) + B0 · δB, total pressure,

2(x) = γ (x)2ω̄(x)2 − v2
Az

(
k2
z − ω2

c2

)
,

k2
x(x) = γ (x)2ω̄(x)2kd (x)2 − ωd (x)2

(
k2
z − ω2

/
c2

)
γ (x)2ω̄(x)2 + ωd (x)2

,
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ωd (x)2 = γ (x)2v2
Az

(
ω̄(x)2

c2
s

− k̄z(x)2

)
,

kd (x)2 = γ (x)2

(
ω̄(x)2

c2
s

− k̄z(x)2

)
,

(11)

ω̄(x) = ω − kzvz0(x), k̄z(x) = kz − ωvz0(x)

c2
,

vAz = Bz0√
w0

, relativistic Alfvén speed,

γ (x) = 1√
1 − vz0(x)2/c2

,

c2
s = c2 �P0

w0
, relativistic sound speed.

In the nonrelativistic limit of Eq. (10), we recover the MHD
equation of Miura and Pritchett [36] and Lovelace et al. [56]. In
the unmagnetized limit of (10), we recover the RHD equation
of such papers as Bodo et al. [31] and Birkinshaw [35]. In the
unmagnetized nonrelativistic limit of (10), we recover the HD
equation of such papers as Blumen [32], Blumen et al. [33],
and Ray [34]. An important observation is that in each of the
four regimes (HD, RHD, MHD, and RMHD), the second-order
ODE in the total pressure perturbation is given by (10), with
suitable definitions of 2(x) and k2

x(x).
We solve Eq. (10) using what is known as the shooting

method, which is discussed in Hairer et al. [57] and also
used in the shear layer study of Blumen [32]. We integrate
inward from the outer boundaries, constructing left and right
total pressure perturbation profiles, and perform the integration
using a fourth-order Runge-Kutta method, as described, for
example, in Ralston and Rabinowitz [58]. We require that the
pressure perturbation, and its x derivative, both approximately
vanish at the outer boundaries (the derivative vanishes exactly,
while the pressure is initialized at a small nonzero value).
The inward integration ensures that the physical solution
prevails over the unphysical one. We repeat this process
over an array of complex frequencies. The eigenfrequency
is the frequency for which the left and right pressure profiles
converge smoothly at a point near the center (near x = 0).
Let ω denote this frequency. The corresponding complex
perturbations are defined in terms of the linearized RMHD
equations. The initial distribution of a quantity f is then the
unperturbed value plus the real part of the perturbation:

f (x,z,0) = f0 + Re[δf (x) exp(ikzz)], (12)

where f represents density, pressure, velocity components,
or magnetic field components. For a given wave number kz,
there are multiple possible modes, i.e., multiple values of ω.
We select the mode with the fastest growth rate, which in this
case corresponds to antisymmetric profiles of the perturbations
to pressure, longitudinal velocity, and longitudinal magnetic
field, and symmetric profiles of the perturbations to transverse
velocity and transverse magnetic field. These are labeled
“sinuous” modes by Drazin and Howard [9]. The modes
with the opposite symmetries are much more stable, i.e., have
much lower growth rates, in our geometry. These are labeled
“varicose” modes by Drazin and Howard [9]. We select for
the fastest-growing sinuous mode. Both real and imaginary
parts of each profile have the same symmetry. As a result, each

transverse cross section of the perturbation distribution has the
same symmetry (or antisymmetry), at all locations along the
flow direction.

We have discussed our method for constructing a numerical
eigenmode in which the system is launched at the start of the
simulation. We now proceed, in the next section, to describe
the stability properties of these modes.

VI. LINEAR STABILITY ANALYSIS

We now examine the KH-unstable region corresponding to
the eigenmodes derived by the method described above, i.e.,
the eigenmodes corresponding to a “sech-squared” shear vari-
ation in the unperturbed velocity. We examine the dependence
of growth rate and phase velocity first on flow speed, then on
magnetic field strength, and finally on the wave number kz of
the initial perturbation. Throughout Secs. VI A and VI B, the
wave number of the initial perturbation is kz = 0.8/r0, which
is the value used in the simulations, and is approximately the
value corresponding to maximum growth.

A. Dependence of growth rate on flow speed

Figure 1(a) displays growth rate (in units of c/r0) as a
function of flow speed for different values of the sound speed.
There is no magnetic field. At all sound speeds, instability
persists into the highly relativistic regime. As the sound speed
increases, the growth rates increase. Figure 1(a) illustrates
the stabilizing influence of a small sound speed (greater
compressibility). Under these circumstances, the density is
larger compared to the pressure, and the bulk flow therefore
has more mechanical energy. This has a stabilizing effect, as it
means that flow-aligned perturbations must perform a greater
amount of work to deform the flow. Figure 1(b) displays the
corresponding ratio of phase velocity to flow speed. This ratio
increases as flow velocity increases. For smaller sound speeds,
the phase velocity is larger. As flow speed increases or sound
speed decreases, the phase velocity becomes more comparable
to the flow speed. For a given set of parameters, we seek to
recover the fastest-growing sinuous mode (i.e., modes with
antisymmetric shear profiles of pressure perturbation). The
varicose modes (symmetric shear profiles of pressure pertur-
bation) generally have much smaller growth rates. However,
at low flow speeds, the growth rate of the sinuous mode is very
low, comparable to the growth rates of varicose modes, making
it difficult for the search algorithm to distinguish between the
sinuous and varicose modes. This gives rise to the spikes seen
in Fig. 1(a), where the algorithm has recovered varicose modes
instead of the intended sinuous mode.

In Fig. 2, we plot the (a) growth rate and (b) phase velocity
for the same sound speeds, but this time as a function of the
covariant velocity uz0 = γ vz0/c, where γ = (1 − v2

z0/c
2)−1/2

is the Lorentz factor. Note that in the highly relativistic regime,
the covariant velocity and Lorentz factor are approximately
equal. Figure 2(a) illustrates that for any sound speed, the
growth rate decreases with increasing flow speed in the highly
relativistic regime. The most rapid decrease seems to occur
for Lorentz factors ranging from about 2 to about 20, and
the subsequent decrease is more gradual. Most of the curves
exhibit a kink, or noticeable change in behavior, at around γ =
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FIG. 1. (Color online) Growth rate and phase velocity vs flow
speed at different sound speeds (RHD), where cs/c is labeled above.

20. This most likely corresponds to some sort of transition from
sinuous modes (antisymmetric pressure profiles) to varicose
modes (symmetric pressure profiles). That is, for flow speeds
less than about γ = 20, the fastest-growing modes are sinuous,
but Fig. 2(a) shows that this growth rate decreases rapidly from
γ = 2 to about γ = 20. As shown in Fig. 2(b), this corresponds
to a rapid increase in the sinuous phase velocity.

At about γ = 20, the growth rate of the sinuous mode drops
below the growth rates of the varicose modes, which, for
γ < 20, seem to have much less dependence on flow speed
than the growth rate of the sinuous mode. For γ larger than
roughly 20, the fastest-growing mode is now a varicose mode.
For cs = 0.35 c, the transition in growth behavior occurs at a
larger value of γ ≈ 33, as shown by the red curve in Fig. 2(a).
After the transition, the phase velocity of the varicose mode
changes very little, as shown in Fig. 2(b). In particular, this
figure shows that the ratio of phase velocity to flow speed
seems to asymptotically approach unity as the flow speed
approaches the speed of light (as the Lorentz factor goes to
infinity). Figure 2 also shows that, even when the growth
rate behavior is altered for highly relativistic flow speeds, the
growth rates are still higher, and the phase velocities lower, for
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FIG. 2. (Color online) Growth rate and phase velocity vs γ vz0/c

at different sound speeds (RHD), where cs/c is labeled above.

higher sound speeds, as we found for the less highly relativistic
flow speeds shown in Fig. 1.

We see that in the highly relativistic regime, the system
becomes more KH stable to perturbations with wave numbers
on the order of 1/r0, which is the approximate wave number
corresponding to maximum growth for moderately relativistic
flow speeds less than about 0.85 c, as we will see in Fig. 4.
However, we show in Sec. VI C that highly relativistic flow
speeds can render the system less KH stable to perturbations
with higher wave numbers, i.e., smaller wavelengths.

Figures 1 and 2 highlight an important difference between
a tangential discontinuity and a shear variation in the velocity
profile. Bodo et al. [31] demonstrated that for a tangential
discontinuity, in the frame in which one of two adjacent
flows is stationary, instability to flow-aligned perturbations
is suppressed for relativistic Mach numbers larger than 4,
for all sound speeds. In our case (a “sech-squared” shear
variation), we see from Figs. 1 and 2 that there is no critical
velocity or Mach number above which the system is KH stable
to flow-aligned perturbations. Note that our two-dimensional
system is restricted to flow-aligned perturbations.
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In the next section, we examine the dependence of growth
rate on the magnetic field strength.

B. Dependence of growth rate on magnetic field

A magnetic field has the effect of suppressing the KH
instability. In the linear regime, the field reduces the growth
rate of the eigenmode. We find that within a regime of
moderately relativistic unperturbed flow speeds (between
approximately 0.4 c and 0.8 c along the central axis), the
fractional reduction in growth rate is closely correlated with
a relativistic version of the Alfvénic Mach number, which we
define as follows:

MA = vz0 γ

vA γA

= vz0

vA

√
1 − v2

A/c2

1 − v2
z0/c

2
, (13)

where vz0 is the amplitude of the unperturbed flow speed, vA

is the unperturbed Alfvén speed, and γ and γA are the Lorentz
factors corresponding to the flow speed and Alfvén speed,
respectively. Our definition of MA is analogous to the manner
in which Bodo et al. [31] defined a relativistic sonic Mach
number. The correlation of growth rate with MA is seen in
Fig. 3, where the growth rate is plotted as a function of M−1

A
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FIG. 3. (Color online) Growth rate vs M−1
A at different flow

speeds (RMHD), where vz0/c is labeled above.

for each of several flow speeds. Specifically, the dependent
variable is the ratio of the growth rate to its corresponding value
in the unmagnetized case. The curves very closely overlay one
another, and have a common instability threshold of M−1

A ≈ 1
3 .

This correspondence, however, breaks down for vz0 > 0.8 c.
The correlation of growth rate with MA is considerably closer
for the pressure-dominated system [Fig. 3(a)] than for the
density-dominated system [Fig. 3(b)]. This underscores the
fundamental importance of the relativistic Alfvénic Mach
number in characterizing the influence of the magnetic field
on the development of a KH-unstable mode. This applies not
only in the linear growth, but also the nonlinear evolution, as
we will see in Sec. VIII, when we discuss the nonlinear results
of our numerical simulations, and characterize field strength
in terms of MA rather than the plasma β or Alfvén speed.
We will provide further elaboration on the correlation with
MA in Sec. VIII I. This result is a relativistic extension of the
MHD study of the KH instability by Baty et al. [29], who
identified a close correlation of magnetic field influence with
a nonrelativistic Alfvénic Mach number.

In the next section, we examine the dependence of growth
rate on the wave number kz of the initial perturbation.

C. Dependence of growth rate on wave number

Figure 4 displays growth rate (in units of c/r0) as a function
of the wave number kz (in units of 1/r0), again for several
values of the flow speed. As with the HD case, the growth
curve has a concave-downward shape, with a wave number
corresponding to maximum growth and a larger wave number
above which the system is stabilized. This wave number
corresponds to a wavelength which is on the order of the
width of shear variation (which in our model is half the initial
jet width, or about 2 r0). This is in contrast to the case of a
step-function velocity profile considered earlier, for which the
growth rate increases linearly with kz. We see that with an
increase in flow speed, there is an increase in the peak growth
rate and in the range of instability. However, this trend breaks
down for flow speeds larger than 0.8 c, and the maximum
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FIG. 4. (Color online) Growth rate vs kz at different flow speeds
(RHD), where vz0/c is labeled above.
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FIG. 5. (Color online) Phase velocity vs kz at different flow speeds
(RHD), where vz0/c is labeled above.

growth rate is noticeably less at 0.9 c than at 0.85 c. For flow
speeds less than around 0.825 c, maximum growth occurs
between kz = 0.8/r0 and 1/r0, and the growth curves have
qualitatively similar concave-downward shapes. However, at
0.9 c, maximum growth occurs at roughly kz = 0.7/r0. As the
flow speed becomes more relativistic, the growth rate decreases
more slowly for larger kz. At the highly relativistic flow speed
of 0.98 c, the growth rates are somewhat lower, but growth rate
no longer decreases with increasing kz, and instead continues
a gradual increase. At 0.98 c, the system is not stabilized
until kz exceeds approximately 5.36/r0, corresponding to a
wavelength of 2π/kz = 1.17 r0, which is narrower than the
width of shear variation (≈2 r0).

We see that the growth behavior is qualitatively different for
highly relativistic flows. For such flows, the Lorentz factor is
orders of magnitude larger, and this significantly modifies the
terms in the fluid equations and in the second-order ODE to the
pressure perturbation [Eq. (10)]. These terms are proportional
to at least the second power of the Lorentz factor. At
highly relativistic velocities, we have near-maximum growth
at wavelengths smaller than the width of shear variation. This
is one manifestation of the tendency of relativistic effects to
destabilize the system, and a possible contributing factor to the
numerical breakdown observed at Lorentz factors larger than
about 2.

When we compare Figs. 4 and 5, we notice that at a given
flow speed, there is a change in the behavior of the phase
velocity when the corresponding growth curve drops to zero.
Again, this is due to the presence, in the complex plane, of a
family of varicose modes at low growth rates (ωi < 0.01 c/r0).
Recall that the search algorithm attempts to recover the fastest-
growing sinuous mode in each case. When the growth rate of
this mode becomes too low, however, it becomes difficult to
distinguish this mode from the varicose modes.

When we plot growth rate as a function of flow speed,
we find that KH instability extends to much higher Mach
numbers in our model (with velocity shear) than is the case
for a tangential discontinuity, for which Bodo et al. [31] found

that the system is stabilized to flow-aligned perturbations in
RHD for Mach numbers larger than 4. Nonrelativistic versions
of this result appear in such papers as Miura and Pritchett [36]
and Ray [34]. In our examination of growth rate as a function
of field strength, we find that the fractional reduction in growth
rate is closely correlated with a relativistic version of the
Alfvénic Mach number, which we define analogously to the
manner in which Bodo et al. [31] defined a relativistic sonic
Mach number. In our examination of growth rate as a function
of perturbation wave number kz, we find that for moderately
relativistic flow speeds, there is a wave number corresponding
to maximum growth, and a larger wave number above which
the system is stabilized (corresponding to a wavelength which
is on the order of the width in velocity shear). This is also
the result for nonrelativistic systems. However, for highly
relativistic flow speeds, we observe near-maximum growth
at wavelengths which are smaller than the width of velocity
shear. This is one manifestation of the destabilizing influence
of relativistic flows, and may explain the early numerical
breakdown of numerical viscosity simulations with Lorentz
factors larger than roughly 2, a problem discussed by Marti
and Muller [59].

We have discussed the properties of numerical eigenmodes
in which we launch the system at the start of a simulation.
We now discuss our numerical scheme for propagating the
simulation forward in time.

VII. SUMMARY OF NUMERICAL SCHEME

Here, we describe the numerical method for evolving our
system through time. We use explicit finite differencing in
combination with numerical viscosity. The exact single-fluid
RMHD equations (7) are marginally stable, which is to say, the
Fourier components of the linearized equations have strictly
real eigenvalues with no growth or decay. However, these
equations become unstable when discretized in a numerical
scheme. Numerical viscosity is needed in order to restore
stability to the system. This includes momentum viscosity and
magnetic resistivity. Our scheme has fourth-order accuracy in
both space and time, and uses a rapidly convergent algorithm
developed by Newman [26] to recover the primitive variables
from conserved quantities.

We begin by physically motivating the RMHD single-fluid
conservative equations (7). Within a given volume of fluid, the
total rate of change of a given conserved quantity is equal to
the flux of that quantity through the boundaries of that volume.
Let Ci be the density of a given conserved quantity, and Fij

the flux density of that quantity in the direction êj . Let dτ

denote a volume element of the volume under consideration
(i.e., the volume over which we integrate Ci), and let daj

denote the j th component of the area vector normal to a
given location on the surface bounding this volume. Then,
mathematically, we have

∂

∂t

∫
Cidτ +

∮
Fijdaj = 0. (14)

With the use of the divergence theorem, we can rewrite (14)
as follows:

∂

∂t

∫
Cidτ +

∫
∂Fij

∂xj

dτ = 0. (15)
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When we remove the volume integrals, the RMHD conserva-
tion equations take the general form

∂Ci

∂t
+ ∂Fij

∂xj

= 0, (16)

where the xj refer to the x, y, and z directions of a Cartesian
coordinate system. This is the form of the single-fluid RMHD
equations used in Anile [51]. The Cj are the conserved
quantities. The Fij are the corresponding flux quantities. The
Cj and Fij are given by Eqs. (8) in Sec. IV. The Cj are
also listed explicitly in Eq. (A2) of Appendix A. If there is
no net flux through the boundaries of a given volume of fluid,
then the corresponding conserved quantity is conserved within
that volume. This is true of the boundaries of our numerical
system, which is a slab in the x-z plane. It therefore follows
that throughout our simulations, the total conserved quantities
(integrated over the numerical system) are in fact conserved.
These are the Cj .

When we incorporate viscosity, the RMHD conservation-
diffusion equations take the general form

∂Ci

∂t
+ ∂Fij

∂xj

= ηi

∂2Ci

∂x2
j

. (17)

The term on the right represents numerical viscosity, which,
although it redistributes energy within the system, is formally
conservative. Numerical viscosity is included for purposes of
numerical stability. The exact RMHD single-fluid equations
are marginally stable, i.e., the Fourier components of the lin-
earized equations have strictly real eigenvalues and therefore
display no growth or damping. However, when we discretize
the spatial and temporal derivatives in a numerical scheme,
these equations become unstable. We therefore need to include
diffusion in order to restore stability to the system. Because
diffusion is second order in space, the use of fourth-order
spatial and temporal methods gives us explicit control over the
viscosity coefficients. Diffusion in relativistic systems can pro-
duce certain anomalies associated with frame transformations.
However, these do not emerge in our numerical simulations, as
we remain in the stationary frame established by the velocity
shear. The viscosity coefficients are chosen to be large enough
to restore stability to the system, while still small enough for
the nonlinear evolution to be approximately convergent with
respect to viscosity. The viscosity coefficients correspond to
Reynolds numbers of about 5000, which are most likely one or
more orders of magnitude smaller than the Reynolds numbers
of relevant astrophysical environments [60,61].

At each time step of a simulation, we evolve the system in
several steps. We first use the numerical relaxation scheme of
Newman [26], described in Appendix B, to recover the primi-
tive variables (density, pressure, velocity, magnetic field) from
the conserved quantities. We then use the fourth-order method
of lines [62] to compute the spatial derivative of the flux quanti-
ties. We finally use the fourth-order Runge-Kutta method [58]
to compute the conserved quantities at the next time step. These
methods are discussed in more detail in the Appendixes.

We have described the numerical methods for initializing
the system and for evolving the simulation in time. We
now examine the results of these simulations for a set of
representative field strengths.

VIII. RESULTS

In this section, we examine the evolution of the system after
being perturbed by a KH-unstable mode. In Sec. VIII A, we
describe the parameters of the simulations being examined. We
then consider the unmagnetized case, in Sec. VIII B, in which
we observe the formation of large counter-rotating vortices
which persist well into the nonlinear regime. We then introduce
a magnetic field, in Secs. VIII C through VIII F, and observe
that the KH-unstable vortices are inhibited through a series of
stages, namely, field amplification, vortex disruption, turbulent
breakdown, and relaxation to an equilibrium state in which the
flow and field are longitudinally aligned. Qualitatively similar
stages are described in MHD literature. Here, we examine
in detail how and to what extent these stages manifest in
RMHD for a set of representative field strengths. Recall that in
Sec. VI B, we defined a relativistic extension of the Alfvénic
Mach number which we denoted MA, and which is given
by Eq. (13). We observed that the fractional reduction in
linear growth rate is closely correlated with MA. So, too, is
the influence of a magnetic field on the nonlinear evolution
of the KH instability. We demonstrate this in Sec. VIII I
by comparing results for two different unperturbed flow
speeds, and finding close agreement. We consider initial field
strengths corresponding to MA = 41.4, 20.7, 10.3, and 5.1,
each successive value being half of the former.

We observe that for weaker fields, there is more vortex
development, more magnetic reconnection, and more turbulent
reorganization, causing the jet to broaden considerably. Vortex
disruption corresponds to a disruption of the faster-moving
components of the flow as mechanical energy is dissipated,
leaving a slower-moving background flow. Stronger fields
suppress these processes, resulting in less jet broadening.
Sufficiently strong fields (MA = 5.1) suppress vortex forma-
tion altogether, resulting in an immediate transition to an
equilibrium state. In Sec. VIII G, we discuss several bifur-
cations, i.e., energy-transfer processes which are optimized
for intermediate field strengths. Namely, viscous dissipation
is optimized for intermediate vortex-disruptive fields. On the
other hand, electromagnetic energy is maximized for the
strongest fields which still allow partial vortex formation. In
Sec. VIII H, we examine the time evolution of the flow more
closely. For representative initial field strengths, we first study
the evolution of a cross section of the longitudinal velocity, and
then the time dependence of the spatially averaged Alfvénic
Mach number. In Sec. VIII K, we compare our results with
observations of astrophysical jets, and identify a possible
explanation for observations of the knots in the radio jet M87.
In Sec. VIII J, we determine the numerical accuracy with which
our results satisfy a condition of alternating symmetry in the
vorticity, which results from the symmetry of the unperturbed
velocity profile and antisymmetry of the pressure perturbation
profiles.

Throughout this section, we examine displays of two
quantities, namely, the vorticity (curl of the velocity, directed
along the y axis) and the longitudinal velocity, where the flow
direction (z direction) is upward. To the immediate right of
each display is a color scale indicating the correspondence
between colors and numerical values, where dark blue (the
coloration at the bottom of the scale) corresponds to the
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minimum value and dark red (the coloration at the top of
the scale) corresponds to the maximum value. The vorticity
highlights the spatial contrast between the emergent nonlinear
features. However, what one actually observes are the velocity
components, density, etc. In the magnetized cases, the vorticity
and longitudinal velocity decrease substantially through the
nonlinear regime, and it should be noted that the color scales
are adjusted accordingly in order to preserve the spatial
contrast of the features being displayed. When the vorticity
displays are viewed in black and white, darkly shaded areas
correspond to high vorticity, and lightly shaded areas to low
vorticity. When the longitudinal velocity displays are viewed
in black and white, darkly shaded regions in the central
flow correspond to high flow speed, while the darkly shaded
ambient background corresponds to a negligible flow speed.

We begin, in the first subsection, by describing the simula-
tion parameters of the various cases being studied.

A. Simulation parameters

In each case examined, we assume uniform unperturbed
pressure P0, density ρ0, and magnetic field B0, where the
magnetic field is aligned with the flow. In particular, we
have P0/(ρ0c

2) = 50. The unperturbed velocity is moderately
relativistic, with a shear variation given by

vz0(x) = 0.7 c sech2(x/r0). (18)

We assume an adiabatic index of � = 4
3 , consistent with a

relativistic photon gas. The unperturbed sound speed is

cs = c

√
�P0

w0
= c

√
�P0

ρ0c2 + �P0/(� − 1)
= 0.576 c. (19)

This is close to the maximum physically allowable adiabatic
sound speed of c/

√
3, and therefore corresponds to a pressure-

dominated, relativistically hot, fluid. The perturbation has a
longitudinal wave number kz = 0.8/r0, which is roughly the
value corresponding to maximum growth. The time increment
is �t = 0.032 r0/c. The grid spans 1001 points in the x

direction and 201 points per wavelength in the z direction.
The spatial extent of the system is as follows:

−15.75 r0 � x � 15.75 r0, (20)

0 � z � 4π/0.8 r0 (two wavelengths), (21)

so that the spatial increments are �x = 0.0315 r0 and �z =
0.0393 r0.

We have verified that our results are convergent with respect
to time step, and approximately convergent with respect to
spatial increment [63]. The system spans two perturbation
wavelengths in the longitudinal direction. However, we have
found that the results are approximately independent of the
number of longitudinal wavelengths spanned by the system,
which is to say, the flow retains the spatial periodicity of a
single perturbation wavelength [63]. Therefore, throughout
this section, the displays show only one wavelength of the
system. Transverse acoustic waves are present in the nonlinear
regime, and their back-and-forth propagation is influenced by
the system width. However, by comparing results for two
different system widths, we have verified that the evolution

TABLE I. Linear parameters of representative cases. Time is in
units of r0/c.

(MA,β,vA/c) ωir0/c Ti = 1/ωi T = 2π/ωr

Unmagnetized 0.0994 10.06 22.61
(82.8,3550,0.012) 0.0993 10.07 22.61
(41.4,888,0.024) 0.0990 10.10 22.63
(20.7,222,0.047) 0.0980 10.20 22.68
(10.3,55.5,0.095) 0.0943 10.67 22.89
(5.15,13.9,0.189) 0.0738 13.55 23.70

of the flow, and its interaction with the magnetic field, are
approximately independent of system width [63].

The exact RMHD single-fluid equations in (7) are
marginally stable, but become unstable when discretized in
a numerical scheme. Numerical viscosity is included in order
to restore numerical stability to the system. The density and
momentum viscosities (ηρ , ηx , and ηz) are each 0.0002 r0c,
while the viscosities in magnetic field components (ηbx and
ηbz) are 0.0012 r0c. The numerical viscosities correspond to
a Reynolds number of about 5000, which are most likely one
or more orders of magnitude smaller than the Reynolds num-
bers of typical astrophysical environments [60,61]. Density
viscosity is included in order to compensate for unphysical
regions of negative density which emerge in the absence of
mass transfer. We have verified that our simulation results are
convergent with respect to viscosity, further detail of which is
provided in Hamlin [63].

In Table I, we present the growth rate ωi , growth time Ti =
1/ωi , and period T = 2π/ωr for each of the cases studied.
These emerge from the linear analysis performed in Sec. V.
Corresponding to a given unperturbed field strength, MA is
the unperturbed relativistic Alfvénic Mach number, given by
Eq. (13), vA = Bz0/

√
w0 is the unperturbed relativistic Alfvén

speed, and β = 2P0/B
2
z0 is the unperturbed plasma β. The

large unperturbed plasma β values are characteristic of a
pressure-dominated system, for which a given value of MA

corresponds to a smaller magnetic pressure than would be
the case for a density-dominated system. However, when the
magnetic field is amplified during the early nonlinear regime,
the minimum plasma β is often of order unity. We have
verified that for each magnetic field studied, the field remains
divergenceless throughout the simulation [63]. We have also
verified convergence of our results between the RHD, MHD,
and RMHD regimes [63]. Further detail of these verifications
is provided in Hamlin [63].

Having described the parameters of the cases being studied,
we begin in the next section by examining the evolution of a
relativistic KH-unstable flow in the absence of a magnetic
field.

B. Evolution in RHD

We first consider evolution in the absence of a magnetic
field, which also describes the early stages of evolution in
many of the magnetized cases. At the start of the simulation,
the system is perturbed in a KH-unstable numerical eigenmode
as described in Sec. V. The system then evolves through a
linear regime in which the perturbations grow. Deviations
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from ideal growth are due to evanescent modes introduced
by diffusion. After about eight growth times, the perturbations
are comparable to the values of the unperturbed quantities,
and energy is diverted from the linear mode into newly
emergent nonlinear modes. This corresponds to a transition
to the nonlinear regime, shortly after which the perturbed
quantities saturate, at about 10 growth times. At this time,
mechanical stresses have transverse components which have
become comparable to the longitudinal components, causing
the flow to twist, and resulting in the formation of two
counter-rotating vortices on opposite sides of the flow axis,
and separated by half the longitudinal perturbation wavelength.
Note that throughout this Sec. VIII B, all displays of a given
quantity use the same scale, where we use one scale for the
displays of the vorticity (the curl of the velocity), and another
scale for the displays of the longitudinal velocity.

The half-wavelength separation of the vortices is a direct
consequence of the use of a linear mode with antisymmetric
pressure perturbation profiles (a “sinuous” mode; see the end
of Sec. V). If we instead used a mode with symmetric pressure
profiles (a “varicose” mode), we would have pairs of adjacent
vortices on either side of the flow axis. However, in a slab
geometry, the sinuous mode grows much more quickly, which
is why we use it. The resulting vortex formation is shown in
the vorticity displays in Figs. 6(a) and 7(a). The vortices form
around existing regions of low density and pressure associated
with the distributions of the density and pressure perturbations.
The y axis points into the page. Therefore, in the vorticity
displays, blue coloration (negative vorticity) corresponds to
counterclockwise fluid circulation, seen in the vortex in the
region of negative x, i.e., the left half of the displays. Red
coloration (positive vorticity) corresponds to clockwise fluid
circulation, seen in the vortex in the region of positive x, i.e.,
the right half of the displays. The vortices themselves rotate
in the direction of fluid circulation within them. As shown
in Figs. 6(b) and 7(b), the center of the flow moves more
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FIG. 6. (Color online) Unmagnetized evolution: (a) vorticity
and (b) longitudinal velocity at t = 7.33 Ti = 3.26 T = 73.7 r0/

c = 1.35 Lx/cs .
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FIG. 7. (Color online) Unmagnetized evolution: (a) vorticity
and (b) longitudinal velocity at t = 7.94 Ti = 3.53 T = 79.9 r0/

c = 1.46 Lx/cs .

rapidly, and therefore experiences larger mechanical stresses,
causing it to twist by a larger amount than the slower-moving
background flow.

We now consider nonlinear evolution, which occurs only
in the absence of a magnetic field. The vortices are connected
by dual filaments. Initially, vortex rotation is dominated by
mechanical stresses, and the vortex shape and angular speed
are both irregular, with the vortices alternately being elongated
in the longitudinal and transverse directions, as seen by
comparing Figs. 7 through 9. As time progresses, mechanical
energy is viscously dissipated into thermal energy, and thermal
stresses become larger in comparison to mechanical stresses.
This is shown in Fig. 10. Because thermal stresses are isotropic,
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FIG. 8. (Color online) Unmagnetized evolution: (a) vorticity
and (b) longitudinal velocity at t = 14.04 Ti = 6.25 T = 141.3 r0/

c = 2.58 Lx/cs .
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FIG. 9. (Color online) Unmagnetized evolution: (a) vorticity
and (b) longitudinal velocity at t = 16.49 Ti = 7.34 T = 165.9 r0/

c = 3.03 Lx/cs .

the vortices relax to a more regular ellipsoidal shape and a
roughly constant angular velocity. They also relax to a more
constant longitudinal pattern speed, which, due to viscous
dissipation, has slowed to roughly 60% of the linear phase
velocity.

On either side of the flow axis, we notice the formation of
a pair of smaller adjacent secondary counter-rotating vortices
at the outer transverse boundaries of the flow. The vortices
circulate in opposite directions because they emerge from
adjacent filaments of opposite vorticity (specifically, these are
the filaments that initially connected the primary vortices).
These smaller vortices also do not propagate downstream.
Downstream propagation is correlated with the linear phase
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FIG. 10. (Color online) Unmagnetized evolution: (a) vorticity
and (b) longitudinal velocity at t = 32.97 Ti = 14.67 T = 331.8 r0/

c = 6.07 Lx/cs .

velocity, and in the linear regime the pattern speed is equal to
the linear phase velocity. The large primary vortices emerge
from linear features of the flow (alternating regions of low
density and pressure), and their downstream propagation is a
result of the linear pattern speed of these features. However,
the smaller secondary vortices emerge from nonlinear features
which are not present in the linear evolution, and therefore do
not propagate downstream with the flow.

We have examined the nonlinear evolution of a relativistic
flow in the absence of a magnetic field, and found that the
KH-unstable vortices persist. We now examine the manner in
which these vortices are inhibited in the presence of a magnetic
field. We begin, in the next section, with a fairly weak vortex-
disruptive field for which MA = 41.4.

C. Weak vortex-disruptive field (MA = 41.4)

We now introduce a magnetic field which is not strong
enough to suppress vortex formation but is strong enough to
disrupt and inhibit nonlinear vortices after they have formed.
This field corresponds to MA = 41.4 (see Table I for relevant
parameters).

Figures 11 through 13 each show displays of the vorticity,
at a given time in the simulation, for the (a) unmagnetized
case considered in the previous section, and (b) magnetized
case described above. In the magnetized case, the display
is overlaid with contours of the magnetic field lines, which
demonstrates the close complementarity between flow and
magnetic field behavior. The unmagnetized and magnetized
displays have slightly different sizes, due to the fact that the
unmagnetized displays span a larger transverse width of the
system. An important feature of the magnetized evolution,
that should be noted in the displays in this section and other
sections discussing magnetized evolution, is the remarkable
complementarity between the fluid behavior and the behavior
of the magnetic field. This can be seen in the close corre-
spondence between the field lines and various flow-related
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FIG. 11. (Color online) Vorticity for (a) B = 0 and (b) MA =
41.41 at t = 9.8 Ti = 4.3 T = 98.3 r0/c.
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FIG. 12. (Color online) Vorticity for (a) B = 0 and (b) MA =
41.41 at t = 12.2 Ti = 5.4 T = 123 r0/c.

quantities (vorticity, flow velocity, etc.), shown in the displays
onto which the field lines are overlaid. Physically, the fluid is
driving the field via thermal and mechanical stresses, and in
turn, the tension in the field lines is constraining the fluid via
electromagnetic stresses.

The evolution in the early nonlinear regime is almost
identical to the evolution for the RHD case, as shown in
Fig. 11. For MA = 41.4, the case shown, this close agreement
persists through 10 or 11 growth times, i.e., until just after
the saturation stage. This period of agreement corresponds to
the field amplification stage of vortex inhibition, during which
the counter-rotating vortices expel plasma and magnetic field
lines, resulting in low density and pressure in the vortices, and
field amplification at the vortex extremities, along the filaments
connecting the vortices. As the vortices rotate, they twist the
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FIG. 13. (Color online) Vorticity for (a) B = 0 and (b) MA =
41.41 at t = 13.4 Ti = 6.0 T = 135 r0/c.

field lines, which will lead to magnetic reconnection. In their
studies of the extragalactic radio jet M87, Hines et al. [64]
observed that while the field is generally aligned with the jet
flow, there are large knots in which the field has a transverse
component. Stawarz et al. [65] deduced that the magnetic field
inside knot A of M87 has an amplified value of at least 300 μG,
where the field elsewhere is less than about 100 μG [64]. These
observations are consistent with the knots of M87 exhibiting
vortexlike behavior, twisting the field lines into configurations
with transverse components, and centrifugally expelling them
to vortex extremities, thereby amplifying them. We will discuss
this further in Sec. VIII K.

This amplification results in vortex shedding of amplified
hybrid filamentary features, which signals the start of the
next stage of vortex inhibition, i.e., vortex disruption, where
we begin to see deviations between the magnetized and
unmagnetized cases. In Fig. 12, at 12.2 growth times, the
magnetized case contains enhanced filamentary features, and
hybridization, not seen in the unmagnetized case. In Fig. 13,
at 13.4 growth times, we see greater deviation between the
two cases. The vortex disruption has progressed, and there is a
greater population of features of enhanced vorticity. Also, the
unmagnetized vortices have undergone more rotation than the
magnetized vortices. The amplified magnetic field therefore
exerts stresses that substantially decelerate the overall vortex
rotation. At the same time, these stresses result in vortex
deformation. Again, from examining Fig. 13, the magnetic
field also suppresses the formation of the pairs of secondary
vortices seen in the unmagnetized case. In their place, we
instead see magnetic reconnection occurring in pocketlike
regions on either side of the flow. Filamentary features,
as described above, have been observed in numerous jets,
including the cosmic double helix in 3C 273 [19], the ribbons
and threads in 3C 120 [17,18], and the filaments in the radio
lobes of M87 [64]. These filaments may be the result of
field-induced vortex shedding during the disruptive stage, or
may possibly be similar to the dual filaments connecting the
vortices throughout vortex evolution, i.e., the filaments along
which the field is amplified, as discussed in Sec. VIII K.

After vortex disruption, the next stage of inhibition is
turbulent breakdown into smaller-scale structures, which
corresponds to further broadening and deceleration of the
jet as electromagnetic and mechanical energy are viscously
dissipated into thermal energy. The jet then relaxes to an
equilibrium configuration consisting of flow-aligned vortex
and current filaments. We will discuss these stages in more
detail in what follows. We should mention that the small-
scale features in the turbulent regime are influenced to some
extent by reverberations of acoustic waves from the transverse
boundaries of the system. However, the vortex-disruptive
phase (up to about 16 growth times) is independent of system
width, and in the turbulent and equilibrium phases, the system
width does not significantly influence the evolution of the flow
or the magnetic field.

In Fig. 14, at 11.6 growth times, the vortices have expelled
the field lines, resulting in amplified field, along with amplified
alternating current layers, at the vortex extremities, and along
the filaments connecting the vortices. There is almost no
current in the vortex interiors, but the current diffuses into
the regions into which the field lines are being twisted by
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FIG. 14. (Color online) (a) Vorticity and (b) longitudinal velocity
at t = 11.6 Ti = 5.16 T = 117 r0/c, where MA = 41.4, βmin = 2.09.

vortex rotation, i.e., the regions where magnetic reconnection
will take place. Vortex rotation is closely correlated with the
deformation of the flow, as seen in Fig. 14(b). This is the
approximate time when the vorticity, current density, and
electromagnetic energy reach their maximum values. The
minimum plasma β at this time is 2.09, which is close to the
smallest value that occurs for this simulation, and is less than
1/400 of the unperturbed plasma β. There is minimal vortex
disruption by the field, and therefore the evolution of the flow,
until this point, very closely resembles the evolution for the
corresponding unmagnetized case. Although the central flow
has not widened noticeably, the region of nonzero vorticity has
widened to almost three times the initial jet width, indicating
a broadening of the outer slower-moving regions.
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FIG. 15. (Color online) (a) Vorticity and (b) longitudinal velocity
at t = 13.4 Ti = 5.97 T = 135 r0/c, where MA = 41.4, βmin = 3.38.
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FIG. 16. (Color online) (a) Vorticity and (b) longitudinal velocity
at t = 27.4 Ti = 12.2 T = 276 r0/c, where MA = 41.4, βmin = 27.2.

In Fig. 15, at 13.4 growth times, magnetic stresses at
the vortex boundaries have resulted in significant vortex
disruption. This disruption takes the form of significant vortex
shedding of amplified hybrid filamentary features (seen in
the vorticity display), and deformation of the vortex shape.
By examining the previous comparison, in Fig. 13, of the
vorticity display with the corresponding unmagnetized case,
we can isolate the vortex deformation which is due specifically
to magnetic stresses, as opposed to mechanical and thermal
stresses. Specifically, magnetic stresses have not yet caused
significant deformation, but are gradually making the vortices
narrower, more elongated, and more irregular in shape. As
shown in Fig. 15(a), the hybrid filamentary features take the
form of thin layers at the vortex boundaries, and a complex
structure that emerges between the vortices. Magnetic stresses
also cause rapid angular deceleration, halting vortex rotation
at the orientations shown in the vorticity display. Magnetic
reconnection has occurred in the pocketed regions into which
the vortices have twisted the field lines (i.e., the regions into
which the current has diffused). The field, and current layers,
are still amplified along the interconnecting filaments. From
the display of longitudinal velocity, the vortex disruption
closely complements the disruption of the faster-moving
components of the flow, due to magnetic stresses exerted by
amplified field lines. The jet has widened to about three times
its initial width, and has decelerated to about 0.4 c.

In Fig. 16, at 27.4 growth times, the vortices are no longer
visible, and the system is well into the turbulent regime. Note
that, in order to preserve spatial contrast, the color scales each
span a smaller range. The boundaries of many features have
been smeared by viscous dissipation. Two factors are likely
involved in the enhancement of viscous dissipation. Turbulent
breakdown results in structures whose length scales are more
comparable to the length scales associated with diffusion.
Also, the average vorticity has decreased by a factor of almost
4, which is more comparable to the frequencies of modes
introduced by diffusion. The system therefore has a higher
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FIG. 17. (Color online) (a) Vorticity and (b) longitudinal velocity
at t = 56.6 Ti = 25.3 T = 571 r0/c, where MA = 41.4, βmin = 182.

correlation with viscous processes, enabling a greater amount
of energy transfer via viscous interactions. The field and
current have lost much of their amplification, however, there
are numerous areas of magnetic reconnection in the central
region. Two large central reconnected regions appear to drive
persistent vortical behavior. Filaments of enhanced vorticity
are concentrating in layers on the left and right boundaries of
the flow. A downstream-aligned central flow, of about 7.0 r0

in width, i.e., twice the initial jet width, is in the process of
forming, and over time, is becoming more spatially uniform.
This process began as soon as the vortices were inhibited, and
the magnetic field began to lose its amplification. The flow has
continued to decelerate, due to viscous dissipation, and now
has a maximum flow speed of about 0.25 c. The central flow is
still somewhat heterogeneous, and contains components with
flow speeds ranging from about 0.15 c to about 0.25 c. The
regions of minimum flow speed tend to be located between
vortex filaments of opposite vorticity. The central flow region is
a region of low density, from which plasma has been expelled.

In Fig. 17, at 56.6 growth times, the system is now
approaching an equilibrium state consisting of flow-aligned
vortex and current filaments. Note that, in order to preserve
spatial contrast, the color scales each span a smaller range.
The width of these filaments is, on average, about 0.9 r0 (i.e.,
1
4 the initial jet width). The filaments are somewhat smeared
due to diffusion, partly for the reasons mentioned in the
previous paragraph (i.e., the vorticity is now only about 1

8
of its initial value, and is therefore more closely tuned to the
frequencies of modes associated with diffusion). The filaments
surround a central region of persistent vortical behavior,
driven by magnetic reconnection, although both the field lines
and vortical filaments are gradually becoming aligned with
the flow. These reconnected regions correspond to locally
amplified current density. We can now see that this coincides
with the low-density central flow region. Meanwhile, the jet
has widened to roughly 4.5 times its initial width. The jet has
continued to decelerate, and the central flow region has become

more homogeneous, so that the central flow speeds range from
roughly 0.15 c to 0.2 c. While the current filaments alternate
spatially, the vortex filaments have more spatial uniformity,
with filaments of positive vorticity to the right of the flow, and
filaments of negative vorticity to the left of the flow. The flow is
maximized in the central region, and vanishes asymptotically
at the transverse boundaries. This indicates that, despite the
complex intermediate reorganization brought on by magnetic
and mechanical stresses, the flow has retained a qualitative
memory of its initial configuration. Similar results were also
seen in the MHD studies of Ryu et al. [28] and Frank et al. [27].

In the next section, we examine an unperturbed magnetic
field which is twice as strong as the one just examined. We
will find that the inhibition processes described above occur
more rapidly.

D. Intermediate vortex-disruptive field (MA = 20.7)

We have examined the stages of vortex inhibition for a
fairly weak vortex-disruptive field for which MA = 41.4. We
now examine how this process is modified for stronger fields.
In general, any field in the vortex-disruptive regime (MA

larger than about 6) inhibits vortex development through the
processes described above (field amplification, vortex disrup-
tion, turbulent breakdown into smaller-scale structures, and
relaxation to an equilibrium state consisting of flow-aligned
vortex and current filaments). However, for stronger fields,
these processes occur more rapidly (i.e., after a smaller number
of growth times), and the jet does not widen by as large a factor.
In the above case (MA = 41.4), vortex disruption is not no-
ticeable until 12 growth times, and even after 60 growth times,
the system has not completely relaxed to its equilibrium state,
due to the persistent vortical behavior in the central region.

Figures 18 through 20 show the stages of vortex inhibition
for a field corresponding to MA = 20.7 (see Table I for relevant
parameters). Here, vortex disruption is noticeable after 10
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FIG. 18. (Color online) Vorticity for MA = 20.7 at (a) t =
10.2 Ti = 4.61 T = 104 r0/c, βmin = 1.43 and (b) t = 13.9 Ti =
6.23 T = 141 r0/c, βmin = 4.26.

043101-15



NATHANIEL D. HAMLIN AND WILLIAM I. NEWMAN PHYSICAL REVIEW E 87, 043101 (2013)

x /r0

z /
r 0

 

 

−8 −6 −4 −2 0 2 4 6 8
0

2

4

6

−0.6
−0.4
−0.2
 0.0
 0.2
 0.4
 0.6

x /r0

z /
r 0

 

 

−8 −6 −4 −2 0 2 4 6 8
0

2

4

6

−0.5

 0.0

 0.5

(a)

(b)

FIG. 19. (Color online) Vorticity for MA = 20.7 at (a) t =
16.3 Ti = 7.31 T = 166 r0/c, βmin = 5.79 and (b) t = 23.5 Ti =
10.6 T = 240 r0/c, βmin = 15.4.

growth times [see Fig. 18(a)] versus about 13 growth times for
MA = 41.4, and the system has almost reached an equilibrium
filamented state after 37 growth times (see Fig. 20), with an
equilibrium jet width of about 15 r0 (about four times the initial
jet width). Recall that for MA = 41.4, even after almost 60
growth times, the system still has not reached an equilibrium
state. In the case for which MA = 20.7, there is less magnetic
reconnection, and vortices therefore do not persist in the central
region. In particular, for MA = 20.7, the vortices are inhibited
at an earlier point in their rotation, before they can twist the
field lines to the point where they reconnect in pocketlike
regions along the sides of the flow [see Fig. 18(b)].
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FIG. 20. (Color online) (a) Vorticity and (b) longitudinal velocity
at t = 37.9 Ti = 17.1 T = 387 r0/c, where MA = 20.7, βmin = 35.9.

We now examine the displays for MA = 20.7 in more detail.
Figure 18(a), at 10.2 growth times, displays the vorticity when
the electromagnetic energy is approaching its approximate
maximum value. The primary vortices have formed (the large
eddy structures), and as they rotate are expelling the field lines,
which as a result are concentrated along the central filaments.
Electromagnetic energy, electromagnetic momentum, current
density, and vorticity are all maximized along the central
filaments. The vortices are twisting the field lines as they
rotate. Even though electromagnetic energy, current density,
etc., have not yet reached their maximum values, magnetic
stresses have already begun to disrupt the vortices, as seen by
narrow filaments of the opposite vorticity which extend into
each primary vortex. Through vortex twisting and diffusion,
the field lines are beginning to infiltrate the regions between
the vortices.

We now proceed to Fig. 18(b), which displays the vorticity
at 13.9 growth times. The electromagnetic energy density and
vorticity have previously reached their peak values, and are
now decreasing, as seen by the fact that the field lines are less
concentrated. Magnetic stresses have brought vortex rotation
to a halt, so that they remain in the orientations shown. These
stresses also deform the vortices into the irregular shapes
shown, and result in the emergence of enhanced hybrid fila-
mentary features. These include the narrow layers of opposite
vorticity at the vortex boundaries, and the complex hybrid
structure in the interior region between the vortices, which is
formed by layers of filament which magnetic stresses have
peeled from the primary filament and the base of the vortex.
This latter structure is modulated by magnetic reconnection
occurring among field lines which have infiltrated the interior,
as a result of vortex twisting and field diffusion. Note that
the vortices fail to twist the field lines to the point where
they reconnect in pocketlike regions along the sides of the
jet, as occurs for the weaker field MA = 41.4. The vorticity
and electromagnetic energy are still maximized in the primary
filaments, which are still intact, although these have detached
from the bases of the vortices. The jet has widened to about
three times its initial width.

We now proceed to Fig. 19(a), which displays the vorticity
at 16.3 growth times. The system has transitioned from the
disruptive to the turbulent regime, as the primary vortices
are no longer visible. Electromagnetic and mechanical energy
are being viscously dissipated into thermal energy. Viscous
dissipation has smeared the hybrid structures that emerged in
the interior regions, so that these are much less sharply defined,
though magnetic reconnection persists. The dissipation of
these hybrid structures is due to their smaller length scales and
smaller vorticity, which are more comparable, respectively,
to the length scales and frequencies associated with diffusion.
Vorticity and electromagnetic energy are still maximized along
the primary filaments, which are narrower and have been
expelled from the central region by mechanical stresses, and
by magnetic stresses associated with reconnection. These fila-
ments still retain much of the initial curvature that developed
during formation of the primary vortices. The jet has now
widened to about 3.4 times its initial width.

We now proceed to Fig. 19(b), which displays the vorticity
at 23.5 growth times. Note that, in order to preserve spatial
contrast, the color scales each span a smaller range. The
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system is well into the turbulent regime. About 2
3 of the peak

electromagnetic energy has been viscously dissipated from
the system, resulting in a loss of field line concentration,
and a decrease in vorticity in the primary filaments, which
have now been expelled to the left and right boundaries,
and have lost their curvature and become aligned with the
flow. The primary filaments have also shed fragments of
enhanced vorticity which lie along the central axis, and are
interspersed elsewhere in the interior. Throughout the interior
are small turbulent structures, which have been viscously
smeared due to the close correlation between the small length
scales and vorticity of these structures, and the length scales
and frequencies introduced by diffusion. The turbulent features
are partly driven by persistent magnetic reconnection. The
jet has now widened to about 3.6 times its initial width, and
decelerated from a flow speed of 0.7 c to about 0.3 c.

We now consider Figs. 20(a) and 20(b), which display the
vorticity and longitudinal velocity, respectively, of the system
at 37.9 growth times, as it approaches an equilibrium state
consisting of flow-aligned filaments (note change in vorticity
color scale, in order to preserve spatial contrast). The vorticity
is maximized in the outer filaments, but has decreased to
about a quarter of its peak value, and is therefore more
closely tuned to frequencies of modes introduced by diffusion,
resulting in widening of the filaments due to viscous smearing.
The magnetic field lines are more closely aligned with the
flow, as are the turbulent features, which are developing into
vortex filaments. The jet has broadened to about four times its
initial width (based on the vorticity display), while the central
flow region is about three times the initial jet width, and is
much broader and more heterogeneous than the equilibrium
central flow for the weaker field MA = 41.4. The central
flow consists of several regions whose flow speed is about
0.2 c interspersed with a background flow whose speed is
about 0.12 c. In particular, there is a narrow strip, along the
central axis, whose flow speed is about 0.18 c. For stronger
fields, we will also observe narrow central strips of relatively
high flow speed. However, these central channels will be
surrounded by much slower uniform background flows. The
central channel in a broad heterogeneous flow, as shown in
Fig. 20(b), represents an intermediate configuration between
the broad, more homogeneous equilibrium flow of a weak field,
with no central channel, and the equilibrium flow of a strong
field, which has a relatively fast central channel surrounded
by a slower background flow. Recall that a weak field, such
as MA = 41.4, has more magnetic reconnection, resulting in
vortical behavior that persists for many more growth times,
than the present case (MA = 20.7).

In the next section, we examine an unperturbed magnetic
field which is twice as strong as the one just examined. This
sheds light on the nature of vortex inhibition for a strongly
vortex-disruptive field.

E. Strong vortex-disruptive field (MA = 10.3)

We now consider the nonlinear evolution of a strong
vortex-disruptive field for which MA = 10.34 (see Table I for
relevant parameters). Figures 21 through 23 show the stages
of vortex inhibition. Here, vortex disruption is noticeable after
8.5 growth times, i.e., almost immediately after the vortices
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FIG. 21. (Color online) Vorticity for MA = 10.3 at (a) t =
8.64 Ti = 4.03 T = 92.2 r0/c, βmin = 0.87 and (b) t = 10.9 Ti =
5.10 T = 117 r0/c, βmin = 2.79.

begin to form (see Fig. 21), and the system has reached
an equilibrium filamented state after about 25 growth times
(see Fig. 23). The field MA = 10.34 also inhibits magnetic
reconnection, which occurs to a minimal extent after about
12 growth times, as the field lines diffuse into the partially
formed vortices [see Fig. 22(a)]. The equilibrium jet width is
about 12 r0, which is about 3.2 times the initial jet width. The
equilibrium flow contains a narrow central region of high flow
speed, low density, and width about 1

5 the initial jet width,
along with a background flow whose width is about 1.5 times
the width of the initial flow [see Fig. 23(b)]. We will observe
very similar equilibrium flow properties in Sec. VIII F, when
we consider a field which is strong enough to suppress vortex
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FIG. 22. (Color online) Vorticity for MA = 10.3 at (a) t =
13.2 Ti = 6.17 T = 141 r0/c, βmin = 4.05 and (b) t = 16.7 Ti =
7.78 T = 178 r0/c, βmin = 5.76.
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FIG. 23. (Color online) (a) Vorticity and (b) longitudinal velocity
at t = 27.1 Ti = 12.6 T = 289 r0/c, where MA = 10.3, βmin = 20.9.

formation (MA = 5.145). For this field, equilibrium is reached
after about 20 growth times, and the jet only widens to about
8 r0, which is about 2.25 times its initial width.

We now examine the displays for MA = 10.34 in more
detail. Figure 21(a), at 8.6 growth times, displays the vorticity
at the approximate saturation stage in the early nonlinear
regime. The partially formed vortices have already been
disrupted by strong magnetic stresses. As these stresses
oppose the rotation of the flow, it develops large shear
variations where the magnetic tension is greatest, resulting
in amplified filaments of high vorticity, and a large amount of
electromagnetic energy being extracted directly from the bulk
flow, energy that would otherwise be diverted into rotational
form. The magnetic stresses also cause the interiors of the
partially formed vortices to separate into regions of opposite
vorticity, resulting in extensive hybridization before the vor-
tices have the opportunity to acquire a well-defined clockwise
or counterclockwise vorticity. The field lines have begun to
diffuse into the partially formed vortices. We now proceed
to Fig. 21(b), after 10.9 growth times. Maximum vorticity
has been reached (after about 10 growth times), along with
maximum electromagnetic energy. The filaments of maximum
vorticity have thickened. The aforementioned regions of hybrid
vorticity, which had permeated the vortical regions, are now
compressed by magnetic tension into densely packed hybrid
filament layers. The ends of these filaments curl sharply in
response to the resistance exerted by magnetic stresses. This
high curvature enhances the diffusion of magnetic field lines
into the vortical regions, whose vorticity is almost entirely
concentrated in the filaments at the boundaries. The jet has
broadened to slightly over twice its initial width.

We now proceed to Fig. 22(a), after 13.2 growth times.
The electromagnetic and mechanical energies are now being
viscously dissipated into thermal energy. As a result, the
vorticity has decreased considerably, and correspondingly, the
central filaments have been viscously “smeared” into broader,
more gradually sheared regions. As the magnetic stresses have

decreased, the tips of the outer filaments have lost much of
their previous curvature. A portion of densely packed filament
became aligned with the central axis after about 12 growth
times, and now this filament is separating into a thick hybrid
structure in the central region. A small amount of magnetic
reconnection is now visible in the vortical regions into which
the field lines have diffused. Note that for a strong field
such as this one, the movement of magnetic field lines is
dominated not by vortex twisting, but by diffusion, which leads
to much weaker reconnection, if any. The jet has broadened
to almost three times its initial width. All of these processes
signify the transition of the system into a turbulent regime.
We now proceed to Fig. 22(b), after 16.7 growth times. The
system is now well into the turbulent regime, and the vorticity
has continued to decrease as more electromagnetic energy
is viscously dissipated. The outer filaments have lost more
of their curvature, and are becoming aligned with the flow,
signifying the inhibition of the vortices that partially emerged
in the early nonlinear regime. The central trunk, however,
has spread into a larger central region of curved filaments
surrounded by almost circular regions of newly emergent
vortical behavior.

Finally, we proceed to Figs. 23(a) and 23(b), which display
the vorticity and longitudinal velocity, respectively, after 27.1
growth times, as the system is approaching an equilibrium
state consisting of flow-aligned filaments (note change in
vorticity color scale, in order to preserve spatial contrast).
The filament width is about 1

5 the initial jet width, and the
filaments are interspersed with viscously smeared regions of
smaller vorticity of the opposite sign. These viscous regions
formed at the boundaries of the jet in the early turbulent regime,
as seen in Figs. 22(a) and 22(b). The jet has now broadened
to about 3.2 times its initial width, which is its approximate
equilibrium width. The flow consists of a narrow central strip
of relatively high flow speed of about 0.4 c, and whose width is
about 1

4 the initial jet width. Surrounding this narrow flow are
two vortex filaments, which show that this flow channel has
relatively high shear at its boundaries. Also surrounding the
flow channel is a background flow whose width is about 1.5
times the initial jet width, and whose flow speed has a nearly
uniform value of about 0.2 c. This background flow coincides
with the central vortical region described in Fig. 22(b). We will
see that in the case of a vortex-suppressing field, the width of
this background flow is nearly identical to the initial jet width.

We see that for stronger unperturbed fields, the vortices
are inhibited at an earlier point in their rotation, and there
is therefore less twisting of the field lines, which results in
less magnetic reconnection. As the amount of reconnection
diminishes, the reconnection that does occur is driven less
by vortex twisting and to a greater extent by diffusion of
the field lines. With less magnetic reconnection, the turbulent
reorganization of the system is less complex, and the transition
to a flow-aligned filamented state is more rapid. Apart from
more rapid vortex inhibition, stronger fields also result in
a suppression of both magnetic reconnection and of the
complexity of turbulent breakdown. Correspondingly, for
stronger unperturbed fields, the filament widths are narrower,
and the equilibrium jet widths are narrower. Let W0 denote
the initial jet width and Wf the equilibrium jet width. For
MA = 41.4, Wf ≈ 4.5 W0. For MA = 20.7, Wf ≈ 4 W0. For
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MA = 10.3, Wf ≈ 3.2 W0. And for the vortex-suppressing
field MA = 5.15, Wf ≈ 2.25 W0. These equilibrium widths
correspond to an initial perturbation wavelength of 7.85 r0.
The equilibrium width seems to scale with input wavelength
for weaker fields, but not for stronger fields. This may result
from weaker fields that stimulate vortex rotation that has the
effect of coupling longitudinal and transverse length scales.

We have examined fields that allow a certain amount of
vortex formation. We now double the field strength once again,
from MA = 10.3 to 5.15, and examine a field that suppresses
vortex formation entirely.

F. Vortex-suppressing field (MA = 5.15)

We now consider a magnetic field which is strong enough
to suppress vortex formation, which means that MA is less
than about 6. Specifically, MA = 5.15. As before, the initial
jet width is about 3.6 r0. Figures 24 through 26 show the
suppression of vortex formation, and the rapid transition to
a flow-aligned filamented state. As before, each color display
(vorticity and longitudinal velocity) is overlaid with contours
of the magnetic field lines.

We begin by examining Fig. 24. In Figs. 24(a) and 24(b), at
8.6 growth times, we are approximately at the saturation stage
of the early nonlinear regime, where vortices would ordinarily
develop. However, the magnetic tension resists vortex forma-
tion, resulting in filaments of enhanced vorticity and enhanced
current density. The translational kinetic energy extracted from
the flow is converted mostly into electromagnetic energy, with
very little rotational energy, since the vortices fail to form. As
shown in Fig. 24(b), this results in a deceleration of much of
the flow, in particular, the regions of flow that perform the most
work against the magnetic tension in the field lines, i.e., the
background flow surrounding a narrow channel of high flow
speed.

We continue to examine Fig. 24. There remains a central
channel of maximum flow velocity ranging from 0.5 c to 0.6 c,
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FIG. 24. (Color online) (a) Vorticity and (b) longitudinal velocity
at t = 8.62 Ti = 4.93 T = 117 r0/c, where MA = 5.15, βmin = 1.62.
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FIG. 25. (Color online) (a) Vorticity and (b) longitudinal velocity
at t = 13.2 Ti = 7.52 T = 178 r0/c, where MA = 5.15, βmin = 3.97.

whose width is about 1
5 the initial jet width, outside of which

the flow speed drops abruptly to an average of about 0.3 c.
The abrupt shear at the channel boundaries accounts for the
central filaments of high vorticity. The outer high-vorticity
filaments are produced by an abrupt shear in the background
flow. However, this background flow is very heterogeneous,
varying from about 0.2 c to about 0.35 c. There is very close
complementarity between the flow and magnetic field. As seen
in Fig. 24(b), the field lines bend in response to the flow, and
are concentrated where the flow exhibits rapid shear. This
behavior gives rise to a large curl of the field, producing high-
density current filaments. Certain field-influenced quantities
(vorticity, current density, electromagnetic pressure, etc.) are
enhanced by the direct conversion of bulk flow energy into
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FIG. 26. (Color online) (a) Vorticity and (b) longitudinal velocity
at t = 21.8 Ti = 12.5 T = 295 r0/c, where MA = 5.15, βmin = 8.75.
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electromagnetic energy. Neither the vorticity in Fig. 24(a) nor
the current density have yet reached their peak values. Both
are still increasing.

However, the increase in electromagnetic energy is lim-
ited by the complete suppression of vortex formation since
developing vortices would expel the field lines, providing
further field amplification at the vortex boundaries. This is
why, as we will see in Sec. VIII G, electromagnetic energy is
not maximized for a strong vortex-suppressing field. Rather,
vorticity and electromagnetic pressure are maximized for the
strongest fields that still allow some vortex formation. This
indicates that although the enhancement of these quantities is
heavily dependent on the energy contained in the unperturbed
field, this enhancement also has some dependence on field
amplification due to vortex-induced centrifugal expulsion of
field lines.

We return to the case MA = 5.145, and progress to 13.2
growth times, for which the relevant displays are shown
in Fig. 25. The vorticity and current density have already
peaked, after about 10 growth times, and are now decreasing,
as electromagnetic energy is now being viscously dissipated
into thermal energy. From Fig. 25(a), the vortex and current
filaments have become more closely aligned with the flow,
and the jet has widened to about twice its initial width. There
are now more filaments of alternating vorticity and alternating
current density. The filaments alternate not only in the direction
of vorticity (or current density) but also in the magnitudes of
these quantities. That is, the vortex filaments in Fig. 25(a)
alternate spatially between well-defined, narrow filaments of
high vorticity, and less well-defined, viscously “smeared out”
filaments of larger width and smaller vorticity in the opposite
direction. The same happens with the current filaments. This
is a striking manifestation of the viscous dissipation of
electromagnetic and mechanical energy. The more sharply
defined filaments have also narrowed, relative to Fig. 24(a),
from 1

5 of the initial jet width to only about 1
8 the initial jet

width. The vorticity is maximized around the narrow central
flow region, which has also become more closely aligned with
the flow direction. As shown in Fig. 25(b), the flow within
this central channel has become more homogeneous, with
a nearly uniform flow speed of 0.5 c. The background flow
surrounding the central channel is still fairly heterogeneous,
with flow speeds ranging from 0.2 c to 0.3 c.

In Fig. 26, we see that after 21.8 growth times (note change
in color scales, in order to preserve spatial contrast), the flow
has relaxed to an equilibrium state in which the filaments
are aligned with the flow direction, and the jet has further
widened to about 8 r0, or 2.25 times its initial width. As
shown in Fig. 26(a), the vorticity and current density are now
only about 1

3 of their peak values. The filaments of relatively
high vorticity (and current density) are now located at the
left and right boundaries, and along the central axis. The
enhanced vortex filaments have a width of about 0.6 r0, i.e.,
1
6 of the initial jet width, while the current filaments are only
about 1

8 the initial jet width. Viscous dissipation has smeared
the vorticity in the region between the central axis and the
boundaries. This is likely due to the same mechanism discussed
in the vortex-disruptive case. In particular, the vorticity has
decreased by a factor of about 4, from its initial average
value, and is now closer to the frequencies of modes associated

with diffusion. The system therefore has a higher correlation
with viscous processes, enabling a greater amount of energy
transfer via viscous interactions. In Fig. 26(a), each filament
of high vorticity corresponds to a pair of current filaments
of alternating current density. A comparison of Figs. 26(a)
and 26(b) shows that filaments of high vorticity correspond to
locations of large and abrupt shear variation in the flow.

As shown in Fig. 26(b), the flow speed within the narrow
central flow remains at a uniform value of 0.5 c. Since its
formation in the early nonlinear regime, this central flow
channel has maintained a nearly constant width of about
0.7 r0, or 1

5 the initial jet width, and corresponds to a narrow
region of low density (i.e., a density undershoot, which we
also observed in the vortex-disruptive case, but with a wider
flow). Similar density undershoots were observed in the MHD
simulation of Frank et al. [27] and the RMHD simulation of
Mignone et al. [54]. This narrow central flow region occurs for
stronger fields (MA = 5.145 and 10.3), and is a consequence
of the field lines having sufficient magnetic tension to extract
large amounts of electromagnetic energy directly from the
translational kinetic energy of the flow, without allowing more
of this energy to be diverted into the rotational kinetic energy of
developing vortices. Surrounding this narrow central flow is a
region in which the flow speed is about 0.3 c and whose width
is very nearly equal to the initial flow width (about 3.6 r0).
The background flow is also much more homogeneous than
at earlier times. These same flow properties are also observed
in the equilibrium state of the strongly vortex-disruptive field
MA = 10.3 (see Fig. 23). As with the weaker vortex-disruptive
fields, the system has relaxed to an equilibrium configuration
which retains a memory of its initial configuration. In the initial
jet, and the equilibrium configurations of vortex-disruptive
and vortex-suppressing fields, we have vortex filaments of
positive vorticity to the right of the axis, and filaments of
negative vorticity to the left of the axis, along with flow velocity
falling off with distance from the central axis, asymptotically
approaching zero. However, unlike the vortex-disruptive case
MA = 41.4, the relaxation to equilibrium occurs after about
20 growth times, whereas in the MA = 41.4 case, equilibrium
still has not been reached after 60 growth times. There is
also greater enhancement of vorticity, along the axis and
at the boundaries, for the vortex-suppressing case than the
vortex-disruptive cases. Only the vortex-suppressing case,
and the strongly vortex-disruptive case MA = 10.3, contain
a narrow central region that retains high flow speed. Only the
vortex-suppressing case develops a background flow region of
uniform flow speed whose width very nearly coincides with
the width of the initial jet, as shown in Fig. 26(b). Thus, we
see that when vortices are completely suppressed, the system
retains not only a qualitative but also a quantitative memory
of the initial flow.

We see that maximum flow deceleration, from 0.7 c to
about 0.2 c, occurs for the intermediate vortex-disruptive fields
MA = 41.4 and 20.7, whereas the stronger fields only decel-
erate the jet to about 0.4 c (MA = 10.3) or 0.5 c (MA = 5.13).
The intermediate vortex-disruptive fields allow a sufficient
amount of vortex development to result in a complex reor-
ganization process associated with vortex disruption, partly
driven by extensive magnetic reconnection. This maximizes
the complexity and number of smaller-scale structures arising
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from turbulent breakdown, which in turn enhances the amount
of correlation with the small length scales set by diffusion. This
maximizes the viscous dissipation of mechanical energy into
thermal energy. For stronger fields, there is less dissipation, and
the residual mechanical energy is concentrated in a narrow
central flow channel. For weaker fields (e.g., MA = 82),
vortex disruption is too gradual, and the emergent features
are dissipated before they have the opportunity to interact in a
turbulent manner.

Having examined two-dimensional displays of our simula-
tion results, in the next section we wish to further illuminate
these results by examining plots, versus time, of certain
spatially averaged or maximized quantities.

G. Bifurcations in energy transfer

We have observed several bifurcations in the mechanisms
of energy transfer during nonlinear evolution, which is to say,
certain energy-transfer processes are optimized at intermediate
field strengths. We observed the first such bifurcation in
the viscous dissipation of mechanical and electromagnetic
energy into thermal form, which is optimized for interme-
diate vortex-disruptive fields. We see this more explicitly in
Fig. 27, which shows the time dependence of the (a) average
longitudinal velocity and (b) average pressure. As the field
strength increases from MA = 82 to 41 and 21, the average
longitudinal velocity decreases in the latter nonlinear regime,
and the average pressure correspondingly increases. However,
as the field strength continues to increase to MA = 10.3 and
5.1, the average longitudinal velocity now increases, and the
average pressure decreases. That is, the longitudinal velocity is
minimized, and the pressure maximized, for the intermediate
fields MA = 41 and 21.

As we have seen, these field strengths allow fairly extensive
vortex formation, which is followed by sufficiently rapid
vortex disruption to lead to a complex turbulent regime.
The small length scales of these turbulent structures are
comparable to length scales set by diffusion. Furthermore,
the turbulent structures have much smaller vorticity (only
about 1

4 of the value at the amplification stage), and this
vorticity is more comparable to the frequencies associated
with diffusion. The resulting turbulent evolution is therefore
closely correlated with viscous dissipation into thermal energy
(seen in the maximized thermal pressure), and consequent
deceleration of the jet (seen in the minimized longitudinal
velocity). Turbulence also diverts the directional energy of
the bulk flow into random motions, which maximizes the
longitudinal deceleration. Stronger fields (e.g., MA = 10.3 and
5.1) do not allow sufficient vortex development to lead to a
complex turbulent regime, and therefore viscous dissipation is
not as great. In these strong-field cases, the residual mechanical
energy is concentrated in a narrow central flow channel. For
weak fields (MA = 82), the vortex disruption is too gradual,
and therefore the emergent features are dissipated before
they can interact with one another in a turbulent manner.
This bifurcation is also observed in plots of the root-mean-
squared (RMS) and maximum Lorentz factor versus time.
The bifurcation is not observed, however, in the RMS and
maximum transverse velocity. The transverse motions are
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FIG. 27. (Color online) Average (a) longitudinal velocity and (b)
pressure vs time at different field strengths, where MA is labeled
above.

correlated with vortex development and jet broadening, both
of which are increasingly suppressed for stronger fields.

Figure 27 also shows nonlinear oscillations in the curves
corresponding to the weaker fields MA = 82, 41, and 21.
However, these oscillations are suppressed for the stronger
fields MA = 10.3 and 5.1. The oscillations are caused by a
pair of nonlinear transverse acoustic waves which propagate
between the jet axis and transverse boundaries. Although the
system width has an influence on the period of these acoustic
waves, it does not significantly influence the evolution of
the flow and its interaction with the magnetic field, as we
have verified by comparing results for two different system
widths. Fields for which MA < 20 are strong enough not
only to suppress complex turbulent breakdown and viscous
dissipation, as described above, but also to suppress nonlinear
acoustic waves. The unperturbed flow speed in these cases
is 0.7 c along the central axis. For less relativistic flow
speeds, these oscillations have smaller amplitude, and for
nonrelativistic flows, the oscillations are barely noticeable.
These acoustic waves are therefore a relativistic effect.
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FIG. 28. (Color online) (a) RMS vorticity vs time and (b) max.
EM to thermal pressure (relative to unperturbed value) vs time at
different field strengths, where MA is labeled above.

The second bifurcation pertains to the electromagnetic
(EM) energy in the early nonlinear regime, which reaches its
largest values for strong vortex-disruptive fields, that is, fields
which are strong enough to suppress vortex development and
turbulent breakdown, but not strong enough to completely
suppress vortex formation. Among the fields sampled, this
corresponds most closely to the field MA = 10.3, as shown
in the plots in Fig. 28, which shows the (a) RMS vorticity
and (b) maximum electromagnetic pressure as functions of
time. Both quantities, as with other quantities related to
field strength, reach a peak in the early nonlinear regime,
followed by gradual decay that asymptotically approaches
a small equilibrium value. In both plots, we see that as
field strength increases through the vortex-disruptive regime
(from MA = 82.8 to 10.3), the peaks increase in height.
However, for the vortex-suppressing field MA = 5.1, the
peaks are considerably smaller. This means that, although
the amount of electromagnetic energy in the flow is heavily
dependent on unperturbed field strength, maximization of
electromagnetic energy requires some field amplification
through vortex formation. This is seen by the smaller peak
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FIG. 29. (Color online) (a) RMS current density and (b) average.
EM pressure amplification vs time at different field strengths, where
MA is labeled above.

values for the vortex-suppressing field. That is to say, higher
electromagnetic energies are reached when some of the bulk
flow energy is diverted into rotational form, allowing diffusion
of the field lines into partially formed vortices. This same
argument applies to maximization of related quantities such as
electromagnetic momentum and vorticity.

As shown in Fig. 29(a), the current density also exhibits
an early peak followed by a gradual decay. However, the peak
current density is maximized for the weak vortex-disruptive
field MA = 41. This is because current density is the curl
of the field, and therefore is dependent not so much on the
field strength as on the shear in the field strength. Maximum
shear occurs through concentration of the field lines, which
requires fairly extensive vortex formation, and therefore a
weak vortex-disruptive field. Also, whereas maximum electro-
magnetic energy is achieved for strong vortex-disruptive fields,
maximum amplification of electromagnetic energy, relative to
its initial value, is achieved for the weakest fields, as shown
in Fig. 29(b). That is, field amplification is proportional to the
amount of vortex development, and therefore decreases with
increasing field strength. So, although there is a bifurcation
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FIG. 30. (Color online) Longitudinal velocity vs x/r0 at z = 0
for unmagnetized case at times listed above in units of growth time.

in the amount of electromagnetic energy extracted, there is no
such bifurcation in the amplification of electromagnetic energy
relative to its unperturbed value.

In the next section, we further explore certain quantitative
aspects of the evolution of the flow.

H. Properties of the flow evolution

Here, we further illuminate certain quantitative properties
of the flow evolution for the field strengths studied, first by
presenting cross sections of longitudinal flow speed, and then
by presenting graphs of the spatially averaged relativistic
Alfvénic Mach number MA as a function of time. We do each
of the above for the different field strengths studied. First,
for each field strength, including the unmagnetized case, we
display cross sections of the longitudinal flow speed at z = 0
for a set of successive times in the simulation (in units of the
growth time Ti). These are shown in Figs. 30 through 34. In
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FIG. 31. (Color online) Longitudinal velocity vs x/r0 at z = 0
for MA = 41 at times listed above in units of growth time.
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FIG. 32. (Color online) Longitudinal velocity vs x/r0 at z = 0
for MA = 21 at times listed above in units of growth time.

each case, the profile at time t = 0 is the sech2 profile given in
Eq. (4).

We first examine Fig. 30, which corresponds to the
unmagnetized case. Here, we see that the flow speed amplitude
rapidly decreases during the linear evolution (prior to about
nine growth times) from 0.7 c to an equilibrium value of
roughly 0.5 c. The curves also lose their symmetry due to
the emergence of the primary vortices, where the location
of the velocity peak (to the left or right) is determined by
the nature of the vortical behavior at z = 0 at the time being
plotted. The vortices also cause backflow which results in the
negative flow speeds seen at the boundaries of the profiles.
The presence of negative flow speeds well into the nonlinear
evolution is a sign that the vortices persist in the absence of
a magnetic field. The profiles have also broadened to about
four times the initial flow width, which is comparable to
the amount of broadening observed for a weak field, as in
Fig. 31. This indicates that much of the jet broadening observed
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FIG. 33. (Color online) Longitudinal velocity vs x/r0 at z = 0
for MA = 10 at times listed above in units of growth time.
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FIG. 34. (Color online) Longitudinal velocity vs x/r0 at z = 0
for MA = 5.1 at times listed above in units of growth time.

in the displays is a consequence of vortex formation, and
turbulent vortex inhibition by the field contributes relatively
little additional broadening. We also see that flow deceleration,
probably through viscous dissipation, begins in the linear
regime, and does not require vortex formation or turbulent
interaction with a magnetic field.

We now examine Fig. 31, corresponding to the relatively
weak vortex-disruptive field MA = 41. Again, much of the
flow deceleration, from 0.7 c to 0.4 c, occurs during the linear
regime. The curves corresponding to fewer than 10 growth
times are quite similar to those in Fig. 30, indicating that prior
to the point of field amplification by the vortices, the magnetic
field has little influence on the evolution. The curve at 15.2 Ti

exhibits rapid fluctuations, corresponding to a transition to
a turbulent regime as the vortices are almost completely
inhibited. In the later stages of the nonlinear evolution, the
thick black curves have a more regular shape, and a central
flat region, consistent with our previous observation in the
displays of the formation of a fairly homogeneous central flow
corresponding to a central region of persistent vortical activity.
We also observe deceleration to a flow speed of about 0.2 c,
consistent with turbulent dissipation of mechanical energy for
weak vortex-disruptive fields. The presence of a backflow
region (a region of negative flow speeds) at 9.1 Ti indicates
the presence of vortices at this time. The lack of a backflow in
the other curves indicates that at these times the vortices have
either not formed or have been inhibited.

We now examine Fig. 32, corresponding to the intermediate
vortex-disruptive field MA = 21. The first three curves show
that the linear and early nonlinear evolution, prior to 10 Ti , is
similar to the previous two cases. The presence of a backflow
region at 9.0 Ti indicates the presence of vortices at this time,
but not at the other times plotted, as these curves do not
have backflow regions. The fluctuations in the curve at 15.1 Ti

indicate turbulent reorganization similar to that observed for
MA = 41. The thick black curves show a deceleration to 0.2 c,
as with MA = 41, as equilibrium is approached. However,
these late evolution curves exhibit more fluctuation than the
corresponding curves for MA = 41, which is consistent with

our observation from the displays that the central flow region
is more homogeneous for MA = 41 than for MA = 21. There,
amount of broadening of the flow is comparable to that
observed for the unmagnetized case.

The curves in Fig. 33 correspond to the strong vortex-
disruptive field MA = 10. There is less flow deceleration than
in the weaker field cases, as the flow speed amplitude remains
above 0.3 c as equilibrium is approached, and less broadening
of the flow. This is consistent with our observations from
the displays that this field inhibits the vortices while partially
formed, which therefore reduces the amount of vortex twisting
of field lines, magnetic reconnection, turbulent reorganization,
and hence viscous dissipation of mechanical energy into
thermal energy. The residual mechanical energy is contained in
a central channel, seen previously in the longitudinal velocity
displays and here in the central velocity peaks in the curves
corresponding to later evolution. These velocity peaks are not
present in the late evolution curves for the weaker fields. These
curves also exhibit less fluctuation, consistent with the reduced
amount of turbulence.

The curves in Fig. 33 correspond to the vortex-suppressing
field MA = 5.1. We see that in the absence of vortex formation,
the central flow peak remains very pronounced, and remains
above about 0.45 c well into the nonlinear evolution, at times
much larger than 18.1 Ti . The curves also show much less
broadening and reduced turbulent fluctuations. We see how
closely these phenomena are associated with vortex formation
and interaction with weak fields.

We now examine the time evolution of the spatially
averaged relativistic Alfvénic Mach number for each of the
unperturbed values of MA in this study. When we refer to a
simulation as corresponding to a given value of MA, whether
41, 21, 10, or 5, this refers to the unperturbed value calculated
using Eq. (13) from the initial unperturbed values of the
quantities. We can, however, also define an instantaneous value
of this parameter at a given time and location as follows:

MA(x,z,t) = v(x,z,t)γ (x,z,t)

vA(x,z,t)γA(x,z,t)
, (22)

where

v(x,z,t) =
√

vx(x,z,t)2 + vz(x,z,t)2,

vA(x,z,t) =
√

Bx(x,z,t)2 + Bz(x,z,t)2

√
w(x,z,t)

,

γ (x,z,t) = 1√
1 − v(x,z,t)2/c2

,

(23)

γA(x,z,t) = 1√
1 − vA(x,z,t)2/c2

,

w(x,z,t) = ρ(x,z,t) + �

� − 1
P (x,z,t)

= ρ(x,z,t) + 4 P (x,z,t).

In Fig. 35, we present the spatially averaged value of
MA(x,z,t) as a function of time for a set of representative field
strengths corresponding to unperturbed initial MA of 82, 41,
21, 10, and 5, in order of increasing field strength. The periodic
oscillations are due to oscillations in the flow speed, caused by
boundary reverberations of transverse acoustic waves, which

043101-24



ROLE OF THE KELVIN-HELMHOLTZ INSTABILITY IN . . . PHYSICAL REVIEW E 87, 043101 (2013)

0 10 20 30 40 50
0

1

2

3

4

5

6

7

8

9

t /Ti

<M
A

(t)
>/

<M
A

(0
)>

 

 

82
41
21
10
5

FIG. 35. (Color online) Spatially averaged relativistic Alfvénic
Mach number 〈MA〉 vs t/Ti for unperturbed values of MA listed
above. The average MA are scaled relative to their average values
at t = 0, and these initial average values scale with the unperturbed
values of MA.

we have shown does not significantly influence the evolution
of the flow. These oscillations are suppressed for stronger field
strengths. For weaker fields, we see that 〈MA〉 increases more
rapidly with time, and at later times is at a larger multiple of
its initial value. For stronger fields, 〈MA〉 tends more quickly
toward an equilibrium value which is about 1.5 times its initial
value. This trend is consistent with the tendency of stronger
fields to suppress intermediate turbulent behavior and produce
a rapid transition to an equilibrium filamented state.

For lower values of the initial MA, 〈MA〉 at later times is
a smaller multiple of its initial value. There are two factors
involved in this trend. The intermediate fields MA = 41 and
21 correspond to maximum deceleration of the central flow,
discussed in Sec. VIII G, resulting in less amplified equilibrium
values of 〈MA〉 than for the weaker field MA = 82, for which
there is much less deceleration of the flow. Figure 35 shows
that for MA = 41 or 21, 〈MA〉 is only amplified by a factor of
about 2. For the stronger fields MA = 10 and 5, the equilibrium
values of 〈MA〉 are even less amplified (only 1.5 times the
initial value). Although the flow deceleration is not as great
for these cases, the tension in the magnetic field lines is able
to maintain the magnetic field strength during the transition to
equilibrium, thereby minimizing the amplification of 〈MA〉.

Another feature of interest, particularly for the weaker
fields, are the early peaks in 〈MA〉 after about 10 growth times,
followed immediately by troughs at about 12 growth times.
The early peaks correspond to the initial formation of the
large primary vortices immediately after saturation. The rapid
fluid circulation within the vortices increases the average flow
speed, thereby increasing 〈MA〉. For stronger fields, which
more rapidly suppress vortex formation, these peaks are not
nearly as evident. The troughs at about 12 growth times
correspond to field amplification through centrifugal expulsion
of field lines by the rotating vortices. This amplification of
field strength causes a decrease in 〈MA〉. This feature, also, is
more pronounced for the weaker-field cases, for which there is
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FIG. 36. (Color online) Vorticity at (a) vz0 = 0.7 c and (b) vz0 =
0.5 c, where MA = 20.7 and t = 12.2 Ti .

greater vortex twisting of the field lines, and therefore greater
concentration of centrifugally expelled field lines.

Unless otherwise noted, MA is given by Eq. (13), and
corresponds to initial unperturbed quantities. We now proceed
to verify that, for a given value of MA, the results exhibit little
dependence on flow speed.

I. Importance of the parameter MA

In this section, we consider a given value of MA and
compare numerical results for two different unperturbed flow
speeds. We consider the field corresponding to MA = 20.7,
and unperturbed flow speed amplitudes of 0.7 c and 0.5 c.
Because these two cases have the same MA but different flow
speeds, they also have different values of the Alfvén speed vA,
the plasma β, and the linear growth rate ωi . The growth time
is Ti = 1/ωi = 10.2 r0/c at 0.7 c and Ti = 13.4 r0/c at 0.5 c.
Figure 36 shows the vorticity displays for each flow speed
after 12.2 growth times. As the figures illustrate, the results
exhibit close agreement well into the nonlinear evolution. The
most noticeable difference is a longitudinal shift arising from
the difference in pattern speeds. Close agreement between
flow speeds is seen in each value of MA studied [63]. This
demonstrates that within a regime of moderately relativistic
unperturbed flow speeds (between about 0.25 c and 0.8 c), the
influence of the magnetic field is governed not by flow speed,
Alfvén speed, or the plasma β, but instead by the parameter
MA, our relativistic extension of the Alfvénic Mach number,
as we have defined it in Eq. (13). Furthermore, the agreement
occurs after a given number of growth times Ti = 1/ωi , as
opposed to clock times, periods, sound transit times, Alfvén
transit times, etc. The growth time is therefore the most
reasonable unit for characterizing the time dependence of the
evolution.

We now verify that, to a high degree of numerical accu-
racy, the vorticity satisfies a certain condition of alternating
symmetry.
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J. Alternating symmetry of vorticity

We notice throughout our vorticity displays that the vor-
ticity satisfies a certain condition of alternating symmetry,
which is dictated by the symmetry of the unperturbed velocity
profile and the antisymmetry of the pressure perturbation
profiles. Specifically, we have equal and opposite vorticity
on either side of the central axis at locations separated by half
the longitudinal perturbation wavelength. If we denote the
vorticity (x,z,t), then mathematically, this condition reads
as

(x,z,t) = −(−x,z + λ/2,t), (24)

where λ = 2π/kz is the wavelength of the initial perturbation.
This condition is a mathematical interpretation of the half-
wavelength separation of counter-rotating vortices that form
in the early nonlinear evolution, but is maintained throughout
the evolution, in both the magnetized and unmagnetized cases.
The accuracy with which this condition is satisfied provides a
measure of the numerical accuracy of our results. Specifically,
we compute the ratio

f = |(x,z,t) + (−x,z + λ/2,t)|
|(x,z,t)| . (25)

The average value of this ratio is roughly 10−5 during the
nonlinear evolution of a magnetized case. This provides
one method of validation of the numerical accuracy of our
simulations.

We have examined the evolution of the flow for a wide
range of unperturbed field strengths. However, all of these
fall within roughly an order of magnitude of one another,
which falls within the uncertainty in estimates of magnetic
field strength of astrophysical jets, obtained from synchrotron
emission observations. It is therefore of interest to identify
potential applications of our simulation results to various
observed jets, which we proceed to do in the next section.

K. Comparison with jet observations

In this section, we offer potential applications of our
simulation results to jet observations. However, we do not
make any claims as to the accuracy or completeness of our
model in describing the physical mechanisms behind any of
the jets mentioned. Other mechanisms (e.g., radiative cooling,
jet precession) are undoubtedly present.

Several extragalactic jets show qualitative agreement with
vortex formation, followed by vortex inhibition by a disruptive
magnetic field (including M87, Centaurus A, 3C 120, 3C
273, HH 30, HH 49, etc.). Closer to the nucleus, we often
observe features resembling vortices. This is often followed by
a disruptive stage in which these features break into smaller-
scale structures, qualitatively resembling vortex disruption and
turbulent breakdown. Filaments are observed in such jets as
M87 [64], 3C 273 [19], and 3C120 [17,18]. These might
be produced by vortex shedding during the disruptive stage,
or might be associated with the dual filamentary structure
connecting the vortices throughout their development. Many
images also show significant jet widening, consistent with the
widening observed in the simulations. In the outer regions
of the jet, this widening seems to be coupled with the
viscous dissipation and flow deceleration also observed in

FIG. 37. (Color online) Extragalactic jet M87 (aka Virgo A,
NGC 4486).

the simulations. Note that for the model we are using, a
magnetic field is required in order to qualitatively reproduce
these observed features. In particular, the field should be vortex
disruptive, and not vortex suppressing, since the features are
closely correlated with the stages of vortex inhibition. In the
absence of a magnetic field, the simulation predicts that the
vortices persist almost indefinitely.

Figure 37 shows three images of the extragalactic radio jet
M87, also known as Virgo A, and NGC 4486 (this figure
was taken from http://apod.nasa.gov/apod/ap011101.html).
The x-ray image is produced by Chandra, the radio image
by the VLA (very large array), and the optical image by the
Hubble Space Telescope. M87 is a highly energetic plasma jet
extending 1.5 kpc, and which emanates from a supermassive
central black hole in a supergiant elliptical galaxy. As in our
simulations, the unperturbed magnetic field is believed to be
primarily aligned with the flow [64]. However, in certain knots
(i.e., knot A and knot C), the field is believed to be primarily
transverse to the flow [64], which might be consistent with
vortex twisting of field lines within these knots, resulting in
field amplification. Stawarz et al. [65] estimated an amplified
field of at least 300 μG within knot A, where the field
elsewhere in the jet is believed to be less than about 100 μG,
as discussed in Hines et al. [64]. So, the knots may indeed
behave like vortices, twisting the magnetic field lines into
partially transverse configurations, and centrifugally expelling
them to the vortex extremities, resulting in field amplification.
Furthermore, the field outside the knots is believed to be
aligned with the flow [64], which is the unperturbed field
configuration used in our numerical simulations.

Whereas our simulation displays show the behavior of the
flow at a sequence of time steps, Fig. 37 shows a view of
an entire jet, which is to say, multiple stages of evolution in
a single image. As our numerical simulation box progresses
forward in time, we can think of our simulation box moving
outward along the axis of the jet, away from the central nucleus.

It should be emphasized that these comparisons only sug-
gest possible physical mechanisms that might offer insight into
the observed jet features. Other mechanisms (radiative cooling,
etc.) are undoubtedly present. Another important point is
that the field strengths examined in our study are separated
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by roughly an order of magnitude, which falls well within
the uncertainty in estimates of field strength in astrophysical
jets. These estimates are obtained from synchrotron emission
observations.

We now proceed to summarize the salient conclusions of
our study.

IX. CONCLUSION

We have examined the evolution of the KH instability in
a relativistic magnetized sheared plasma flow. We did this
by numerically solving the single-fluid RMHD equations of
Anile [51] in conservative form, using a method which is
fourth order in both space and time, and which uses the highly
accurate, rapidly convergent algorithm of Newman [26] to
recover the primitive variables from the conserved quantities
in the RMHD equations. The exact single-fluid equations are
marginally stable, but become unstable when discretized in a
numerical scheme. We therefore used numerical viscosity to
restore stability to the system. In explicit finite-differencing
schemes, viscosity is implicitly present in second order. The
use of fourth-order methods gives us explicit control over the
viscosity coefficients.

Our simulation results show good convergence with respect
to time step, spatial step, system dimensions, viscosity, and
between the RHD, MHD, and RMHD regimes. Each magnetic
field remains approximately divergenceless throughout the
evolution, and the vorticity satisfies the condition of alternating
symmetry to a high level of accuracy, as shown in Sec. VIII J.
When we speak of convergence with respect to the longitudinal
dimension, we mean that the results are essentially unaffected
by the number of perturbation wavelengths spanned by the
system in the longitudinal direction. There are nonlinear
transverse acoustic waves whose oscillation period is affected
by the transverse system width. However, we have shown that
this does not in turn significantly influence the evolution of the
flow and its interaction with the magnetic field. Therefore, the
evolution is convergent with respect to system width. Further
detail of this is provided in Hamlin [63].

In several respects, we have convergence between the HD,
RHD, MHD, and RMHD regimes. The linearization of the
single-fluid equations yields a second-order ODE, given by
Eq. (10) in Sec. V, which has the same underlying structure in
all four regimes [63]. We have also verified that the nonlinear
simulation results are convergent between the four regimes
[63], as are the results for the linear growth rates [63]. These
demonstrations are provided in more detail in Hamlin [63].

In the absence of a magnetic field, we found KH-unstable
vortices, connected by a dual filamentary structure, which
persist well into the nonlinear regime. When a magnetic
field is present, the vortices are inhibited through a series
of stages. Aspects of these stages are discussed in classical
MHD literature [27–29,38]. We have examined in detail how
and to what extent these stages manifest in RMHD for a set of
representative field strengths. We have found that the influence
of the magnetic field is strongly correlated with a relativistic
extension of the Alfvénic Mach number MA, which we have
defined, in Eq. (13), analogously to the manner in which Bodo
et al. [31] defined a relativistic extension of the sonic Mach
number. As we saw in Sec. VI B, the fractional reduction in

linear growth rate is closely correlated with MA. For each value
of MA studied, we have also compared our simulation results
at two different unperturbed flow speeds, 0.7 c and 0.5 c, and
found that the results maintain close similarity well into the
nonlinear regime of evolution. This demonstrates that within
a regime of moderately relativistic flow speeds (vz0 between
approximately 0.25 c and 0.8 c), the parameter MA indeed has
a close correlation with the influence of the magnetic field on
the flow.

The stages of vortex inhibition are as follows. First, the
rotating vortices centrifugally expel the field lines to the vortex
extremities, so that they become concentrated in external
connective filaments, resulting in amplified field in these
filaments. The vortices twist the field lines as they rotate,
resulting in magnetic reconnection. The field lines in turn exert
magnetic stresses on the vortices, which halt their rotation,
and result in vortex deformation and shedding of amplified
filamentary features. This is the disruptive stage. The vortices
then undergo reconnection-driven turbulent breakdown into
small-scale structures, resulting in jet deceleration and broad-
ening as energy is viscously dissipated. Finally, the system
relaxes to an equilibrium configuration in which the field lines
and vortex filaments are aligned with the flow direction. Vortex
disruption corresponds to a disruption of the faster-moving
components of the flow, leaving behind the slower-moving
background flow.

For all field strengths studied, there is remarkable com-
plementarity between the flow and the magnetic field, seen
in the overlays of the field lines onto color displays of the
vorticity and longitudinal flow. This complementarity can be
viewed in terms of an interaction between mechanical energy
and electromagnetic stresses. When the vortices form shortly
after saturation, the flow initially drives the field, through field
amplification by centrifugal vortex expulsion of field lines, and
subsequent twisting of the field lines through vortex rotation.
Then, the field builds up sufficient electromagnetic stresses
to constrain the flow, as the tension in the field lines halts
vortex rotation while deforming and disrupting the vortices.
Vortex behavior also leads to magnetic reconnection, which in
turn enhances the turbulent breakdown of the faster-moving
components of the flow.

In general, for stronger unperturbed fields, there is more
rapid vortex inhibition, less magnetic reconnection, less jet
broadening, and a more rapid transition to an equilibrium flow-
aligned state. Sufficiently strong fields (MA < 6) suppress
vortex formation altogether, resulting in an immediate transi-
tion to an equilibrium state. For the weakest vortex-disruptive
fields (e.g., MA = 82), there is extensive jet broadening due
to extensive vortex development. However, vortex disruption
is very gradual, and the emergent features are viscously
dissipated before they have the opportunity to interact in
a turbulent manner that enhances the viscous dissipation.
Therefore, weakly vortex-disruptive fields do not optimize the
viscous dissipation of mechanical energy into thermal energy,
i.e., jet deceleration. This energy transfer is optimized for inter-
mediate vortex-disruptive fields, in the range 20 � MA � 42.
These fields are weak enough to allow sufficient vortex
development, and magnetic reconnection, for a turbulent
regime, but also strong enough for rapid vortex disruption,
which enables strong interaction of the emergent features.

043101-27



NATHANIEL D. HAMLIN AND WILLIAM I. NEWMAN PHYSICAL REVIEW E 87, 043101 (2013)

Viscous dissipation can also be explained in terms of length
scales and frequencies. Small-scale turbulent features have
small length scales which are more comparable to the length
scales imposed by diffusion. As the vorticity of the system
decreases over time, it becomes more comparable to the
frequencies of modes introduced by diffusion. These processes
enhance the coupling of the evolution to viscous dissipation.

Fields which are stronger than this (MA < 20) do not allow
sufficient vortex development and magnetic reconnection to
enable a complex turbulent breakdown, and the amount of
viscous dissipation is reduced. The residual mechanical energy
of the flow is concentrated in a narrow central flow channel
which is characteristic of strong vortex-disruptive and vortex-
suppressing fields. This channel corresponds to a region of
low density. Low-density channels were also observed in the
simulations of Frank et al. [27] and Mignone et al. [54]. For
strong fields, viscous dissipation is probably caused primarily
by a decrease in vorticity over time, which then becomes more
comparable to modal frequencies associated with diffusion.
In the vortex-suppressing case MA = 5.15, the central flow
channel is surrounded by a background flow whose width is
almost identical to the initial jet width, which indicates that for
fields of this strength, the system retains not only a qualitative
but also a quantitative memory of its initial configuration.

We also found that maximum values of quantities related
to electromagnetic energy, in the early nonlinear regime,
are reached for the strongest fields which still allow partial
vortex formation. For fields which suppress vortex formation,
maximum electromagnetic energy is significantly reduced.
Therefore, while the amount of electromagnetic energy is
heavily dependent on the strength of the unperturbed field,
the maximization of peaks in electromagnetic energy, elec-
tromagnetic momentum, and vorticity require some amount
of field amplification by vortex-induced centrifugal expulsion
of field lines. The current density, however, is optimized for
weaker vortex-disruptive fields (MA = 41.4). This is because
the current density is the curl of the magnetic field, and
therefore is proportional not to the field strength itself but
to the shear in field strength, which is maximized when field
lines are concentrated through vortex-induced expulsion.

The magnetic fields studied are within about an order of
magnitude of one another in strength, which is within the
range of uncertainty in field estimates of astrophysical jets,
as inferred from synchrotron emission data. Therefore, one
potential application of our results is in relation to observations
of astrophysical jets. We find qualitative similarities with
observations of numerous jets, including M87, Centaurus A,
3C 273, and 3C 120, in terms of possible vortex formation
followed by turbulent breakdown, filamentation, and jet
broadening. In particular, some of the knots in M87 have
amplified fields (at least 300 μG [65]), which have transverse
components [64] and are stronger than the surrounding
longitudinal field, which is less than 100 μG [64]. If the knots
behaved like vortices, the vortex-twisted field lines would be
amplified and have transverse components. This is, of course,
only one possible explanation.

While magnetic fields tend to stabilize the system, highly
relativistic flow speeds tend to have a destabilizing effect.
Our numerical simulations undergo early breakdown when
the unperturbed flow speed has a Lorentz factor exceeding

roughly 2. In Sec. VI C, when we plotted growth rate versus
wave number at highly relativistic flow speeds, we observed
near-maximum growth at wavelengths which are shorter than
the length scale set by the velocity shear. The highly relativistic
regime also corresponds to large-amplitude spatial oscillations
in the transverse profiles of the initial perturbations. These
observations shed light on the early numerical breakdown of
numerical viscosity simulations at high Lorentz factors.

One direction of further research is to extend the RMHD
system to three dimensions and examine oblique perturbations
and magnetic fields. An oblique perturbation can extract
mechanical energy without performing as much work against
the bulk flow. A perturbation which is oblique to the field
can more easily bend the field lines. Three dimensions allow
for the possibility of vortex regeneration after field-induced
inhibition [38]. Magnetic field lines can also wrap around the
vortex filaments whose behavior they complement [28]. Each
of these possibilities would lead to a more KH-unstable system.
Another possibility is to obtain results using a cylindrical
geometry, and compare those to our present study. We might
also compare our results to those obtained by adapting our
model to high-resolution shock-capturing (HRSC) schemes,
which have recently been adapted to model RMHD fluids
with fairly high accuracy [54]. HRSC schemes also have the
potential for modeling systems with higher Lorentz factors
than those allowed by numerical viscosity schemes.
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APPENDIX A: NUMERICAL SCHEME

Here, we describe the numerical algorithm for advancing
the simulation forward in time. The context of this method is
discussed in Sec. VII. Our method is fourth order in space
and time, and numerically solves the RMHD single-fluid
equations of Anile [51] in conservative form, given by (7)
and (16) in diffusionless form and by (17) with numerical
viscosity included. The RMHD single-fluid equations are
marginally stable, but become unstable when discretized in a
numerical scheme. Numerical viscosity is included in order to
restore stability to the system. Diffusion is implicitly present
in second order in the form of truncation error. The use of
fourth-order methods in space and time therefore allows for
explicit manipulation of the diffusion terms. Before describing
our numerical scheme, we first make the definitions

w = ρc2 + �P

� − 1
, u0 = γ, ui = γβi, b0 = B · β,

(A1)

bi = Bi + b0ui

u0
, bαbα = b1b1 + b2b2 + b3b3 − b0b0,

where w is the enthalpy and � is the adiabatic constant. In
this section, the speed of light c is normalized to unity. The
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conserved quantities are then given by

C1 = ρu0,

C2 = (w + bαbα)u0u1 − b0b1,

C3 = (w + bαbα)u0u2 − b0b2,

C4 = (w + bαbα)u0u3 − b0b3, (A2)

C5 = (w + bαbα)u0u0 − (
P + 1

2bαbα
) − b0b0,

C6 = B1, C7 = B2, C8 = B3.

The first quantity represents mass density. The second, third,
and fourth components are the components of the momentum
density. The fifth component is the energy density. The sixth,
seventh, and eighth components are the components of the
magnetic field in the stationary frame.

We now describe the method by which we advance the
simulation forward in time. We first recover the primitive
variables (density, pressure, velocity, magnetic field) from the
conserved quantities Cj using a highly accurate, efficient, and
convergent algorithm developed by Newman [26]. We describe
this algorithm in detail in Appendix B. To estimate the spatial
derivatives of the flux quantities, and the second-order spatial
derivatives in the diffusion terms, we use the fourth-order
method of lines described in Schiesser [62], with periodic
boundary conditions in both the x and z directions. We finally
compute the conserved quantities at the next time step using
the fourth-order Runge-Kutta method, described, for example,
in Ralston and Rabinowitz [58]. Being a one-step method,
the Runge-Kutta method is superior to multistep methods in
several respects. It allows for more versatility in modifying
such parameters as the time step. The Runge-Kutta method is
also self-starting. However, one-step methods are somewhat
more computationally expensive. We then repeat the above
procedure at the next time step, and so on.

APPENDIX B: PRIMITIVE VARIABLE
RECOVERY ALGORITHM

Here, we present the numerical relaxation scheme devel-
oped by Newman [26] for recovering the primitive variables
(density, pressure, velocity, magnetic field) from the conserved
quantities given by Eqs. (A2) at each time step of a simulation
in relativistic magnetohydrodynamics. This method is an
improvement over previous relaxation schemes, such as the
Newton-Raphson method. The method of Newman [26]
reduces a system of five equations [namely, the first five of
Eqs. (A2)] to a single cubic polynomial in the pressure P , and
is one order of magnitude faster than Newton-based methods
used to solve equivalent systems. The algorithm is as follows
(methods for solving the cubic equation are described in such
papers as McKelvey [66] and Nickalls [67]). We first denote
the momentum density, momentum density squared, and the
quantity T by

mi = (w + bαbα)u0ui − b0bi,

mαmα = C2
2 + C2

3 + C2
4 , (B1)

T 2 = (C2B2 + C3B3 + C4B4)2.

We begin by making an initial guess for P , which is
generally its unperturbed (equilibrium) value. We denote this

P0. We then compute

a = C5 + P0 + B2

2
,

(B2)

d = 1

2
(mαmαB2 − T 2).

We must now verify that P satisfies the condition

a �
(

27d

4

)1/3

. (B3)

We now make the following computations:

φ = cos−1

[
1

a

√
27d

4a

]
,

U1 = a

3
− 2a

3
cos

(
2φ

3
+ 2π

3

)
,

L = U1 − B2,

β2 = mαmαL2 − T 2(B2 + 2L)

L2(B2 + L)2
,

u0 = 1√
1 − β2

,

w = L

u0u0
,

ρ = C1

u0
,

P1 = � − 1

�
(w − ρc2). (B4)

We repeat this process, using P1 as an input instead of P0.
This generates a third value P2. We now perform convergence
checks on P0, P1, and P2, making sure that the magnitude of
the difference between two successive estimates of P is less
than a sufficiently small number of around 10−12. We can then
compute the Lipshitz constant R, given by

R = P2 − P1

P1 − P0
. (B5)

We then compute the Aitken accelerant PAitken, given by

PAitken = P0 + P1 − P0

1 − R
. (B6)

We perform convergence checks on P0, P1, P2, and PAitken. If
necessary, we repeat the algorithm, using PAitken as the new
P0, and continue to do so until the convergence checks are
satisfied.

The quantities P , ρ, w, β2, u0, and �B are now known. To
compute the remaining quantities, we do the following:

S = T

wu0u0
,

βi = mi + SBi

wu0u0 + B2
, i = 1,2,3 (B7)

ui = βiu0, i = 1,2,3.

We have at this point recovered the primitive variables (density,
velocity, pressure, and magnetic field) from the conserved
quantities.
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