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Thermal relaxation and critical instability of near-critical fluid microchannel flow
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We present two-dimensional numerical investigations of the temperature and velocity evolution of a pure
near-critical fluid confined in microchannels. The fluid is subjected to two sides heating after it reached isothermal
steady state. We focus on the abnormal behaviors of the near-critical fluid in response to the sudden imposed
heat flux. New thermal-mechanical effects dominated by fluid instability originating from the boundary and
local equilibrium process are reported. Near the microchannel boundaries, the instability grows very quickly and
an unexpected vortex formation mode is identified when near-critical thermal-mechanical effect is interacting
with the microchannel shear flow. The mechanism of the new kind of Kelvin-Helmholtz instability induced by
boundary expansion and density stratification processes is also discussed in detail. This mechanism may bring
about innovations in the field of microengineering.
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I. INTRODUCTION

As the gas-liquid critical point is approached in supercritical
fluids, strong anomalies can be found in thermal and transport
coefficients [1]. The isothermal compressibility and thermal
expansion both grow dramatically while the thermal diffusivity
tends to zero. These specific properties induce special coupling
processes of thermal equilibrium and mechanical disturbance
or instability. In closed systems, an additional adiabatic heat
transfer mechanism called the piston effect (PE) has been
identified independently by several teams [2]. When heating
the boundary of near-critical fluid, a very expandable, thin,
diffusive layer is formed, which compresses the bulk fluid
and causes the temperature of the bulk fluid to increase
at acoustic time scale. Therefore heat is transported much
faster than simple diffusion in such systems by the thermal-
mechanical expansion and compression process, like a thermal
piston [3–5]. Such thermal-mechanical process occurs in near-
critical fluids and special focus has consequently been laid on
experimental justifications and application development [6].
The possibility of long-distance heat transport in weightless-
ness has also been experimentally investigated recently [7].
Later, the effect of boundary condition on the expanding
acoustic thermal equilibrium process was discussed and the
critical cooling effect was suggested responsible for abnormal
temperature behaviors under various boundary conditions
[4]. Indeed, as one kind of near-critical thermal-mechanical
process, this specific behavior contributes to normal heat
convection or relaxation both in closed systems or open
systems; for example, the thermal oscillations of near-critical
3He at Rayleigh-Bernard threshold when heating the fluid from
the bottom wall of a shallow cavity [8,9].

Recent studies into the basic behaviors of near-critical pure
fluid have extended to two-sided boundary heat flux input
[10], and the respective time scale analysis will cover from
acoustic time scale, intermediate, to diffusion time scales [4].
Also, it is suggested that strong boundary thermal-mechanical
effect was first found in a closed system under microgravity

*Corresponding author: zhxrduph@yahoo.com

and the strong compression and reflection only happen in
constrained flow (where it is called the piston effect; under
global or local heating) [11]. Therefore, recently the interest
in open systems and the behaviors under coupled effects of
the near-critical thermal-mechanical process and gravity have
also been suggested. The first studies were of small size
channel thermal effects in cylindrical cells (with fluid thickness
L = 10 mm) [5] or thermal plumes [12]. Instead of “critical
slowing down” (due to small thermal diffusivity in the
boundary thermal relaxation process), the expanding thermal
boundary greatly affects the convection process and flow
structure [13]. The local equilibrium process and transient
temperature and velocity behave differently during those
processes.

This paper is devoted to the general response of a developed
isothermal near-critical fluid flow when subjected to boundary
heating. We present interesting findings on the near-critical
hot boundary layer (HBL) expansion and its interactions with
bulk flow. New boundary instability behaviors are presented
with ensuing vortex formation and micromixing processes in
microchannels. The origin of the current transient unstable
thermal relaxation is found to be near-critical boundary
thermal-mechanical effects, which is similar to the evolution
of PE boundaries in closed systems. Respective time scales and
transient stability evolution are also analyzed. Current results
are identified with a new type of Kelvin-Helmholtz instability
where the expanding boundary serves as the perturbation
source and suppresses the effect of gravity in microchannels.
This may open new possibilities in microengineering and
supercritical processes.

II. MODEL

For the sake of simplicity, we consider a two-dimensional
microchannel with length (L = 0.05 m) and height (D =
0.1 mm). In this simulation, the channel, with a typical
large length and height ratio of 500, has near-critical fluid
confined between two rigid planes. As near-critical fluid is
very expandable even under very small heat input, the local
thermal relaxation process can be very different from normal
fluids in microchannels. Previously it was generally expected
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that normal fluids would be stable under similar conditions.
However, thermal vibrations have been found in near-critical
fluids in a one-dimensional (1D) configuration [14], and the
local perturbation from the HBL and respective “thermal jets”
caused by boundary thermal-mechanical expansion become
the main reason for rapid heat equilibrium in near-critical
fluids, compared to the case of perfect gas [3]. The first
step of simulation was to conduct an isothermal wall and
developed near-critical flow in the microchannel. The two side
channel walls are first kept isothermal until the near-critical
microchannel flow converges, and then the fluid is subjected to
two-sided heat flux Q until thermal equilibrium is reached. The
equations of motion are the Navier-Stokes equations, which are
solved together with the energy equation and the equation of
state as follows:

∂(ρCpT )

∂t
+ ∇·(ρVCpT ) = ∇(λ∇T ) + TβP

∂P

∂t
+ � energy;

ρ = ρ0 + ρcχT (P − P0) − ρcβP (T − T0) state,

where βP is the isobaric thermal expansion coefficient, χT is
the isothermal compressibility (both are nonlinear parameters,
as the properties diverge near the critical point. λ is the thermal
conductivity, CP is the specific heat, � = σij (∂ui/∂xi) is the
dissipation function with σij the viscous stress tensor and ui the
velocity components, and P0 and T0 are initial pressure and
temperature. The thermal-transport coefficients are obtained
from the NIST standard database [15]. The current model
has been tested and validated in previous studies [9] treating
near-critical thermal oscillation and equilibrium processes.
Indeed, special difficulties occurred when considering the
coupled convection and thermal propagation process in near-
critical fluids. In previous studies of near-critical heat and
mass transfer, divergences in correlation length, time and
fluid properties were found, especially at hot boundaries
where steep gradients in fluid parameters are seen [1,3–5].
Nonuniform grids were carefully generated in the calculation
domain (with around 3 × 105 mesh grids for the D = 100 μm
case) and refined specfically for the boundary and internal
areas during the initial studies to ensure that mesh independent
results are obtained. Still the comparison between the mesh
size and the small scale divergences (or fluctuations) of
near-critical fluid would be useful for the study of such
near-critical phenomena. The ratio of mesh size to correlation
length (∼ |εT |ν) across the current near-critical boundary
layers ranges from 0.2 to 1.0, and in the bulk the effect is
generalized as the critical fluctuations will decay with the
increase of “distance” from the critical point during heating.
The respective correlation time for this divergence is also much
smaller (<0.01%) than that of the current pressure relaxation
or thermal-mechanical relaxation time scales. For the current
model, a finite volume method was used and the method of
solution has been validated [9].

The focus of the current study is the thermal disturbance
and convection onset equilibrium process in microchannel
flows of near-critical fluids. Steady state theories for the
onset of convection exist for incompressible and moderately
compressible fluids; however, interesting phenomena occur
when the fluid approaches the near-critical region [3,9].
Currently, we choose CO2 with inlet Tin = T0 = (1 + εT ) Tc

and Pin = P0 = (1 + εP ) Pc, where Tc and Pc are, respec-

FIG. 1. (Color online) Evolution of wall temperature propagation
with inlet Re = 13.40 and Q = 10 000 W/m2; thermal equilibrium
speeding-up is found for near-critical CO2 (εT = 0.000 23 and
εP = 0.016 26); the growth of perturbation and temperature collapse
indicate critical convection onset instability.

tively, the critical temperature and pressure. When the mi-
crochannel scaling effect is considered, supercritical fluid
shows no surface tension, which brings further simplicity for
simulation.

III. RESULTS

Using the above model, we performed simulations with
εT = 0.000 23 and εP = 0.016 26, with the critical values of
CO2 fluid as Tc = 304.13 K, Pc = 7.38 MPa, and ρc =
467.6 kg/m3. Thus the inlet fluid flow parameters (T ,P ,ρ)
are slightly above the critical point. Two-sided heat flux
Q = 10 000 W/m2 was applied after the microchannel flow
reached isothermal steady state. The transient evolution of
wall temperature is plotted in Fig. 1 (for inlet Re = 13.40).
In the current microchannel model, gravity is neglected as the
calculated Froude number is much smaller than unity, therefore
it is possible to ignore the effect of gravity. Indeed the upper
wall (Fig. 1) temperature evolution is almost the same as the
lower wall (not shown here). It is seen from Fig. 1 that after
heat flux was applied, and thermal convection commences, the
temperature collapses are found even in as small time scales as
10−3 s. It is shown that (T − Tc) drops by 50% after the heat
flux is applied for about 10−2 s. Also the temperature drops and
collapse grow from the channel outlet side through the flow,
while the main wall temperature increases with time. Such
collapse indicates much faster thermal equilibrium process in
the microchannel than steady thermal convective (or steady
thermal diffusion) channel flow condition in normal fluid.

Comparisons of microchannel velocity and density fields
with time and position are presented in Fig. 2. As shown, very
thin boundary layers are formed after heat is applied at two
walls, where the fluid density soon drops about 8% below the
main flow [see Fig. 2 (t = 2 ms)]. Consequently the thin hot
boundary evolves to show local hot spots. Indeed local pressure
gradients are found in both horizontal and vertical directions,
forming a local intrusion (with higher temperature, “hot spot”)
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FIG. 2. (Color online) Flow stream field and density evolution
with time and position (at 2 and 10 ms, respectively; position around
x/L = 0.80 and 0.95; Q = 10 000 W/m2; inlet Re = 13.40). The
boundary perturbation by hot spot interacting with main flow is
captured. Vortex evolves from two hot boundaries and soon expands
to the two side walls as shown by the velocity vectors in the above
figure. The density is contoured by color bars and the velocity is
presented in vector form (by arrows).

from the boundary layer into the main flow [see Fig. 2 (t =
2 ms), where the flow streams are shown in vector form]. It is
seen from Fig. 2 that the instability grows both with time and
position. The instability produces vortices across the channel
near the microchannel end part [see Fig. 2 (t = 10 ms)]. The
vortex size is estimated to be similar to the channel height
(0.1 mm in Fig. 2). Such hot spot formation and disturbance
has also been reported [16] for the steady near-critical diffusion
process in a Rayleigh-Bernard configuration (from initial static
state) under gravity. The current model starts from a developed
isothermal state with microchannel configuration suppressing
the effect of gravity. The symmetric development of unstable
hot spots and vortices has not been reported in the literature
and it represents a fundamentally new mechanism of unstable
relaxation induced by near-critical fluid thermal-mechanical
effect.

As has been discussed, the above process happens at
very small time scales. The vortex will expand toward the
microchannel walls causing strong fluid mixing and helping
to establish thermal equilibrium. In the current study, the
vortex finally diffuses, thermal equilibrium is reached, and
the microchannel flow becomes laminar with static thermal
and viscous boundaries. As discussed, the current model is a
two-dimensional (2D) open system where traditional PE will

not take place as no closed reflective boundary exists [11].
However, the near-critical thermal-mechanical effect (with
PE boundaries, as one case for a closed system) can still
play a special role in the development of thermal boundaries.
With immersed heat source models [17], rapidly expanding
thin hot boundary layers form the disturbance hot spots,
which greatly affect the convection structure. Such thermal
disturbance and compression from the expanding boundary
creates acoustic waves (thermal-acoustic or mechanical effect)
in closed systems [2] and in the current open flow system it
expands directly into the main fluid, thus forming unstable
flow at low Reynolds number condition.

Indeed, if the current system reaches thermal equilibrium
by pure thermal diffusion, the characteristic time scale will be
td = D2/DT = 1.15 s, where DT is the thermal diffusivity of
near-critical CO2 (using initial values). The current transient
process happens within 0.4 s and vortex formation time scale
is calculated similar to that of piston effect time scale with
the same thermal-mechanical origins as first predicted by
Onuki et al. [2] as tPE = td/(γ − 1)2 = 8 ms, where γ

is the specific heat ratio. Traditional studies on piston effect
have begun very near to the critical condition with very small
perturbation on the boundary, which allows very small changes
of properties in the bulk fluid [18]. The thermal-mechanical
expansion-compression process is dependent on how close
the fluid state is to the critical point. For open systems, such
initial conditions should be equally important [7,13]. With
the development of the system through the critical point,
properties behave divergently as discussed. From the ratio of
the thermal-mechanical time (piston effect time for closed
system) scale tPE to the thermal diffusion time scale td , it is
hard to track and estimate these divergences, especially during
the nonlinear changes in thermal diffusivity and viscosity [17].
Therefore in the evolution of instability and formation of the
vortex, the acoustic waves are not stable as in closed PE
systems [2]. In a discussion of thermal-acoustic waves near
the critical point, Carles [17] also reported the instability of
density-pressure evolution in the initial heat input period (with
several initial density stages measured).

The pressure distribution and perturbation velocity (y
velocity) across the channel are plotted perpendicular to the
stream flow direction at position x/L = 0.98 in Figs. 3(a) and
3(b). It is seen that the pressure and perturbation velocity (in the
y direction) both fluctuate with time. Though the fluctuations
are not periodic due to the characteristic time scale changes
discussed above, the evolution of the acoustic expanding
process is seen. For example, in Fig. 3(a) the pressure increases
at time 2.5 × 10−4 s and drops at 4.5 × 10−4 s and then
fluctuates again under constant influx heating. Figure 3(b)
also shows the symmetric two-sided expanding process with
peak perturbation velocity near the diffusion thermal boundary
contacting with the main flow. Similar oscillations have also
been found in Refs. [14,17] when near-critical fluid confined
between heating rigid planes is considered (with relative larger
channel size, such that the perturbation velocity is three to four
times larger than in the current study; such kind of vibration
or perturbation is easily seen in confined near-critical fluids).
Also, the velocity differences across the boundary contact line
with the bulk contribute to the unstable evolution. Though
supercritical fluids can be of low viscosity, the scaling across
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FIG. 3. (Color online) Boundary thermal-acoustic effects and
their evolution. (a) Evolution of pressure field; (b) two-side per-
turbation velocity (perpendicular to stream flow at small time
scale); (c) horizontal flow velocity profiles. For (a) and (b) position
x/L = 0.98 is chosen as representative, where the x axis is the midline
of the horizontal channel direction. P/Plmax is pressure normalized
by local maximum values. v/vlmax is velocity normalized by local
maximum values. The parameters are the same as Fig. 2(c) and
show several representative cross faces along the x direction. The
velocity shear near the boundary layer shows the typical supercritical
fluid characteristic, with very thin and relative steep gradients, which
contributes to the KH instability; reversed vortex flow can be found
for the x/L = 0.7 or 0.9 parts; more instabilities are found for
the downward flow in the microchannel, which indicates the KH
instability growth with position.

the critical point still shows discrepancies with normal fluids,
especially under a different Re number condition between the

boundary low velocity flow and the relative high Re bulk flow.
The fluctuation in perturbation velocity induces the main flow
instability growth with time and locally forms the vortex from
the boundaries.

Vortex formation is of engineering interest as part of the
rapid development in supercritical technology and Micro-
Electro-Mechanical Systems (MEMS) related fields. Transient
sudden mixing or heat flux induced instability can also
be applied both in gravity and microgravity conditions in
microchannel flow. However, theoretical explanations of the
instability (where gravity is not important in microchannels)
can also be important. Indeed, the current microchannel
instability can be categorized to be a type of Kelvin-Helmholtz
(KH) instability as with the characteristic of largely stratified
layers of fluid by thermally induced density heterogeneity. The
classical KH instability, due to density stratification and/or
velocity shear was first introduced by Lord Kelvin (1871) [19],
where gravity is the typical source of instability. In the current
model, the gravity wave, as the instability source, is replaced by
pressure gradient across the two heating planes, where pertur-
bation waves perpendicular to the stream flow are formed and
strong stratification of density and velocity are also generated
in near-critical CO2 fluid though the channel is of microscale.
The current instability in microchannel thermal relaxation is
still within the KH instability range, but its perturbation source
comes from HBL thermal-mechanical expansion, which is a
new kind of instability origin which suppresses gravity effect.

From classical KH instability models, any small stratifica-
tion will lead to fluid “tear off” however small the perturbation
is (with perturbation source provided). By analogy to the tradi-
tional analysis when KH instability was induced under gravity
[19], a modified Richardson number was defined according
to the thermal-dynamic conditions (especially suppression of
gravity and added the dominant factor of density and velocity
stratifications):

Ri = 1

ρ2

(dp/dy)(dρ/dy)

(du/dy)2
,

where the pressure gradient, density stratification, and velocity
profile are considered as controlling factors of the stability (all
defined for near boundary layers), which means the Ri number
is the ratio of perturbation force to inertia. The velocity profiles
of several representative cross faces are plotted in Fig. 3(c)
along the x direction. It is seen that the velocity shear is very
steep near the boundaries. Such steep velocity gradients ensure
that the boundary layer “tears” very easily. Then together with
the thermal perturbation from the y direction, the main flow
instability grows quickly with both time and space (Fig. 2; also
see Ref. [19]).

The modified Richardson number is calculated for a several
groups of inlet and boundary conditions. The calculated Ri

shows some transition thresholds in stability diagram. As
discussed in Ref. [19] the original KH instability can be
formed by density gradient and/or velocity shear; the current
microchannel KH instability happens in a similar way, only the
instability source is density waves (or acoustic or perturbation
waves) instead of gravity waves. It is found that below the
Ri stability threshold, the near-critical flow is stable, with
serrated boundary intrusions, and above the threshold vortex
flow can be seen. For example, the critical values fall around

043016-4



THERMAL RELAXATION AND CRITICAL INSTABILITY . . . PHYSICAL REVIEW E 87, 043016 (2013)

FIG. 4. (Color online) Respective velocity profile for each stabil-
ity situation classified as stable flow, static serrated boundary invasion
condition, and vortex flow in microchannels for D = 2.0 × 10−4 m,
inlet Re = 26.80, captured for t = 0.1 s. By analogy to classical
development of KH instability under gravity, a Richardson number Ri

is defined as a function of boundary gradient of density, pressure, and
velocity (perpendicular to the streamwise direction). For each channel
size, channel expanding flow will go through some transitions from
static laminar flow to vortex and unstable flow.

Ri = 1.5 × 10−5 for D = 1.0 × 10−4 m and Ri = 1.1 × 10−4

for D = 2.0 × 10−4 m, respectively, due to the effects
of microchannel height conditions and respective spatial
effects on viscous and density stratification processes. For
the transition region of D = 2.0 × 10−4 m stable flow with
serrated boundary intrusion is seen. The detailed convection

structure can be seen in Fig. 4. Here it should also be noted
that comparing with larger channel sizes, where the gravity
effect cannot be neglected, the problem tends to be similar to
the well-known Rayleigh-Bernard (RB) configuration, where
HBL collapse will be dependent on the combination of heat
perturbation and gravity induced buoyancy forces [9,16,20].

In addition, the current study also considered other inlet
and initial conditions over a wide range. With the same
physical origin, the microchannel flow will exhibit a similar
transient instability evolution process. Also as discussed by
Carles [21], high expandability and low thermal diffusivity
are still significant even up to εT = 0.3, which indicates such
phenomena will not disappear in a short distance from the
critical point and may have application in a wide operational
range. However, the current problem without gravity is not
just one simple extension of the RB kind with instability only
due to the stratification process (which follows, controlled
by the Rayleigh criterion or Schwarzschild criterion), and
respectively, the modified Ri where the pressure gradient
and density gradient in the boundary serves as the main
perturbation source as added to that Kelvin-Helmholtz stability
evolution [19].

In summary, we studied the near-critical microchannel
flow response to sudden heat input, with no gravity effect,
and the transient equilibrium process was identified as a
new Kelvin-Helmholtz instability. While in closed systems
the PE is dominant, in open systems (microchannels) the
thermal-mechanical expansion characteristics will lead to new
instabilities, and a potential new area of microengineering
under gravity or microgravity can be expected.
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