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Rotating solitary wave at the wall of a cylindrical container
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This paper deals with the theoretical modeling of a rotating solitary surface wave that was observed during water
drainage from a cylindrical reservoir, when shallow water conditions were reached. It represents an improvement
of our previous study, where the radial flow perturbation was neglected. This assumption led to the classical
planar Korteweg–de Vries equation for the wall wave profile, which did not account for the rotational character of
the base flow. The present formulation is based on a less restricting condition and consequently corrects the last
shortcoming. Now the influence of the background flow appears in the wave characteristics. The theory provides
a better physical depiction of the unique experiment by predicting fairly well the wave profile at least in the first
half of its lifetime and estimating the speed of the observed wave with good accuracy.
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I. INTRODUCTION

Solitary waves are localized single elevations or depressions
[1]. Due to the balance between the nonlinearity and dispersion
these propagate without any appreciable temporal changes in
their shapes and speeds. Similar waves have been observed in
various fields of physics such as, for example, hydrodynamics,
acoustics, plasma, and optics [2].

The presence of a background rotation significantly influ-
ences the propagation of both surface and internal gravity
solitary waves. For instance, in the case of internal waves,
developed in a shallow rotating channel, the degree of
influence of the rotation depends on its strength [3]. When
the rotation is intense, its effect is distinguishable from those
of weak nonlinearity and dispersion and results in a transverse
exponential decay of the solitary wave’s amplitude. However,
when the rotation is of the same order of magnitude as the
nonlinearity and dispersion, the internal gravity waves are
described by the rotation-modified Kadomstev-Petriashvili
(KP) equation rather than by the classical Korteweg–de Vries
(KdV) equation [3–5]. At the limit of infinitely large channel
width, the KP equation reduces to the Ostrovsky equation,
which was first derived to account for the effects of the earth’s
rotation on oceanic internal solitary waves [6].

A background rotation can also induce inertial solitary
waves, as in the case of liquid-filled upright cylindrical contain-
ers [7]. In this case, the wave is axisymmetric and propagates
back and forth along the vortex core between the liquid
free surface and the bottom of the container. Similar inertial
solitary waves, moving along inside the vortex cores, were also
observed within rotating turbulent flows [8,9]. Cases where
solitary waves have been observed in swirling flows are very
few. They are limited to the configurations where the vortex
core serves as the waveguide along which they propagate.
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This paper deals with yet another type of solitary wave
in rotating flows, observed during liquid drainage through
the bottom port of a vertical cylindrical container, whereby
a shallow layer of fluid inside the cylindrical tank is in a
state of rotation around the vertical axis. When the solitary
wave appears, it begins to gyrate in the azimuthal direction.
This event was parenthetically reported by Vatistas [10] and
recently modeled by the evolutionary equation of Korteweg
and de Vries [11]. To the best of our knowledge, there are no
documented cases of similar rotating solitary waves observed
in nature or technology. For the moment, the only available
accounts of this distinctive phenomenon are the laboratory
observations reported previously [10,11] and those described
in the present article. However, we trust that the present exper-
imental apparatus might be improved to allow investigations,
under more controllable conditions, that will determine the role
of a background rotation in the propagation of solitary waves.
The last general theme is currently receiving much attention,
particularly the case of internal solitary waves [12,13]. In fact,
the role of the earth’s rotation in the propagation of internal
solitary waves in oceans remains not fully understood. It is
worth noting that recently an experimental setup, somewhat
akin to the one used in our experiments, was considered as a
shallow water analog to describe the physics of a stellar core
and its associated standing accretion shock instability [14].

II. GOVERNING EQUATIONS

The classical KdV equation arises from the conservation
equations for irrotational motion of an incompressible inviscid
fluid bounded above by a free surface and below by a rigid
horizontal plane. For the case under consideration, the wave
motion emerges from a primary rotating flow in which a swirl
velocity r�0 is imparted; this yields a certain radial distribution
of the fluid layer thickness. The resulting perturbed motion is
rotational and accordingly it must be described by the full
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Euler equations. In contrast to the basic flow, the perturbed
velocity is three dimensional and the governing equations in
dimensionless form are

vθ + (ru)r + rwz = 0, (1)

Dtu − 2�v + ε

(
uur + 1

r
vuθ − v2

r
+ wuz

)
+ pr = 0,

(2)

Dtv + 2�u + ε

(
uvr + 1

r
vvθ + uv

r
+ wvz

)
+ 1

r
pθ = 0,

(3)

δ

[
Dtw + ε

(
uwr + 1

r
vwθ + wwz

)]
+ pz = 0, (4)

with the boundary conditions

w|z=0 = 0, (5)

u|r=1 = 0, (6)

p0 + εp|z=h0+εη = 0, (7)

w|z=h0+εη = Dtη + ε

(
uηr + 1

r
vηθ

)
. (8)

In Eqs. (1)–(8), written in cylindrical coordinates (r,θ,z),
the subscripts indicate differentiation with respect to the
corresponding variables, u, v, and w are the radial, azimuthal,
and axial velocity components, respectively, p is the pressure
perturbation, and η indicates the free surface elevation. The

parameters appearing in Eqs. (1)–(4) are ε = A
H0

and δ = H 2
0

R2 ,
where A is a measure of the wave amplitude, R is the cylinder
radius which serves to scale horizontal distances, and H0 is
the undisturbed fluid depth at the lateral wall, considered
here as the typical length scale in the axial direction. The
velocity components u and v are in units of ε

√
gH0, and

w, time, and pressure are scaled by ε
√

gH0δ, R/
√

gH0, and
ρgH0, respectively. The symbol Dt stands for the total time
derivative, ∂t + �∂θ where � denotes the relative background
rotation in comparison with

√
gH0/R, h0 = 1 + 1

2�2(r2 − 1)
is the dimensionless fluid depth, and p0 = h0 − z is the basic
pressure distribution. As in the planar case, we are interested
in small amplitude waves, i.e., in the limits as ε → 0 and
δ → 0. It turns out that one choice which leads to a solitary
wave profile for η is to set δ = O(ε) as ε → 0. To carry on the
analysis, we suppose that the solution to Eqs. (1)–(8) exists in
the form of a power series in ε, namely, f = f0 + εf1 + O(ε2)
for any dependent variable f .

III. PRELIMINARY RESULTS

The continuity equation along with the impermeability
condition at the bottom give

w = −1

r

∫ z

0
[vθ + (ru)r ]dξ, (9)

were ξ indicates the vertical integration variable. Integrat-
ing the axial momentum equation with respect to z and
using the free surface boundary condition for the pressure

lead to

p = η + δ
, (10)

where


 = 1

r

∫ z

h0

dν

∫ ν

0
Dt [v0θ + (ru0)r ]dξ (11)

is the dispersive part of the disturbed pressure. Then, rewriting
the azimuthal and radial momentum equations with the above
expression for p and neglecting terms of order ε2, δε, and
higher, one obtains, respectively,

Dtv + 2�u + ε

(
u0v0r + 1

r
v0v0θ + u0v0

r
+ w0v0z

)

+ 1

r
(ηθ + δ
0θ ) = 0, (12)

Dtu − 2�v + ε

(
u0u0r + 1

r
v0u0θ − v2

0

r
+ w0u0z

)

+ ηr + δ
0r = 0. (13)

These two equations are associated with the free surface
kinematic equation, which becomes

Dtη + ε

(
u0ηr + 1

r
v0ηθ

)
+ 1

r

∫ h0+εη

0
[vθ + (ru)r ]dz = 0.

(14)

Before handling the full nonlinear eigenvalue problem, let
us first consider the leading order problem, which reads

Dtv + 2�u + 1

r
ηθ = 0, (15)

Dtu − 2�v + ηr = 0. (16)

These equations imply that, at zeroth order in ε and δ, u and
v do not depend on the axial coordinate. So the free surface
kinematic condition takes the form

Dtη + h0

r
[vθ + (ru)r ] = 0. (17)

A complete solution of Eqs. (15)–(17) can be obtained in
the form of a traveling wave in the azimuthal direction. The
distribution of the modal wave amplitude is then described by
an equation similar to the Bessel equation. It differs from the
latter only in the presence of the basic depth h0(r) (see the
Appendix for the derivation). In the present analysis, we will
restrict our consideration to only an approximate description
of the wave motion at the wall where h0 = 1.

As a matter of fact, the elliptic character of the flow in
the radial direction does not allow an exact description of the
wall motion without some additional approximation at the wall
instead of the condition prescribed by the axial symmetry of
the problem. Neglecting the radial flow leads to a planar KdV
equation,which is incapable of accounting for the rotational
character of the flow [11]. In order to correct this defect, we
make here a less stringent approximation, which consists of
neglecting the radial curvature of the radial velocity at the
wall. It is to be noted that by requiring the cancellation of any
higher order radial derivative of the radial flow one can perform
a similar analysis. However, the result would be just a slightly
better approximation after much more tedious calculations.
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Hence, by making use of this approximation (u∗
rr = 0) and

performing a Taylor expansion, up to first order in δr near
r = 1, (15)–(17) yield

Dtv
∗ + η∗

θ = 0, (18)

η∗
r − 2�v∗ = 0, (19)

Dtη
∗ + v∗

θ + u∗
r = 0, (20)

Dt (v
∗ + v∗

r ) + 2�u∗
r + η∗

rθ = 0, (21)

Dt (η
∗ + η∗

r ) + �2(v∗
θ + u∗

r ) + v∗
rθ + 2u∗

r = 0, (22)

Dtu
∗
r − 2�v∗

r + η∗
rr = 0. (23)

In these equations the asterisk indicates the wall-valued
variables. We observe that the term u∗

rr is dropped in Eq. (22)
owing to our assumption. We seek a solution to the eigenvalue
problem (18)–(22) in the traveling wave form in the azimuthal
direction, i.e., depending on the variable X = θ − (� + 1

α
)t ,

α being an eigenvalue to be determined. This amounts to
setting Dt = − 1

α
∂θ + O(ε,δ). So a nontrivial solution for

(η∗,η∗
r ,v

∗,v∗
r ,u

∗
r ) exists provided that α satisfies the eigenvalue

relation

3α2 = �2 + 1. (24)

The corresponding eigenvector then follows as

v∗ = αη∗ + O(ε,δ), (25)

η∗
r = 2�αη∗ + O(ε,δ), (26)

v∗
r = (2� − α)η∗ + O(ε,δ), (27)

u∗
r =

(
1

α
− α

)
η∗

θ + O(ε,δ), (28)

where η∗ remains an arbitary function of r and X. We
observe that the relation (27) can also be expressed as v∗

r =
(2�

α
− 1)v∗ + O(ε,δ). Experiments show that the free surface

elevation η increases in the radial direction. This implies,
owing to Eq. (26), that only the positive value of α must
be retained, as in the planar case where α = 1. It is to be
noted that (23) is added to the previous system only to show
that η∗

rr and u∗
rr cannot be neglected simultaneously. In the

present case, η∗
rr falls, if desired, as a result of the eigenvalue

problem.

IV. NONLINEAR AND DISPERSIVE CORRECTIONS

A. Pressure distributuion

Before proceeding any further, we first express the pressure

 and its horizontal gradient. Since v0 and u0 do not depend
on z, the pressure takes the form


 = 1

2r

(
z2 − h2

0

)
Dt [v0θ + (ru0)r ] + O(ε,δ). (29)

With Eq. (17) in mind, one can rewrite 
 as


 = 1

2h0

(
h2

0 − z2
)
D2

t η + O(ε,δ), (30)

which, owing to (24), reduces at r = 1 to


∗ = 1

2α2
(1 − z2)η∗

θθ + O(ε,δ). (31)

While the azimuthal gradient of 
 at r = 1 may be expressed
directly from Eq. (31) as


∗
θ = 1

2α2
(1 − z2)η∗

θθθ + O(ε,δ), (32)

its radial gradient must be deduced from Eq. (30), after some
elementary algebra,


r = 1

2
D2

t

{
h0r

(
1 + z2

h2
0

)
η +

(
h0 − z2

h0

)
ηr

}
, (33)

which, by making use of Eqs. (25) and (26), yields at r = 1


∗
r = �

α

{
1 + �

2α
+

(
�

2α
− 1

)
z2

}
η∗

θθ + O(ε,δ). (34)

B. Azimuthal equation and kinematic free surface condition

Nonlinearity and dispersion will be included in these
equations by seeking u and v as expansions of the form

(u,v) = (u0,v0) + ε(u1,v1) + δ(u2,v2) + O(ε2,δ2,εδ), (35)

where v∗
0 = αη∗ and u∗

0r = ( 1
α

− α)η∗
θ ; (u1,v1) and (u2,v2) are

nonlinear and dispersive corrections whose wall values will
be defined afterwards. Therefore, the projection on the lateral
wall of the azimuthal momentum equation is

αDtη
∗ + η∗

θ + ε(α2η∗η∗
θ + Dtv

∗
1 ) + δ(Dtv

∗
2 + 
∗

θ ) = 0.

(36)

On integrating through the fluid depth with Eqs. (25) and (32)
in mind, (36) yields

αDtη
∗ + η∗

θ + ε

(
α2η∗η∗

θ − 1

α
V1θ

)

+ δ

(
1

3α2
η∗

θθθ − 1

α
V2θ

)
= 0, (37)

where V1 and V2 are the depth-averaged values of v∗
1 and v∗

2 that
will be determined later on by invoking the compatibility of
Eq. (37) with Eq. (14). The latter is first transformed by ex-
pressing the integrand vθ + (ru)r as follows. Multiplying (12)
by r , differentiating it with respect to r , and then projecting it
on r = 1, by equating terms of the same order in ε and δ, we get

(ru)∗r = (ru0)∗r − 1

2�
{ε[Dt (rv1)∗r + N∗

r ]

+ δ[Dt (rv2)∗r + 
∗
θr ]} (38)

with

N∗
r = (v0v0θ + ru0v0r + u0v0)∗r

= 2

(
�α + �

α
− α2

)
η∗η∗

θ .

Then,

(ru)∗r + v∗
θ = v∗

0θ + (ru0)∗r + ε

{
v∗

1θ − 1

2�
[Dt (rv1)∗r + N∗

r ]

}

+ δ

{
v∗

2θ − 1

2�
[Dt (rv2)∗r + 
∗

θr ]

}
. (39)
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Integrating through the fluid depth and taking the zeroth
order results into account gives∫ 1+εη∗

0
[(ru)∗r + v∗

θ ]dz

= 1

α
η∗

θ + ε

{(
1 + 1

α2

)
V1θ + α

( α

�
− 1

)
η∗η∗

θ

}

+ δ

{(
1 + 1

α2

)
V2θ − 1 + �

3α
η∗

θθθ

}
. (40)

Hence, the projection on r = 1 of Eq. (14) takes the form

αDtη
∗ + η∗

θ + ε

{(
α + 1

α

)
V1θ + α2

( α

�
− 1

)
η∗η∗

θ

}

+ δ

{(
α + 1

α

)
V2θ − 1 + �

3
η∗

θθθ

}
= 0. (41)

Equations (37) and (41) are compatible provided that
V1θ = α3(2�−α)

�(α2+2) η∗η∗
θ and V2θ = 1+α2(1+�)

3α(2+α2) η∗
θθθ . The free surface

elevation is finally described by the following KdV-type
equation:

η∗
t +

(
� + 1

α

)
η∗

θ + εE (α,�) η∗η∗
θ + δD (α,�) η∗

θθθ = 0

(42)

with E(α,�) = α3+�(2−α2)
�(2+α2) α2 and D(α,�) = 1−�α2

3α2(2+α2) .
The solution of Eq. (42) is

η∗(θ,t) = sech2 1

2

(
εE

3δD

)1/2 {
θ −

(
� + 1

α
+ 1

3
εE

)
t

}
.

(43)

In dimensional form, the wall free surface elevation is
given by

η∗(θ,t) = A sech2 1

2H0

(
E0

3D0

)1/2

×
{
Rθ −

(
R�0 +

√
gH0

α0
+ A

√
gH0

3H0
E0

)
t

}
,

(44)

where E0, D0, and α0 indicate the expressions of E, D, and α

once � is replaced by �0R/
√

gH0.

V. EXPERIMENT

A. Experimental setup

The theoretical wave profile (44) is compared to the exper-
imentally observed one in a Plexiglas cylindrical container of
diameter D equal to 285 mm. The drainage hole of diameter (d)
equal to 31.7 mm was located at the center of the container’s
lower plate. The tank was filled with water. Two initial water
heights h = 435 and h = 270 mm were considered. Note that
the initial height was found to have no influence on the solitary
wave of interest here. For the purpose of visualization, a blue
water-soluble dye (food coloring) was added to the fluid prior
to the experiments.

The experimental setup is shown in Fig. 1(a). The water
within the tank was stirred with a rod, in a way similar to
that of Pritchard [7], and soon afterwards the rod was lifted
and the bottom manifold was opened for the water to drain.
As the water level approached the shallow water condition
the amplitude of the free surface oscillations increased and
matured into a single surface bulge (solitary wave). At this
time, we replugged the exit, and thus the water depth remained
constant. The solitary wave revolved around the cylindrical
wall for several laps (approximately 30) before it vanished.
It is worth noting that the solitary wave could be observed
only when enough initial vorticity was present prior to the
commencement of the draining process. This can be viewed
either as the residual vorticity due to the reservoir filling
process, or as swirl introduced by stirring the water. In fact,
if the tank is filled and then left undisturbed for a while to
calm down prior to draining (i.e., there is almost no residual
vorticity), the solitary wave may not appear at all. The event
was recorded using a CCD camera and a sample of the
revolving solitary wave is shown in Fig. 1(b). The wave profile
was detected using a digital image processing technique. The
temporal free surface elevation, in reference to the bottom of
the container was obtained at a fixed angular location with
respect to the tank cross section. For convenience, the angular

(a)

(b)

FIG. 1. (Color online) (a) Experimental setup. Plexiglas cylindrical reservoir with a central drainage hole located at the bottom center of
the container. (b) A typical solitary wave.

043015-4



ROTATING SOLITARY WAVE AT THE WALL OF A . . . PHYSICAL REVIEW E 87, 043015 (2013)

0 5 10 15 20 25 30 35 40

20

30

40

50

60

Time (sec)

F
re

e 
su

rf
ac

e 
el

ev
at

io
n

 (
m

m
)

(a)

0 20 40 60 80 100 120 140
10

15

20

25

30

35

40

Distance (mm)

F
re

e 
su

rf
ac

e 
el

ev
at

io
n

 (
m

m
)

t=0 t=0.033 sec
t=0.066 sec

(b)

FIG. 2. Free surface elevation (a) recorded at a given location considered as θ = 0; (b) in three snapshots of the wave at three successive
times.

position that corresponded to the middle section of the images,
Fig. 1(b), was selected to be the origin (θ = 0). An example
of the free surface elevation is given in Fig. 2.

B. Results and discussion

In the analysis above, the rotational speed of the background
flow, �0, is a fundamental parameter to which we did not have
direct access from the experiments. This speed was estimated
through the measurement of the wave speed in the laboratory
frame of reference, which is the sum of the intrinsic wave
speed in the fluid frame of reference and the rotational speed
of the carrier fluid, �0. The wave speed in the laboratory
frame of reference could be calculated in two ways. The first
way used the periods of the free surface oscillations shown in
Fig. 2(a), which is in fact the time between two subsequent
laps of the solitary wave. The second method utilizes two
subsequent snapshots of the wave as it passes in front of the
camera. Measuring the distance between the waves’ crests in
Fig. 2(b) and knowing the time between two snapshots (the
imaging frequency rate), the wave speed can be deduced. The
evolution of the speed with the number of laps is displayed
in Fig. 3. This figure indicates that the wave speed has five
distinct, almost constant, levels and jumps from one level to
another. This behavior could be accounted for by the residual
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1
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1.25

1.3
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1.4
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W
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ri

ty

FIG. 3. Wave speed in the laboratory frame of reference versus
number of laps. The water depth was H0 = 25.5 mm.

sloshing of the fluid, which occurs when swirling fluid is
drained through a sink. The intrinsic wave speed in the rotating
frame of reference was also not experimentally accessible.
However, it can be estimated using the simplified theory of
Ref. [11] as

√
gH0(1 + 1

2
A
H0

). Based on these two wave speeds
(absolute and relative) the rotational speed of the background
flow, �0, can be estimated. Inserting the estimated value of
�0 in the expression for α0 in Eq. (44), one can obtain the
profile of the solitary wave at different stages (laps) of its
development. Thus, the difference between the actual and the
estimate values of �0 should affect the profile and the speed
of the wave, deduced from the theory.

This influence should be more noticeable at the last stages
of the lifetime of the wave, when the background rotation has
decreased appreciably due to the accumulation with time of
viscous effects. The typical Reynolds (Re = �0R

2

ν
) and Ekman

(Ek = ν
(�0H 2) ) numbers based on the average estimated value

of the background rotation are approximately 6 × 104 and 5 ×
10−4, respectively. Because of viscous effects, the actual value
of �0 should be inferior and thus the values of Reynolds and
Ekman numbers can be considered as moderate, specifically
during the last laps of the wave, when the rotational speed of the
background flow should have decreased enough that ignoring
viscous effects becomes hard to justify. The Rossby number in
our experiment, defined as Ro = U

2R�0
, is constant and equal to

1/2 with U = �0R; this value also is moderate which suggests
that the wave propagation is moderately influenced by the
Coriolis force.

A comparison between the predicted wave profile (44) and
that observed at different phases of the wave development
is shown in Fig. 4. An assessment of the wave speeds
(experimental and theoretical) is given in Table I. The first
observation that one can infer is that the wave profile predicted
by the theory is close to the one observed in the experiment but
it is sharper than the actual profile. This difference might be
explained by the presence of friction on the walls, which tends
to stretch or enlarge the wave profile. The second observation
is that the theory predicts the wave speed with good accuracy;
see Table I. Figures 4(a)–4(c) compare the experimental and
theoretical profiles in the time interval during which the wave
was generated and traveled half the distance before it vanishes;
i.e., between the first and the 15th laps. In this time interval,
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FIG. 4. Comparison between theoretical and observed wave profiles at the same space position after various laps, starting from the initial
stage of the wave formation, after (a) one, (b) three, (c) seven, (d) 15, (e) 19, and (f) 24 laps. The experimental conditions were as follows:
constant water depth H0 = 25.5 mm, initial swirl ω = 120 rpm, and initial water height h = 435 mm.

given that the theory considers the fluid to be inviscid while
water is viscous, the comparison between the wave profiles is
fair. In the second half of the wave’s lifetime the divergence
between the two profiles becomes more significant. The reason
behind this behavior is of course the viscous effects. In addition
to the shear at the walls of the container, the accumulation
with time of viscous influences became significant, which
might result in large differences between the estimated and
actual values of �0. The actual value of the background flow
rotational speed should be much inferior to the one estimated
using the inviscid theory [11]. Therefore, based on the fact that

the rotational character of the background flow is reflected in
both nonlinear and dispersion terms in Eq. (42), any difference
in the value of �0 should affect the interplay between
dispersion and nonlinearity during the wave propagation. For
instance, an error of 10% in the wave speed in the laboratory
frame of reference can significantly affect the shape of the
theoretical profile, thus giving a reason for its deviation from
the experimental profile. Surprisingly enough, the predicted
wave speed remains close to the measured value; see Table I.

From this discussion it seems that that the viscosity affects
the dispersion more than the nonlinearity of the wave. The
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TABLE I. Comparison between the wave speed predicted by the
theory and that measured in the laboratory after different laps.

c(expt) (m/s) c(theor) (m/s) Error (%)

Lap 1 1.2 1.29 7.2
Lap 3 1.3 1.2 7
Lap 7 1.1 1 1
Lap 15 1.25 1.21 3.6
Lap 19 1.12 1.14 1.5
Lap 24 1.12 1.14 2

value of α0 that encompasses the influence of the rotational
character of the background flow was varied approximately by
7% during the experiment. This variation alone seems not to
greatly affect the nonlinearity of the wave, and hence its speed;
see Eqs. (42) and (44). However, the relatively small variation
of α0 combined with the dispersion of the wave appears to
influence the wave propagation significantly, which might
explain also why the wave became wider as it propagated. The
frictional effects, which could not be captured by the inviscid
theory, seem to play a role not only in modifying the shape
and the speed of the wave on the cylindrical walls but also
in affecting its dispersion through the background rotational
speed. In fact, the width of the wave is larger in the experiments
than the predictions.

VI. CONCLUSION

In this paper, a KdV-type equation was derived, which
governs a rotating solitary surface wave observed on the lateral
wall during drainage of a water-filled cylindrical container
under shallow water conditions. It represents an improvement
of our previous work [11] where the radial component of the
perturbed velocity field was neglected. The primary drawback
of the earlier strong assumption produced the classical planar
KdV equation which did not account for the rotational
character of the base flow field. Since our interest was focused
on the wall wave motion, a projection of the flow onto the
lateral wall was considered. A less stringent approximation
than a zero radial component at the wall is assumed, consisting
in neglecting the radial curvature of the radial velocity at the
wall. This approach might be justifiable since it preserves the
three-dimensional character of the flow via the wall radial
gradients of all the dependent variables. A KdV-type equation
with coefficients different from those of the planar case was
then obtained. As was expected, this formulation contained the

rotational aspect of the base flow through the dependence of
the equation coefficients on the background angular velocity.
The theory was shown to predict with fair accuracy the shape
and the kinematics of the observed wave. The frictional effects
seem to play a role by modifying the shape and the speed of
the wave at the cylindrical wall and increasing its dispersion
through decrease of background rotational speed. A natural
extension of the present work would be the inclusion of the
viscosity in the analysis. Moreover, if improvements to the
experimental apparatus are made, such as controlling the speed
of the background flow or/and rotating the sidewalls to limit
the shear stress, the modified experimental setup could serve
as a tool to investigate the role of rotation in the propagation of
solitary waves. Another natural extension of the present work,
which is in progress, involves the derivation of a formulation
applicable for the entire wave motion. However, the latter
will certainly require a combination of both analytical and
numerical treatments.
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APPENDIX

Looking for a solution of Eqs. (15)–(17) in the traveling
wave form, i.e., setting (u,v,η) = (ũ(r),ṽ(r),η̃(r)) exp ik[θ −
(� + 1

α
)t] amounts to setting Dt = − 1

α
∂θ . Then the eigenvalue

problem for the wave amplitude reads

−i
k

α
ṽ + 2�ũ + i

k

r
η̃ = 0, (A1)

−i
k

α
ũ − 2�ṽ + η̃r = 0, (A2)

−i
k

α

r

h0
η̃ + ikṽ + ũ + rũr = 0. (A3)

By eliminating ũ, ṽ, and their radial derivatives in favor of
η̃, the following eigenvalue equation for the wave amplitude
modes is obtained:

r2η̃rr + rη̃r +
{

4�2 − k2

(
1 − r2

α2h0

)}
η̃ = 0. (A4)

This equation differs slightly from the Bessel equation due
to the presence of h0(r). The boundary condition ũ|r=1 = 0
serves to determine the dispersion curve between the wave
number k and the wave speed � + 1

α
.
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