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Hydrodynamics of Leidenfrost droplets in one-component fluids
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Using the dynamic van der Waals theory [Phys. Rev. E 75, 036304 (2007)], we numerically investigate the
hydrodynamics of Leidenfrost droplets under gravity in two dimensions. Some recent theoretical predictions and
experimental observations are confirmed in our simulations. A Leidenfrost droplet larger than a critical size is
shown to be unstable and break up into smaller droplets due to the Rayleigh-Taylor instability of the bottom
surface of the droplet. Our simulations demonstrate that an evaporating Leidenfrost droplet changes continuously
from a puddle to a circular droplet, with the droplet shape controlled by its size in comparison with a few
characteristic length scales. The geometry of the vapor layer under the droplet is found to mainly depend on the
droplet size and is nearly independent of the substrate temperature, as reported in a recent experimental study
[Phys. Rev. Lett. 109, 074301 (2012)]. Finally, our simulations demonstrate that a Leidenfrost droplet smaller
than a characteristic size takes off from the hot substrate because the levitating force due to evaporation can no
longer be balanced by the weight of the droplet, as observed in a recent experimental study [Phys. Rev. Lett. 109,
034501 (2012)].

DOI: 10.1103/PhysRevE.87.043013 PACS number(s): 47.55.D−, 68.08.−p, 44.35.+c, 47.61.−k

I. INTRODUCTION

Boiling and evaporation of liquids are commonly observed
in our daily life [1,2]. Consider a liquid droplet deposited on
a hot solid surface. If the solid temperature is a bit above
the boiling point of the liquid, then the droplet will boil and
evaporate rapidly. However, if the solid temperature is much
higher than the boiling point, then a vapor layer is formed
between the droplet and the solid [1,3]. A droplet levitating
over a vapor layer on a hot solid surface is called a Leidenfrost
droplet, named after the German medical doctor Johann
Gottlob Leidenfrost, who first reported the phenomena in
1756 [4]. In the presence of the vapor layer, the droplet avoids
a direct contact with the solid surface. The consequences are
twofold: First, the vapor layer acts as a thermally insulating
layer due to its small heat conductivity. This reduces the rate of
heat transfer into the droplet and prevents the bubble nucleation
so the droplet does not boil but evaporates slowly [3,5].
Therefore, the droplet lifetime is greatly extended. Second,
the Leidenfrost droplet acquires high mobility on the vapor
layer [3,6,7].

Over the years, the Leidenfrost phenomena have attracted
continuous pure and applied research efforts. This may be
partly attributed to a variety of technological applications in-
volving liquid droplets evaporating on hot surfaces [1,8]. These
include quenching of metals, quick-response steam generators,
spray drying, spray cooling of nuclear reactor cores, and film
cooling of rocket nozzles. Recently, the rich behaviors of the
Leidenfrost droplets have become better understood with the
help of high speed and ultra-high-speed video imaging, surface
coating, and micromachining [3,5–7,9–17]. Below are a few
key aspects of the Leidenfrost phenomena.

(i) Determination of the Leidenfrost temperature TL [1,18].
The Leidenfrost temperature is defined as the temperature
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of the hot solid surface at which the lifetime of the liquid
droplet attains a maximum. This is the temperature above
which a stable thermally insulating vapor layer can be fully
developed to prevent the liquid from touching the solid.
The determination of TL involves both thermodynamics and
hydrodynamics: the nucleation of vapor bubbles due to
thermodynamic fluctuations, the growth of vapor bubbles on
the surface due to surface heating, and the pinch-off of bubbles
from the surface due to gravity. Together, they determine
whether the formation and growth of randomly distributed
vapor bubbles on the surface can generate a continuous stable
vapor layer beneath the liquid droplet.

(ii) The Leidenfrost droplets have different sizes [5,15,19,
20]. A droplet larger than a critical (maximum) size (Rmax ≈
4Rc with Rc being the capillary length) becomes unstable due
to the Rayleigh-Taylor instability of the bottom surface of the
droplet [5,19]. For droplets smaller than Rmax, three different
regimes can be identified as follows for decreasing droplet
radius. (a) Puddles (disk- or pancake-shaped droplets) of radius
of the order of magnitude of Rc. In this regime, as evaporation
proceeds, the droplet shrinks and sinks with the vapor layer
getting thinner. The droplet thickness d, however, remains
nearly constant (≈2Rc) [5]. (b) Quasispherical droplets of
radius of the order of magnitude of Ri (�Rc), a characteristic
length scale introduced by Celestini et al. [15]. In this regime,
as evaporation proceeds, the droplet shrinks and rises with the
vapor layer getting thicker. (c) Spherical droplets of radius
much smaller than Ri . Similar to the quasispherical droplets,
as evaporation proceeds, they shrink and rise.

(iii) Spatial and temporal evolution of the vapor layer
[16]. Burton et al. [16] accurately measured the radius,
curvature, and height of the vapor layer under the Leidenfrost
(water) droplets at different temperatures. They found that the
geometry of the vapor layer depends primarily on the droplet
size and not on the substrate temperature.

(iv) Take-off of small Leidenfrost droplets [15,20]. Celes-
tini et al. [15] predicted and observed that, below a critical
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size Rl , the spherical Leidenfrost droplets take off from the
hot solid surfaces.

In short, the dynamics of the Leidenfrost droplets is
characterized by the coupling of mass flow, free interface
motion, heat conduction, and phase change (evaporation)
[1,3,20]. This makes it a complicated problem exhibiting rich
behaviors. Therefore, modeling and simulation efforts made
for its understanding are not only of theoretical interest but also
necessitated by the rapid advances in experimental studies.

Recently, the dynamic van der Waals theory (DVDWT)
has been presented for one-component van der Waals fluids.
This theory is a phase-field model capable of describing the
two-phase hydrodynamics involving the liquid-vapor phase
transition in inhomogeneous temperature field [21,22]. In
addition, the boundary conditions for two-phase hydrodynam-
ics on solid surfaces have been derived by considering the
dissipative processes at the fluid-solid interface [23–26]. In
the phase-field modeling, the density field (and, hence, the
liquid-vapor interfacial profile), velocity field, and temperature
field are governed by a single set of partial differential
equations. In comparison with other modeling methods for
multiphase flows involving the liquid-vapor phase transition
[20,27–31], the phase-field modeling does not need interfacial
boundary conditions at the liquid-vapor interface [22] and,
hence, the rate of evaporation is not a prerequisite input
but a computational output. Given these advantages, the
DVDWT has been used to study pool boiling [22,32], droplet
evaporation on heated surfaces without gravity [33], droplet
spreading on heated or cooled substrates [34], droplet motion
induced by wettability and thermal gradients [25,26], and
so on. It is interesting to note that Teshigawara et al. [33]
applied the DVDWT in an axisymmetric geometry and
observed the Leidenfrost phenomena in van der Waals fluids
without gravity. Nevertheless, for Leidenfrost droplets under
gravity, no phase-field approach to droplet dynamics has been
reported.

The purpose of the present work is to employ the DVDWT
to investigate the Leidenfrost droplet dynamics in van der
Waals fluids under gravity. We numerically implement the
DVDWT in a two-dimensional geometry by using an ex-
plicit finite difference scheme [23–26]. We then study the
evaporation of a Leidenfrost droplet surrounded by its own
vapor. We focus on the evolution of the droplet shape and the
geometry of the vapor layer. Our numerical results demonstrate
different scaling regimes predicted by recent scaling analyses
[15,16,20]. The take-off of small circular droplets, which
invalidates the commonly used lubrication approximation [15],
is also numerically observed. The liquid-vapor coexistence
temperature and pressure are initially set to be close to the
critical point, at 0.875Tc and 0.584pc, respectively, with Tc

being the critical temperature and pc the critical pressure.
As a consequence, the liquid-to-vapor density ratio is only
about 5 and the small mean free path in the vapor justifies
the phase-field approach [34]. In order to make the different
scaling regimes numerically accessible and observable, we
make use of artificially large gravitational accelerations [22].
Regardless of the above assumptions made for the numerical
computation, our results are able to confirm and reproduce
some recent theoretical predictions and experimental obser-
vations [3,5,15,16,19,20] for Leidenfrost droplets exposed in

the air at room temperatures and room pressures. It is our
hope that alternative numerical methods can be combined
with our model to produce more realistic simulations in more
complicated geometries [35].

The paper is organized as follows. Section II is a review
of the dynamic van der Waals theory for one-component
liquid-vapor systems on solid substrates. A description of the
numerical implementation is also given. In Sec. III, numerical
results are presented and discussed. Some important theoreti-
cal predictions and experimental observations are numerically
observed in a series of two-dimensional simulations. The paper
is concluded in Sec. IV with a few remarks.

II. THEORETICAL MODELING AND NUMERICAL
IMPLEMENTATION

This section is a brief review of the dynamic van der Waals
theory. The numerical implementation is also described.

A. Dynamic van der Waals theory

Consider a one-component liquid-vapor system on a solid
surface, which is assumed to be flat, rigid, homogeneous, and
of high heat conductivity [24–26]. The dynamic van der Waals
theory (DVDWT) [21,22] for one-component fluids can be
outlined as follows.

In the van der Waals theory for homogeneous one-
component monatomic fluids [22,36], the fluids are charac-
terized by the molecular volume v0 = a3

vdw (with avdw ≡ v
1/3
0

being the order of magnitude of the molecular diameter) and
the attractive interaction energy ε. The Helmholtz free en-
ergy density is given by f (n,T ) = nkBT ln[λ3

thn/(1 − v0n)] −
nkBT − εv0n

2, from which the entropy per molecule s,
the internal energy density e, and the pressure p can be
obtained

s(n,T ) = kB ln
[
(kBT /ε)3/2(1/nv0 − 1)

] + const, (1)

e(n,T ) = 3nkBT /2 − εv0n
2, (2)

p(n,T ) = nkBT /(1 − v0n) − εv0n
2. (3)

Here n is the number density, T is the temperature, kB is the
Boltzmann constant, and λth = h̄(2π/mkBT )1/2 is the thermal
de Broglie wavelength with m and h̄ being the molecular mass
and the Planck constant. In this mean-field theory, the critical
temperature, critical pressure, and critical density are given
by Tc = 8ε/27kB , pc = ε/27v0, and nc = 1/3v0, respectively.
At a given temperature T < Tc, liquid and vapor phases can
coexist at a coexistence pressure pcx, with the temperature T

referred to as the coexistence temperature and denoted by Tcx.
For example, at the coexistence temperature Tcx = 0.875Tc,
the coexistence pressure is pcx ≈ 0.584pc, and the liquid
and vapor densities are nl ≈ 0.58/v0 and nv ≈ 0.122/v0,
respectively. (See the appendix for the experimental data for
water and nitrogen at a coexistence temperature Tcx ≈ 0.9Tc.)

To describe the inhomogeneous van der Waals fluids,
gradient contributions must be included. As in most of the
phase-field models for one-component liquid-vapor systems
[37,38], the local number density n = n(r,t) is used as the
order parameter, which takes distinct values in the liquid and
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vapor phases and shows a fast variation across the liquid-vapor
interface. In nonisothermal situations, the conventional use of
free-energy functional is inapplicable. According to Onuki
[21,22], we should instead start with an entropy functional
Sb = ∫

drŜ by including a gradient contribution. The local
entropy density Ŝ = Ŝ(r,t) consists of a regular term for
homogeneous fluids and a gradient term arising from the
density inhomogeneity:

Ŝ = ns (n,e) − C

2
|∇n|2 . (4)

Note that the entropy per molecule s (n,e) as a function of
the number density n and the internal energy density e can be
derived from Eqs. (1) and (2) by eliminating T . The coefficient
C is a positive constant, indicating a decrease of entropy due
to the density inhomogeneity. Moreover, the internal energy
functional Eb is assumed to be the space integral of e, i.e.,
Eb = ∫

dre. More generally [21,22], the coefficient C may
depend on n, and the internal energy functional Eb may also
contain a gradient contribution. In the present work, we include
a constant C in Ŝ and neglect the gradient contribution to Eb.
This will not affect the essential features of our results [21,22].

The boundary effects of the solid substrate on the fluids
can be included by introducing the surface entropy Ss =∫

dAσs (n) and the surface energy Es = ∫
dAes (n). Here∫

dA denotes the surface integral on the solid surface, and
areal densities σs and es are assumed to only depend on the
boundary value of fluid density at the solid surface.

Maximizing the total entropy Stot = Sb + Ss subject to fixed
particle number N = ∫

drn and fixed total internal energy
Etot = Eb + Es leads to the equilibrium conditions: (i) 1/T ≡
(δSb/δe)n = n (∂s/∂e)n = const, (ii) μ̂ ≡ −T (δSb/δn)e =
μ − CT ∇2n = const, and (iii)

L ≡ CT ∇γ n + (∂fs/∂n)T = 0, (5)

at the solid surface with ∇γ ≡ γ̂ · ∇ and γ̂ denoting the
outward unit vector normal to the surface. Here μ ≡
−T [∂(ns)/∂n]e is the chemical potential for homogeneous
fluids and fs (n,T ) ≡ es (n) − T σs (n) is the areal density of
surface free energy.

Due to the presence of the gradient entropy in Eq. (4), there
arises a new length scale 	 defined by [21,22]

	 ≡ (C/2kBv0)1/2 (6)

besides the molecular diameter avdw ≡ v
1/3
0 . For real simple

fluids, the ratio 	/avdw is of order unity (see the appendix for the
estimations of 	 and avdw using the experimental data for water
and nitrogen). In the present phase-field approach, we treat 	 as
an adjustable parameter. The liquid-vapor interfacial thickness
is of the order of magnitude of 	 far from the critical point and
varies as 	 (1 − T/Tc)−1/2 close to the critical point [34]. The
surface tension γ is of the order of magnitude of [34]

γ ∼ kBT (1 − T/Tc)3/2 	/v0. (7)

Now we present the hydrodynamic equations which can be
derived from the principle of positive entropy production in
nonequilibrium thermodynamics [36,39]. The mass density
ρ ≡ mn, momentum density ρv, and total energy density
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FIG. 1. Schematic illustrations for Leidenfrost droplets of differ-
ent shapes. (a) A puddle. (b) A quasicircular droplet. (c) A circular
droplet. A few lengths characterizing the droplet shape and the
geometry of the vapor layer are defined here. The droplet thickness
is measured by d , which is related to the radius rmin via rmin = d/2.
The other two radii are rmax and rnk, which are the maximum radius
and the neck radius of the droplet, respectively. As to the geometry
of the vapor layer, its thickness is measured by hct at the center and
hnk at the neck, respectively. The height of the droplet is measured by
H ≡ hct + rmin. In addition, an effective radius of the droplet reff can
be defined via πr2

eff = the instantaneous droplet area.

eT ≡ e + ρv2/2 satisfy the balance equations

∂n

∂t
+ ∇ · (nv) = 0, (8)

∂

∂t
(ρv) + ∇ · (ρvv) = ∇ · ↔

M − ρgez, (9)

∂eT

∂t
+ ∇ · (eT v) = ∇ · (

↔
M · v) − ∇ · q − ρgvz, (10)

where g is the gravitational acceleration, ez is the upward unit
vector along the z axis (as shown in Fig. 1), and vz ≡ v · ez is
the z component of the fluid velocity v. The total stress tensor↔
M = − ↔

� + ↔
σ consists of the irreversible viscous part [36,39]

↔
σ = η(∇v + ∇vT ) + (ζ − 2η/3)

↔
I∇ · v and the reversible part

− ↔
� = −CT ∇n∇n − p̂

↔
I, (11)

in which the anisotropic part −CT ∇n∇n results in the liquid-
vapor interfacial tension [21,22], and p̂ is the generalized
pressure given by p̂ ≡ p − CT |∇n|2/2 − CT n∇2n with p

given by Eq. (3). The heat flux q is given by q = −λ∇T

[36,39,40]. Here the transport coefficients η, ζ , and λ denote
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the shear viscosity, bulk viscosity, and heat conductivity,
respectively.

Assuming local equilibrium (for slow hydrodynamics) and
using equations (4), (8)–(10), we can obtain the balance
equation for the entropy density Ŝ [21,22]

∂Ŝ

∂t
+ ∇ · (Ŝv) = −∇ · ĴS

f + σ, (12)

in which the density of the rate of entropy production
σ ≡ ↔

σ : ∇v/T − q · ∇T/T 2 must be positive definite ac-
cording to the second law of thermodynamics and ĴS

f ≡
[q/T + C(∂n/∂t + v · ∇n)∇n] is the total reversible entropy
flux, including the contribution of the number density varia-
tion.

To close the above system of partial differential equations,
we employ the following boundary conditions at the solid
surface [22,24].

(i) For the fluid velocity v, the no-slip boundary condition
is applied, i.e., v = 0 (in the reference frame moving where
the solid substrate is still) [40].

(ii) For the fluid temperature T , the Dirichlet boundary con-
dition is applied, i.e., T = Tw with the substrate temperature
Tw being a given constant [22,34].

(iii) For the number density n, the equilibrium condition
in Eq. (5) is applied, i.e., L ≡ M∇γ n + (∂fs/∂n)T = 0. This
assumes fast equilibration of the density at the solid boundary
[22].
It is worth pointing out that recent molecular dynamics
simulations have shown that velocity slip (tangential to the
solid surface) [41–43] and temperature jump (due to the
Kapitza resistance) [44–46] can both occur at the fluid-solid
interface, especially when the solid surface is hydrophobic.
These phenomena have been discussed and modeled by a
more general set of boundary conditions in our previous
work [24–26]. The simplified boundary conditions used here
are justified by the fact that the Leidenfrost droplets levitate
on a vapor cushion at the solid substrate such that there is no
direct contact between the liquid and the solid and, hence, no
contact line is involved in the droplet dynamics. A detailed
modeling of the physical processes at the fluid-solid interface
therefore becomes nonessential [3,20,47]. We would like to
emphasize that a detailed modeling of the interfacial processes
does become essential in describing the formation of the vapor
layer and in determining the Leidenfrost temperature [1,18].

B. Simulation details

The hydrodynamic equations (8), (9), and (12) are inte-
grated in the two-dimensional xz plane, with the liquid-vapor
mixture confined in the region 0 � x � Lx and 0 � z � Lz

(see Fig. 1). The two fluid-solid interfaces are defined at
z = 0 and Lz, and periodic boundary condition is applied
in the x direction to close the system. The state variables
n, v, and T in the fluid are defined in a two-dimensional,
unstaggered, uniformly discretized Cartesian mesh [24–26].
The mesh size is �x = �z = 0.5	, which is fine enough to
resolve the liquid-vapor interface (of thickness ≈2.5	) in our
simulations [25,26]. It is important to note that to update the
fluid temperature T , the entropy equation (12) is integrated
instead of the energy equation (10) to avoid artificial parasitic

flows [33]. The local relation between T and Ŝ can be obtained
from Eqs. (4) and (1). [Note that the constant in Eq. (1)
can be omitted because Ŝ is determined up to n × const by
Eq. (12) because of the continuity equation (8)]. Limited by
our computational capability, Lx and Lz are of the order of
magnitude of 100	, and the droplets are as large as a few tens
of 	. As 	 ∼ 1 nm [34,48], our systems are very small and the
droplets are of the size of a few tens of nanometers. We would
like to point out that more realistic simulations at larger length
scales can be made possible with the help of adaptive mesh
method [49].

For simplicity, we assume that the transport coefficients
are of the forms η = ζ = νmn and λ = νkBn, with linear
dependence on the local number density [50]. The kinematic
viscosity ν = η/ρ is, therefore, a constant independent of
n. Under these assumptions, on the one hand, the transport
coefficients are larger in the liquid than in the vapor by a factor
of nl/nv (≈5 in our simulations). On the other hand, since the
isobaric specific heat capacity Cp per unit volume is about kBn,
the thermal diffusivity DT = λ/Cp is about ν and, hence, the
Prandtl number Pr = ν/DT is of order unity in both phases.
(For a justification of our assumptions, see the appendix for the
experimental data for water and nitrogen.) Finally, the surface
energy density and surface entropy density are assumed to be of
the forms es = const and σs = −cs (n − nc), respectively, with
cs being a constant independent of n [25,34]. The surface free
energy density is then given by fs = const + csT (n − nc).
Widely used in the study of wetting phenomena [34,38,51],
this kind of surface free energy function leads to density
enrichment or depletion near the solid surface.

In our calculations, the space is measured by 	 and the
time is measured by τ0 ≡ 	2/ν, the viscous relaxation time
at the length scale of 	. (Note that τ0 also gives the order of
magnitude of the thermal diffusion time at the same length
scale because of Pr ∼ 1.) The number density is measured by
1/v0 and the temperature is measured by the critical tempera-
ture Tc. Dedimensionalizing our equation system [22,25], we
obtain three dimensionless parameters: R ≡ ν2m/ε	2,

G ≡ mg	/ε, (13)

which is the dimensionless gravitational acceleration, and
W ≡ cs/kB	 from the surface free energy, which determines
the static contact angle for a droplet in direct contact with the
solid [25]. In the present work, we use R = 0.06 [22,33,34]
(see the appendix for the estimation of R using the experi-
mental data for water and nitrogen) and W = 0, which gives
a static contact angle of 90◦ [25,33].

An explanation is in order for the use of the dimensionless
gravitational acceleration G. From its expression, G is the
gravitational energy of a molecule over the distance 	 measured
by the van der Waals energy ε. For g = 9.8 m/s2 on the
surface of the Earth and 	 ∼ avdw, G is extremely small
(G ∼ 10−14 for water and nitrogen, see the appendix for the
estimation of G). For the purpose of the present work, it is
important to note that G is directly related to the capillary
length defined by Rc ≡ (γ /ρlg)1/2 with ρl = nlm being the
liquid mass density. Physically, the capillary length represents
the length scale over which the gravitational potential energy
and the liquid-vapor interfacial energy are comparable. At the
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TABLE I. The characteristic length scales Rmax, Rc, Ri , Rl , and
Rmin calculated for different dimensionless gravitational accelerations
G used in Secs. III B and III C.

Section G Rmax/	 Rc/	 Ri/	 Rl/	 Rmin/	

1.0 × 10−4 64 16 11 4 5
5.0 × 10−5 92 23 14 5 5

IIIB 2.5 × 10−5 126 32 20 6 5
1.5 × 10−5 164 41 25 8 5
5.0 × 10−6 288 72 42 11 5
1.0 × 10−6 640 160 88 19 5

IIIC 5.0 × 10−7 904 226 121 24 5
2.5 × 10−7 1280 320 167 30 5

coexistence temperature Tcx = 0.875Tc with nl ≈ 0.58/v0, we
can obtain an estimation of Rc as

Rc ≡ (γ /ρlg)1/2 ≈ 0.14	/G1/2 (14)

using Tc = 8ε/27kB and Eqs. (7) and (13). For real simple
fluids on the surface of the Earth, the capillary length Rc is a
macroscopic length scale (Rc 	 	). That is, for 	 ∼ 1 nm and
G ∼ 10−14, Rc ∼ 1 mm (see the appendix for the estimation
of Rc using the experimental data for water and nitrogen).

In the present numerical study, in order to induce apprecia-
ble gravitational effect on the nanoscale systems, Rc has to be
treated as an adjustable microscopic parameter (Rc � 	). This
is achieved by using artificially large gravitational accelera-
tions g (or equivalentlyG) [22,52,53]. According to Table I, for
G ranging from 2.5 × 10−7 to 1.0 × 10−4, Rc ranges from 320	

to 16	, thus becoming numerically accessible. This makes it
possible to investigate the different scaling regimes exhibited
by a Leidenfrost droplet as evaporation proceeds. More details
will be presented in Sec. III regarding the proper values ofG for
observing different evaporation stages. We would like to point
out that the use of artificially large gravitational accelerations
is, on the one hand, necessitated by the multiscale nature of the
Leidenfrost droplet dynamics and, on the other hand, caused
by our limited computational capability.

C. Preparation of the Leidenfrost droplets

To produce a Leidenfrost droplet, a two-dimensional
semicircular liquid droplet of radius R0 is placed on the
bottom substrate at z = 0. It is surrounded by its own vapor
and under the influence of an artificially large gravitational
acceleration G (see Table I). The temperatures of the fluid, the
top substrate, and the bottom substrate are all set to be 0.875Tc

in the beginning. The liquid density nl and the vapor density
nv take their respective values at liquid-vapor coexistence,
given by nl ≈ 0.58/v0 and nv ≈ 0.122/v0 at the coexistence
temperature Tcx = 0.875Tc. Under these conditions, we wait
until the droplet reaches an almost equilibrium state [25,34]
with a static contact angle of 90◦ (because of W = 0 adopted
in our simulations [25]). When this equilibration process is
completed, we set t = 0 as the origin of the time axis. Figure 2
shows a droplet in equilibrium at t = 0.

To prepare an initial equilibrium state appropriate for a
subsequent dynamic simulation, the following must be noted:
(i) The computational domain of size Lx × Lz should be

large enough to avoid possible boundary effects and maintain
(nearly) constant ambient pressure. This makes our simu-
lations quite time-consuming. (ii) For a given gravitational
acceleration G, the shape of a Leidenfrost droplet can vary
from a puddle to a circle, depending on the initial droplet
radius R0. (Note that the simulations are in two dimensions.)
Therefore, to investigate a particular aspect of the droplet
dynamics, an appropriate value of R0 should be chosen in
the beginning. (iii) The initial droplet radius R0 cannot be too
large. If the maximum radius rmax of a Leidenfrost droplet
(defined in Fig. 1) exceeds the maximum size Rmax ≈ 4Rc,
then the droplet becomes unstable and breaks up into smaller
droplets (see Fig. 2) [5,19].

The temperature of the bottom substrate Tw is suddenly
raised at t = 0. The lifetime of the droplet has a strong
dependence on this temperature [1,18]. In particular, the
lifetime of the droplet attains a maximum at a special substrate
temperature, namely the Leidenfrost temperature TL. Our
simulations have shown that the maximum lifetime is indeed
achieved by the generation of a stable vapor layer between the
droplet and the bottom substrate of temperature Tw = TL, as
reported in early theoretical and experimental works [1,18]. We
point out that since thermodynamic fluctuations responsible
for bubble nucleation are absent in the present mean-field
model, the vapor layer is actually generated via the instability
of the superheated liquid near the bottom substrate. In real
situations, however, both mechanisms are present [1,18].

In most of the experimental studies of droplet evaporation
[1,18], a known volume of liquid is deposited on a hot
substrate at a fixed temperature, and the total evaporation
time (i.e., the lifetime) of the droplet is measured. This
lifetime is recorded for the same liquid volume but different
substrate temperatures. Our simulations have been carried out
accordingly, with the Leidenfrost temperature determined to
be TL ≈ 0.97Tc.

Finally, we mention the two prominent restrictions of our
approach: (i) The size of the simulated system, typically
at nanometer or submicrometer scale, is limited by the
computational capacity [22,25,43,54] because the mesh size
of the discretized phase-field model has to be smaller than the
length scale 	 of the liquid-vapor interfacial thickness. The real
gravitational effect, however, becomes relevant only at macro-
scopic length scale [22,40]. Therefore, it is necessary to use an
artificially large gravitational acceleration to incorporate the
gravitational effect into a phase-field model [22,52,53]. (ii)
Given the finite liquid-vapor interfacial thickness (≈2.5	 in
our simulations), the size of a well-defined droplet must not be
smaller than a minimum value, denoted by Rmin and chosen to
be 5	 here (see Table I).

III. RESULTS AND DISCUSSION

Now we present and discuss the numerical results ob-
tained for the Leidenfrost hydrodynamics. We first outline
a scaling analysis in two dimensions. This is to show that
the characteristics of the Leidenfrost droplets are determined
by the droplet size in comparison with a few characteristic
length scales [5,15,16,20]. We then numerically investigate
the evolution of the droplet shape [5,15,19,20] and that of
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the geometry of the vapor layer [5,15,16,20]. Finally, we
demonstrate the take-off of small circular droplets [15].

A. Multiple length scales

Consider a Leidenfrost droplet in two dimensions with mass
M (per length in the third direction). A vapor layer is stabilized
between the droplet and the solid surface [5,15,16,20]. Assume
that the droplet is large or heavy enough to stay close to the
solid surface. Let l be the horizontal extent of the vapor layer
and h be its thickness. The droplet is at mechanical equilibrium
when

Mg ∼ lδp, (15)

i.e., when its weight is balanced by the viscous pressure δp of
the vapor flow under the droplet. Although this pressure can
be numerically obtained by solving the model in Sec. II A, it
is worthwhile to present a scaling analysis for the vapor layer
and the droplet above it. For this purpose, a few reasonable
assumptions are made as follows [8,20].

(i) When l 	 h, the lubrication approximation is valid for
describing the vapor flow between the droplet and the solid.

(ii) The vapor flow is incompressible, with

u/l ∼ w/h, (16)

where u and w are the characteristic horizontal velocity and
the characteristic vertical velocity, respectively.

(iii) The flow in the thin vapor layer is a Poiseuille flow,
driven by a horizontal pressure gradient of the order of
magnitude of δp/l. This gives the momentum equation in
the form of

δp/l ∼ ηvu/h2, (17)

where ηv is the shear viscosity of the vapor.

(iv) The temperature of the droplet is spatially uniform and
fixed at the coexistence temperature Tcx, and heat is transferred
to the droplet only by conduction through the vapor layer [5,8,
15,20]. From the Stefan condition for the energy conservation
associated with the evaporation at the bottom surface of the
droplet, the heat flux across the vapor layer is directly related
to the evaporation rate:

λvδT /h ∼ ρvwLq, (18)

where λv is the heat conductivity of the vapor, δT is the
temperature difference between the droplet and the solid
surface, ρv is the mass density of the vapor, and Lq is the
latent heat of evaporation per unit mass.

Using the relations (16) to (18), we find

δp ∼ ηvλvδT

ρvLq

l2

h4
(19)

for the order of magnitude of the vapor pressure. Combining
Eqs. (15) and (19), we obtain

l3/h4 ∼ M/ρlR
3
l , (20)

in which ρl is the mass density of the liquid and Rl is a
characteristic length scale defined by

Rl ≡
(

ηvλvδT

ρvρlgLq

)1/3

. (21)

The significance of this length will be discussed later.
Three different regimes can be identified according to the

shape of the droplet [5,15,19,20].
(i) Puddles [see Fig. 1(a) for a schematic illustration]: A

Leidenfrost droplet, whose size is of the order of magnitude of
Rc, takes the shape of a (disk- or pancakelike) puddle flattened
by gravity. In this regime, the thickness d of the puddle
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remains nearly constant. Determined by a balance between
the interfacial free energy (2γ per unit area of the top and
bottom surfaces of the droplet) and the gravitational potential
energy (ρlgd2/2 per unit area), the thickness of the puddle is
given by d = 2Rc [5]. Therefore, the mass M of the puddle is
of the order of magnitude of ρlld ∼ ρllRc and the horizontal
extent of the vapor layer l is of the order of magnitude of the
puddle radius R. It follows from Eq. (20) that

h ∼ (
R3

l

/
Rc

)1/4
R1/2, (22)

which means that as evaporation proceeds, the droplet is
shrinking (with the radius R getting smaller) and sinking (with
the vapor layer getting thinner). Note that Eq. (22) is also valid
for three-dimensional puddles [5].

(ii) Quasicircular droplets [see Fig. 1(b) for a schematic
illustration]: In this regime, the size of a droplet is measured
by its radius R. The mass M of the droplet is of the order of
magnitude of ρlR

2 and the horizontal extent of the vapor layer
l is of the order of magnitude of (Rh)1/2 [15,20]. It follows
from Eq. (20) that

h ∼ R
6/5
l R−1/5, (23)

which means that as evaporation proceeds, the droplet is
shrinking and rising (with the vapor layer getting thicker).
Furthermore, for a droplet to remain quasicircular, the viscous
pressure in the vapor layer should be comparable to the
Laplace pressure in the droplet, i.e., δp ∼ γ /R. This occurs
when the droplet radius is of the order of magnitude of Ri , a
characteristic length scale defined by

Ri ≡ (
R10

c R3
l

)1/13
, (24)

which is derived from δp ∼ γ /Ri by combining
Eqs. (14), (19), (21), (23), and l ∼ (Rh)1/2 [15,20].
Note that for three-dimensional droplets, Eq. (23) becomes
h ∼ R

3/2
l R−1/2 and Eq. (24) becomes Ri ≡ (

R4
cR

3
l

)1/7
[15].

(iii) Circular droplets [see Fig. 1(c) for a schematic
illustration]: For a droplet to remain circular, the viscous
pressure in the vapor layer must be negligible compared
to the Laplace pressure in the droplet, i.e., δp � γ /R or,
equivalently, R � Ri . In this regime, the scaling relation (23)
derived for the quasicircular droplets above is still applicable.

It is interesting to note that the dependence of the vapor layer
thickness h on the droplet size R changes qualitatively from
Eq. (22) for puddles to Eq. (23) for quasicircular and circular
droplets. That is, starting from a large puddle, (at least) two
distinct stages can be identified in the course of evaporation,
with a crossover occurring for R ∼ Ri . A large evaporating
puddle would shrink and sink [with a decreasing h according
to Eq. (22)] while a small evaporating droplet would shrink
and rise [with an increasing h according to Eq. (23)].

As emphasized in the beginning, the lubrication approxi-
mation is valid when l 	 h. It follows from Eq. (20) that this
approximation breaks down when the droplet radius becomes
comparable to the characteristic length scale Rl defined by
Eq. (21), with l ∼ h ∼ Rl and M ∼ ρlRl

2. Physically, as
the droplet radius R becomes much smaller than Rl due to
continuous evaporation, the droplet takes off from the hot
surface [15]. In other words, a Leidenfrost droplet of radius R

much larger than Rl remains close to the solid surface, and,

hence, the lubrication approximation is valid. Recently, it has
been shown that the velocity and temperature fields in the vapor
layer can be well described by the lubrication approximation
for all cases with R 	 Rl [20].

In summary, the above analysis shows that the charac-
teristics of a Leidenfrost droplet are governed by its size in
comparison with the characteristic length scales Rc, Ri , and
Rl . They show up as the droplet size decreases in the course
of evaporation. Some of the above scaling laws have been
found to agree with the experimental data semiquantitatively
[5,15,16,20]. In Ref. [5], the behavior described by Eq. (22)
was observed for the vapor layer under puddles. In Ref.
[15], the take-off of Leidenfrost droplets smaller than Rl

was demonstrated, and the behavior described by Eq. (23)
was observed for the vapor layer under small droplets. In
Ref. [16], Leidenfrost water drops were observed to show
continuous shape change from a puddle to a quasisphere and
to a sphere. Note that the capillary length Rc = (γ /ρlg)1/2

defined by Eq. (14) is typically much larger than Rl defined
by Eq. (21). Therefore, we have Ri = R

10/13
c R

3/13
l 	 Rl , a

condition realized in experiments [15]. In the present work,
we use R = 0.06, Tcx = 0.875Tc, Tw = 0.975Tc, and δT ≡
Tw − Tcx, with the estimations for the three length scales
given by Rc ≈ 0.14	/G1/2 [in Eq. (14)], Ri ≈ 0.15	/G6/13,
and Rl ≈ 0.19	/G1/3.

Finally, we would like to point out that in the previous
theoretical scaling analyses [5,15,16,20], the above three
length scales Rc, Ri , and Rl are assumed to be well separated
(with Rc 	 Ri 	 Rl) and the asymptotic behaviors are clearly
manifested. However, for a simulation of the evaporation
process starting from a large puddle, we can not afford to have
a large separation of these length scales due to the limited
computational capacity. In fact, we have to make use of the
artificially large gravitational accelerations such that these
length scales are no longer separated by orders of magnitude
and, hence, simulations across these scales become affordable.
Table I lists the values of these length scales for different
dimensionless gravitational accelerations G used in Secs. III B
and III C. For the purpose of reference, we also give the values
of these length scales for water and nitrogen on the surface of
the Earth in the appendix.

B. Evaporation from puddles to circular droplets

Here we present and discuss the numerical results obtained
for evaporating Leidenfrost droplets that are large enough
to remain close to the solid surface. We focus on the time
evolution of the droplet shape and the geometry of the vapor
layer in the course of evaporation [5,15,16,20]. To demonstrate
the continuous shape change from a puddle to a circular
droplet, we use artificially large gravitational accelerations
such that Rc and Ri are not separated by order(s) of magnitude.
This, of course, prevents us from displaying the various power
laws [e.g., Eqs. (22) and (23)] obtained in the scaling analyses.

It has been experimentally observed that if the droplet is
sufficiently large, then a vapor bubble (or even several bubbles
for a very large puddle) rises at the center of the droplet
and bursts when reaching the upper interface [5]. This arises
from the Rayleigh-Taylor instability of the lower liquid-vapor
interface. In our two-dimensional simulations shown in Fig. 2,
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it is also observed that if the maximum radius rmax of a
puddle is larger than 4.5Rc, then the vapor pocket beneath
the droplet rises continuously to the top of the droplet and
bursts. Consequently, the droplet breaks up into two smaller
droplets, which quickly run away from each other due to the
fast transformation of the interfacial energy of the mother
droplet before the breakup into the kinetic energy of the
daughter droplets after the breakup.

Regardless of the initial size of the droplet, the formation
of the vapor layer between the droplet and the solid is very fast
(from t = 0 to t = 200τ0 in Fig. 2). This may be attributed
to the fact that in the present mean-field approach, the vapor
layer is formed via the instability of the superheated liquid
near the solid surface. That is, the vapor layer is formed via
spinodal decomposition rather than discrete bubble nucleation
events, which are thermodynamic fluctuations excluded from
our model.

Below we present the numerical results for evaporation
processes that start from large puddles (with rmax being a bit
smaller than Rmax). The main findings may be summarized as
follows.

(i) As evaporation proceeds, the droplet shape changes
continuously from puddles to quasicircular droplets and to
circular droplets (see Fig. 3). Figure 4 shows that the droplet
shape is controlled by its instantaneous size in comparison
with the two characteristic length scales Rc and Ri . A droplet
of radius rmax larger than Rc (from t = 0 to t ≈ 20 000τ0)
takes the shape of puddles flattened by gravity. In particular,
the puddle thickness d remains nearly constant (≈2Rc) from
t = 5000τ0 to t = 15 000τ0, as seen in Fig. 3 and Fig. 4.
The latter shows the time dependence of rmin = d/2. As
the decreasing radius rmax approaches Ri , the droplet shape
becomes quasicircular and then circular. This is displayed by
the three droplet radii rmin, rmax, and reff that merge when
they become small enough [see Fig. 4(a)]. Here reff is defined

by πr2
eff = the instantaneous droplet area. These results are

consistent with the above scaling analysis. The nearly constant
puddle thickness d ≈ 2Rc seen in our simulations agrees with
the experimental observation [5].

(ii) Figure 3 shows that vortices are generated within the
droplet in the course of evaporation. The generation of vortices
in the Leidenfrost droplets is anticipated because vortices are
also observed in evaporating droplets in direct contact with
solid surfaces, through simulations [28,33] and experiments
[11,55]. It is interesting to note that Fig. 3 shows large vapor
flows above the droplet. They are induced by the Rayleigh-
Bénard convection in the dense vapor phase (sandwiched
between the hot bottom substrate with Tw = 0.975Tc at z = 0
and the cold top substrate with Tw = 0.875Tc at z = Lz =
200	). The Rayleigh number Ra = βvg�T L3

z/νDT [40] is
found to be of the order of magnitude of 1000, where
βv ≡ −1/[ρ(∂T /∂ρ)p]ρ=ρv,p=pcx is the thermal-expansion co-
efficient of the vapor and �T = 0.1Tc is the temperature
difference between the two substrates. (In our simulations,
R ≡ ν2m/ε	2 = 0.06, G ≡ mg	/ε = 10−4, Pr ≡ ν/DT ∼ 1,
βvTc ∼ 1 at the coexistence pressure pcx ≈ 0.584pc).

(iii) The dynamic van der Waals theory describes the
one-component fluids in which the liquid and vapor are
pure, consisting of only one molecular component. As a
consequence, the temperature is nearly a constant along the
liquid-vapor interface [21,22]. This has been observed in
our simulations. For example, in Fig. 3 with the hot bottom
substrate at 0.975Tc and the cold top substrate at 0.875Tc,
the temperature at the liquid-vapor interface is found to be
everywhere close to 0.92Tc. Furthermore, the liquid droplet
enclosed by this interface shows a very small temperature
variation as well. As to the temperature distribution in the vapor
layer, our numerical simulations show that the temperature
decreases monotonically from the heated bottom substrate to
the liquid-vapor interface. In fact, this distribution can be well
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FIG. 4. Temporal evolution of the droplet in Fig. 3. Here various
lengths associated with the droplet (see Fig. 1) are plotted as functions
of time t (with reff defined by πr2

eff = the instantaneous droplet area).
(a) The four horizontal dashed lines mark the four characteristic length
scales Rmax, Rc, Ri , and Rmin. The vertical dotted line marks the time
(t = 22 000τ0) at which the three radii rmin, rmax, and reff merge, i.e.,
the droplet becomes circular as seen in Fig. 3. (b) The horizontal
dashed line is used to indicate that the radius rmin (or the thickness
d = 2rmin, see Fig. 1) almost remains constant from t = 5000τ0 to
15 000τ0 in the stage of an evaporating puddle. The vertical dashed
line marks the time (t = 15 000τ0) at which the bottom surface of
the droplet becomes flat with hct = hnk. The vertical dotted line still
marks the time at which the droplet becomes circular. After that, the
vapor layer gets thicker as evaporation proceeds.

approximated by ∇ · (λ∇T ) = 0 because the Péclet number is
small (∼0.1) and the vapor flow is nearly orthogonal to the
temperature gradient.

As explained before, artificially large gravitational acceler-
ations have to be used to make the simulations computationally
affordable. In order to make our results consistent and
convincing, we have carried out simulations using several
different gravitational accelerations. Figure 5 shows the time
dependence of the vapor layer thickness hct (defined in Fig. 1)
for four gravitational accelerations. The quantitatively similar
characteristics are as follows:

(i) A puddle of radius larger than Ri evaporates with the
vapor layer getting thinner, as displayed by the decreasing hct

with decreasing radius rmax. This is in qualitative agreement
with the scaling relation (22).

(ii) A quasicircular or circular droplet, which is of radius
equal to or smaller than Ri , evaporates with the vapor
layer getting thicker, as displayed by the increasing hct with
decreasing radius rmax. This is in qualitative agreement with
the scaling relation (23).
It is noted that, in all four cases, the crossover between the
two qualitatively different evaporation stages occurs when the
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FIG. 5. The central thickness of the vapor layer hct (defined in
Fig. 1) is plotted as a function of the droplet radius rmax for an
evaporating droplet that changes from a puddle to a circle. Four
different dimensionless gravitational accelerations G have been used.
Each vertical dotted line marks the value of Ri corresponding to a
particular value of G (see Table I). All the four sets of data show that
hct starts to increase with the decreasing rmax as soon as the droplet
radius becomes smaller than Ri .

droplet radius approaches Ri . This observation agrees with the
predication of the scaling analysis in Sec. III A.

We have also studied the effects of substrate temperature
on the droplet shape and the geometry of the vapor layer.
Figures 6(a)–6(c) show the three radii reff , rnk, and rmin (defined
in Fig. 1), each plotted as a function of the radius rmax for
five different bottom substrate temperatures Tw (and, thus,
different evaporative fluxes) in the course of evaporation. It
is readily seen that these three radii, by which the droplet
shape is characterized, mainly depend on rmax and are nearly
independent of Tw [16]. Figures 6(d) and 6(e) show the two
vapor layer thicknesses hct and hnk (defined in Fig. 1), each
plotted as a function of the radius rmax for five different bottom
substrate temperatures Tw in the course of evaporation. These
two thicknesses, by which the geometry of the vapor layer is
characterized, mostly depend on rmax and are nearly indepen-
dent of Tw in the range from 0.975Tc to 1.0Tc. These numerical
results agree with the recent experimental observations that
the geometry of the vapor pocket depends primarily on the
drop size and not on the substrate temperature [16]. At a
very high substrate temperature Tw = 1.1Tc, however, hct and
hnk show an appreciable increase in magnitude. Physically,
a higher substrate temperature leads to stronger evaporation
at the bottom surface of the droplet, and, consequently, the
droplet is pushed higher and the vapor layer gets thicker.

It is interesting to note that in the initial stage of the
evaporation, the neck radius of the puddle is found to be rnk ≈
rmax − 0.6Rc [as represented by the solid line in Fig. 6(b)], in
reasonable agreement with the previous theoretical results [19]
and the experimental observations that the maximum radius
and the neck radius are related by rnk ≈ rmax − 0.5Rc [16].

We would like to point out that, to produce the above results,
artificially large gravitational accelerations have been used. In
particular, they are chosen to be so large that Rl becomes
close to Rmin, as shown in Table I. As a result, the take-off of
small circular droplets, which is predicted to occur when the
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FIG. 6. Various lengths associated with the droplet (see Fig. 1) are
plotted as functions of the instantaneous radius rmax for an evaporating
droplet that changes from a puddle to a circle. Five different substrate
temperatures Tw have been used. Here reff is defined by πr2

eff =
the instantaneous droplet area, and the dimensionless gravitational
acceleration is G = 1.0 × 10−4. The solid line in (b) is a linear
least-squares fitting of rnk, for rmax from 20	 to 60	. This gives
rnk ≈ rmax − 0.6Rc with Rc = 16	.

droplet radius becomes much smaller than Rl , is beyond the
access of numerical simulations. This is actually indicated by
the monotonic decrease of the droplet height H ≡ hct + rmin in
the course of evaporation [see Fig. 4(b)]. Therefore, in order to
observe the take-off of small circular droplets, we have to use
smaller gravitational accelerations that make Rl much larger
than Rmin.

C. Take-off of small circular droplets

Celestini et al. [15] predicted and observed that, below
the critical size Rl , a small spherical Leidenfrost droplet
would take off from the hot solid surface. In this regime,
the levitating force generated by the vapor pressure can no
longer be balanced by the diminished weight of the droplet.
To numerically investigate the transient dynamics of the
take-off, we have performed simulations by using artificially

large gravitational accelerations (G) which make Rl ∼ 20	

(as shown in Table I). The take-off, predicted for droplets
smaller than Rl but larger than Rmin = 5	, therefore becomes
numerically accessible. The main findings may be summarized
as follows.

(i) A droplet of radius smaller than Rl (� Ri) takes the
circular shape as displayed in the upper panel of Fig. 7 and
also indicated by the merging of three droplet radii rmin, rmax,
and reff in the lower panel of Fig. 7. As evaporation proceeds,
the vapor layer under the droplet becomes thicker, as shown
by hct and hnk in the lower panel of Fig. 7, in consistency with
the scaling relation (23) for droplets smaller than Ri .

(ii) The droplet radius is a linear decreasing function
of time, as shown by rmin = rmax = reff in the lower panel
of Fig. 7. This means that, in our two dimensions, the
rate of evaporation is almost a constant independent of the
droplet size. This is consistent with the fact that in one-
component fluids the droplet surface is almost isothermal at
the coexistence temperature [22,33].

(iii) For easy recognition, the beginning of the droplet take-
off is marked by the start of the increase of the droplet height
H ≡ hct + rmin (defined in Fig. 1). Figure 7 shows that the
droplet starts to take off at t = 90 000τ0 with a radius smaller
than Rl .

(iv) The upper panel of Fig. 7 shows the velocity fields
before and after the take-off. The velocity magnitude in the
droplet is smaller than that in the surrounding vapor due to
the viscosity contrast. In particular, above the droplet there is
a circulating flow and below there is a jet flow. Together, they
result in an upward force on the droplet.

(v) As explained before, artificially large gravitational ac-
celerations have to be used to make the simulations affordable.
In order to make our results consistent and convincing, we
have carried out simulations using four different gravitational
accelerations. Figure 8 shows that for each gravitational
acceleration, the droplet starts to take off (with H increasing
with the decreasing rmax) when its radius falls below Rl . In
particular, the smaller the gravitational acceleration is (i.e., the
closer to the real one on the surface of the Earth), the more
slowly the droplet height H decreases before the take-off and
the more rapidly H increases after the take-off. It is, therefore,
reasonable to believe that in the real situation on the surface
of the Earth, the droplet height would remain almost constant
before the take-off and increase very rapidly after the take off.
This agrees with the experimental observation of the take-off
of water droplets on a silicon wafer (see the lower panel of
Fig. 2 in Ref. [15]).

(vi) It is hereby noted that, for G = 2.5 × 10−7 (the
smallest in Fig. 8), the decrease of H with the decreasing
rmax before the take-off is not shown. This is because the
initial size of the droplet is not large enough, a limitation
of our computational capability. As a result, from the very
beginning of the simulation, the droplet weight is already too
small compared to the levitating force generated by the vapor
pressure. Consequently, the droplet takes off immediately.

IV. CONCLUDING REMARKS

We have investigated the hydrodynamics of Leidenfrost
droplets in two-dimensional space by employing the dynamic
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FIG. 7. Upper panel: Snapshots of droplet profiles (solid lines) and velocity fields (arrows) taken for a small evaporating droplet. The
liquid-vapor interfaces are represented by the level curves of n = (nl + nv)/2. Lower panel: To show the temporal evolution of the droplet
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take-off of the droplet at t = 90 000τ0. Note that the three radii rmin, rmax, and reff merge, and the droplet is circular. The thicknesses hct and hnk

are equal and increase with time, in agreement with Eq. (23) for droplets smaller than Ri = 88	.

van der Waals theory [21,22], which is a phase-field model
capable of describing the two-phase hydrodynamics involving
the liquid-vapor transition in inhomogeneous temperature
field. We have studied the evolution of the evaporating droplets
which are puddles initially and become circles gradually.

Our results have shown that a Leidenfrost droplet of radius
rmax larger than Rmax ≈ 4Rc is unstable and breaks up into
smaller droplets (see Fig. 2) due to the Rayleigh-Taylor
instability of the bottom surface of the droplet [5,19]. Our
results have demonstrated that in the evolution of a droplet
from a puddle to a circle, two characteristic length scales are
manifested: the capillary length Rc ≡ (γ /ρlg)1/2 defined in
Eq. (14) and Ri ≡ (R10

c R3
l )1/13 defined in Eq. (24). A droplet

of radius rmax ∼ Rc takes the shape of a puddle as shown
in Fig. 3. As the decreasing radius rmax approaches Ri , the

droplet shape becomes more and more circular as shown in
Fig. 3 and Fig. 4. As to the evolution of the geometry of
the vapor layer under the droplet, it has been numerically
observed that a droplet of radius larger than Ri evaporates
with the vapor layer getting thinner as shown in Fig. 5 while
a quasicircular or circular droplet of radius equal to or smaller
than Ri evaporates with the vapor layer getting thicker as
shown in Fig. 5. These observations are consistent with the
predictions of scaling analyses [15,16,20]. In addition, our
numerical results have shown agreement with the experimental
observation [16] that the geometry of the vapor layer mostly
depends on the droplet size and is almost independent of the
substrate temperature Tw. Finally, our numerical results have
displayed that, as theoretically predicted and experimentally
observed [15], a circular droplet of radius smaller than the
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FIG. 8. The droplet height H (defined in Fig. 1) is plotted as a
function of the droplet radius rmax for an evaporating droplet. Four
different dimensionless gravitational accelerations G have been used.
Each horizontal dashed line indicates a minimum of H that signals
the beginning of a take-off. Each vertical dotted line marks the value
of Rl corresponding to a particular value of G (see Table I). The four
sets of data show the trend that the smaller G is, the more slowly H

decreases before the take-off and the more rapidly H increases after
the take-off.

characteristic length Rl [defined in Eq. (21)] takes off from
the hot substrate, as shown in Fig. 7 and Fig. 8. (In our
two-dimensional simulations, Rl is much smaller than Ri , as
noted in Table I.) The consistency of our simulation results with
recent theoretical predictions and experimental observations
shows the dynamic van der Waals theory to be an effective and
efficient model for studying the hydrodynamics of Leidenfrost
droplets and related systems.

Below we make a few concluding remarks.
(i) Because the mesh size �x = �z = 0.5	 is only a few

angstroms [22,34], the simulated systems are very small (about
a few hundreds of nanometers) and the droplets are as large
as a few tens of nanometers. In these small systems, gravity
plays no role. In order to induce appreciable gravitational
effects, artificially large gravitational accelerations have been
used. As a result, our simulations can only provide qualitative
and semiquantitative understanding for the real dynamics of
Leidenfrost droplets at millimeter scale under the gravity on
the surface of the Earth. We would like to point out that more
realistic simulations at larger length scales can be implemented
with the help of the adaptive mesh method [49].

(ii) Possible effects of the wettability and the finite heat
conductivity of the solid substrates have not been discussed.
Moreover, boundary velocity slip, temperature slip (Kapitza
resistance), and mechanical-thermal cross coupling at the
fluid-solid interface [41–44,46] have been completely ex-
cluded from our model. These simplifications are expected
not to qualitatively affect the behaviors of the Leidenfrost
droplets that are separated from the solid by the vapor
[3,20,47]. Nevertheless, we would like to point out that a
detailed modeling of the physical processes at the fluid-solid
interface does become essential when we study the formation
of the vapor layer [1,18], the determination the Leidenfrost
temperature [1,18], and the self-propelled motion of the
Leidenfrost droplets on ratchets [56].

(iii) All the fluctuation effects have been neglected. How-
ever, it has been experimentally observed for Leidenfrost
droplets that strong fluctuations exist in the central vapor
pocket and around the neck region [16]. These fluctuations are
fast in both time and space and may have important effects on
droplet propulsion and oscillation and the star drops observed
at high substrate temperatures [12].

(iv) Heat transfer from the solid to the droplet is realized
not only by conduction across the vapor layer but also by
radiation from the hot surface [8]. This is particularly the case
when the substrate temperature is further increased above the
Leidenfrost temperature. Therefore, radiation should be taken
into account by a more complete model.

(v) Leidenfrost hydrodynamics in binary fluid mixtures is
an interesting topic to pursue [18,22,57,58]. In these systems,
the Marangoni effects may decisively govern the droplet
dynamics even at small solute concentrations [59].
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APPENDIX: MATERIAL PARAMETERS

In this appendix, we calculate and estimate various param-
eters used in the model from the available material parameters
of water [60] and nitrogen [1,61]. We want to point out that
the dynamic van der Waals theory is employed to model the
Leidenfrost droplets with a small set of material parameters:
the molecular mass m, the energy parameter ε, the volume
parameter v0, the coefficient C for the gradient contribution
to entropy density, and the kinematic viscosity ν. All the
other material parameters are expressed in terms of these five
basic parameters. Below we show that the basic parameters
can be estimated using the available material parameters (of
water and nitrogen). This means that for water and nitrogen
at Tcx ≈ 0.9Tc, the various material properties (equilibrium
and nonequilibrium) can be described by the dynamic van der
Waals theory semiquantitatively. We therefore are encouraged
to use this theory with the understanding that the material
parameters used are close to their realistic values. On the other
hand, the gravitational acceleration g is not a material property.
It measures the strength of the external force. Artificially
large values have been used for g to make the dimensionless
length scales Rc/	, Ri/	, and Rl/	 small enough to meet our
computational capability.

(i) The molecular volume v0 = a3
vdw and the energy parame-

ter ε can be calculated from the critical properties. As described
in Sec. II A, the van der Waals fluids are characterized by these
two parameters. From the critical properties in Table II, we

TABLE II. Parameters for water [60] and nitrogen [61].

Substance m (g/mol) Tc (K) pc (MPa) nc (1028/m3)

Water 18 647.1 322.0 1.1
Nitrogen 28 126.2 3.4 0.7
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TABLE III. Properties of water [60] and nitrogen [1,61] at a given
temperature. The subscripts l and v are used to denote the liquid and
vapor phases at coexistence.

Substance Water Nitrogen

Tcx (K) 603 115
pcx (MPa) 12.9 1.94
nl (1028/m3) 2.14 1.25
nv (1028/m3) 0.26 0.19
γ (mN/m) 7.7 1.2
ηl (μPa s) 74.6 59.9
ηv (μPa s) 21.6 9.3
λl (mW/K m) 489.2 70.4
λv (mW/K m) 94.48 20.8
DT l (10−6m2/s) 0.11 0.04
DT v (10−6m2/s) 0.13 0.09
Lq (kJ/kg) 1140.3 116.2
βl (10−3/K) 5.5 20.1
βv (10−3/K) 11.9 34.9

can calculate ε = 27kBTc/8 and v0 = 1/3nc for the van der
Waals fluids. For water, we have ε ≈ 3.0 × 10−20 J and v0 ≈
30 × 10−30 m3, from which we obtain avdw ≡ v

1/3
0 ≈ 4 Å. For

nitrogen, we have ε ≈ 1.0 × 10−20 J and v0 ≈ 50 × 10−30 m3,
from which we obtain avdw ≈ 4 Å.

(ii) The characteristic interfacial thickness 	 can be calcu-
lated from the surface tension γ . As described in Sec. II A, the
surface tension can be estimated by Eq. (7). Substituting the
experimental value (in Table III) into this equation, we obtain
	 ≈ (γ v0/kBT )(1 − T/Tc)−3/2. For water at the coexistence
temperature Tcx = 603 K, we have 	 ≈ 16 Å ≈ 4avdw. For
nitrogen at Tcx = 115 K, we have 	 ≈ 3 Å ≈ avdw. It is seen
that 	/avdw ∼ 1 for both water and nitrogen.

(iii) The product of the critical temperature Tc and the
thermal expansion coefficient β is of order unity for either
liquid or vapor (see Table III). For water at Tcx = 603 K,
we have βlTc ≈ 3.6 for the liquid and βvTc ≈ 7.7 for the
vapor. For nitrogen at Tcx = 115 K, we have βlTc ≈ 2.5 and
βvTc ≈ 4.4. This fact is reflected in the calculations for the
van der Waals fluids (see Sec. III B).

(iv) The liquid-to-vapor ratios for the density, viscosity,
and heat conductivity are approximately 5 at the coexistence
temperature Tcx ≈ 0.9Tc (see Table III). For water at Tcx =
603 K, the density ratio is nl/nv ≈ 8.3, the viscosity ratio
is ηl/ηv ≈ 3.5, and the heat conductivity ratio is λl/λv ≈
5.2. For nitrogen at Tcx = 115 K, we have nl/nv ≈ 6.7,
ηl/ηv ≈ 6.4, and λl/λv ≈ 3.4. These values are all around
5. This fact is reflected in our assumptions η = νmn and λ =
νkBn with the density ratio nl/nv ≈ 5 at T = 0.875Tc (see
Sec. II B).

(v) For either water or nitrogen, the Prandtl number Pr =
ν/DT is of order unity in both liquid and vapor (see Table III).
For water, we have Prl = 1.1 in the liquid and Prv = 2.2 in the
vapor. For nitrogen, we have Prl = 2.7 and Prv = 1.2. This
fact is reflected in our simulations through the use of η = νmn

and λ = νkBn (see Sec. II B).
(vi) The dimensionless parameters R ≡ ν2m/ε	2 and G ≡

mg	/ε can be computed from the above parameter values.
For water, we have Rl ≈ 0.01 in the liquid, Rv ≈ 0.03 in
the vapor, and G ≈ 1.6 × 10−14. For nitrogen, we have Rl ≈
Rv ≈ 0.5 and G ≈ 2.1 × 10−14.

(vii) The characteristic length scales Rc, Ri , and Rl can
be computed from the above parameters as well. For water,
we have Rc ≡ (γ /ρlg)1/2 ≈ 3.9 mm, Ri ≡ (

R10
c R3

l

)1/13 ≈
0.9 mm, and Rl ≡ (ηvλvδT /ρvρlgLq)1/3 ≈ 6.2 μm. For nitro-
gen, we have Rc ≈ 0.5 mm, Ri ≈ 0.2 mm, and Rl ≈ 3.5 μm.
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[10] D. Quéré and A. Ajdari, Nat. Mater. 5, 429 (2006).
[11] A. Snezhko, E. Ben Jacob, and I. S. Aranson, New J. Phys. 10,

043034 (2008).
[12] P. Brunet and J. H. Snoeijer, Eur. Phys. J. Special Top. 192, 207

(2011).

[13] G. Dupeux, M. Le Merrer, C. Clanet, and D. Quéré, Phys. Rev.
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