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Transient solution for droplet deformation under electric fields
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A transient analysis to quantify droplet deformation under DC electric fields is presented. The full Taylor-
Melcher leaky dielectric model is employed where the charge relaxation time is considered to be finite. The
droplet is assumed to be spheroidal in shape for all times. The main result is an ODE governing the evolution
of the droplet aspect ratio. The model is validated by extensively comparing predicted deformation with both
previous theoretical and numerical studies, and with experimental data. Furthermore, the effects of parameters
and stresses on deformation characteristics are systematically analyzed taking advantage of the explicit formulas
on their contributions. The theoretical framework can be extended to study similar problems, e.g., vesicle
electrodeformation and relaxation.
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I. INTRODUCTION

When a liquid droplet suspended in another immiscible
fluid is subject to an applied electric field, it undergoes
deformation due to the electrostatic stresses exerted on the
interface. Extensive research on this phenomenon has been
conducted to study the deformation due to its relevance in
a variety of industrial applications, including electrohydro-
dynamic atomization [1], electrohydrodynamic emulsification
[2], and ink-jet printing [3], among others. Historically, the
deformation dynamics is divided into two regimes: electro-
hydrostatics (EHS) and electrohydrodynamics (EHD). In the
first, EHS deformation, the droplet is idealized as a perfect
conductor immersed in a perfect insulating fluid, or both
of the fluids are treated as perfect dielectrics with no free
charge [4–9]. For this case, the electric field only induces
a normal electrostatic stress, which is balanced by surface
tension, and the final equilibrium shape is always prolate. At
the steady state, the hydrodynamic flow is usually absent. In
the second, EHD deformation, both fluids are considered to be
leaky dielectrics [7,8,10–20]. For this case, when an electric
field is applied, free charges accumulate on the droplet surface,
which induces a tangential electrostatic stress in addition to the
normal one. Driven by this force, the fluids inside and outside
the droplet present toroidal circulations, and a viscous stress
is generated in response to balance the tangential electrostatic
stress [10]. The droplet deforms into either a prolate or an
oblate spheroid shape depending on the specific electrical
properties of the fluids. With different electrical properties,
the effects of the electrostatic and hydrodynamic stresses on
droplet deformation are distinctive.

This work focuses on a solution method for problems of
the second kind, namely, EHD deformation. This type of
problem is more challenging to solve. In the literature, all
theoretical solutions were obtained largely under two specific
assumptions: (i) The deformations are small. The analysis
is performed by assuming that the equilibrium shape of the
droplet deviates only slightly from sphericity. Solutions using
this assumption can be found in Refs. [10–12]. (ii) For large
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deformations, the shape is assumed to be spheroidal during
the entire deformation process. Results using this assumption
are given in Ref. [18]. When compared with experimental
data, predictions from the small-deformation theories always
quantitatively underpredict the aspect ratio especially when the
deformation is large. In contrast, the large-deformation theory
has a better agreement both qualitatively and quantitatively.
In all of the above, the theoretical analysis leads only to
solutions in the steady state. The Taylor-Melcher leaky
dielectric model [21–23] with the assumption of instantaneous
charge relaxation has always been used. On the other hand, the
theoretical analysis of transient droplet deformation seems to
attract less attention. Only Dubash and Mestel [9] developed
a transient deformation theory for an inviscid, conducting
droplet. This analysis, which solves an EHS deformation
problem, is not applicable to study EHD deformations. In
general, to fully solve the transient EHD problem, numerical
simulations have been employed [15–17,20].

In this work, we present a transient analysis of droplet de-
formation under direct-current (DC) electric fields. Following
Bentenitis and Krause [18], we assume the droplet remains
spheroidal in shape. The full Taylor-Melcher leaky dielectric
model is employed where the charge relaxation time is consid-
ered finite. In this framework, instantaneous charge relaxation
is treated as a special limiting case. This generalization allows
direct comparison with experimental data, which were usually
obtained in fluids with very low conductivities [8]. The main
result is an ordinary differential equation (ODE) governing the
evolution of the droplet aspect ratio. When compared with full
numerical simulations, this equation provides a simple tool
which allows us to explicitly analyze the effects of parameters
and stresses on the deformation characteristics. The model
is validated by extensively comparing predicted deformation
with both previous theoretical and numerical studies and with
experimental data.

II. THEORY

A schematic of the problem configuration is shown in
Fig. 1(a). An uncharged, neutrally buoyant liquid droplet
of radius r0 is suspended in another fluid and is subject
to an applied electric field of strength E0. We assume that
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FIG. 1. (a) A schematic of the problem configuration. (b) The
prolate spheroidal coordinate system.

the fluids are immiscible leaky dielectrics with constant
electrical and mechanical properties. Here σ, ε, and μ are
the electrical conductivity, permittivity, and fluid viscosity,
and the subscripts i and e denote internal and external,
respectively. Under the influence of an applied electric field,
free charges accumulate at the interface, which induces droplet
deformation and EHD flows both inside and outside the
droplet. Taylor [10] predicted that droplets may deform into
prolate or oblate shapes depending on the electrical properties
of the fluids. In the following analysis, we focus on developing
a solution for prolate deformations, whereas a solution for
oblate deformations can be pursued in a similar manner (not
presented here).

We assume that the droplet remains spheroidal in shape
throughout the process. This observation is consistent with
experimental observations by Ha and Yang [8] and Bentenitis
and Krause [18] as well as (direct) numerical simulations by
Feng [16] and Dubash and Mestel [9]. Similar assumptions can
be found in previous work, including Taylor [5], Bentenitis
and Krause [18], and Dubash and Mestel [9]. Following
these studies, the natural coordinate system to analyze this
problem is the prolate spheroidal coordinate system, and a
schematic is shown in Fig. 1(b). The geometry is assumed to be
axisymmetric about the z axis, which aligns with the direction
of the applied electric field. The spheroidal coordinates (ξ, η)
are related to the cylindrical coordinates (r, z) through the
equations

z = cξη, (1)

r = c
√

(ξ 2 − 1)(1 − η2). (2)

Here c = √
a2 − b2 is chosen to be the semifocal length

of the spheroidal droplet, and a and b are the major and
minor semiaxis, respectively. The contours for constant ξ

are spheroids, and ξ ∈ [1,+∞). The contours for constant η

are hyperboloids, and η ∈ [−1, 1]. The surface of the prolate
spheroid is conveniently given as

ξ = ξ0 ≡ a

c
. (3)

For the derivation below, we further assume that the volume
of the droplet is conserved. We subsequently obtain

a = r0
(
1 − ξ−2

0

)− 1
3 , b = r0

(
1 − ξ−2

0

) 1
6 . (4)

Therefore, the droplet geometry is completely characterized
by a single parameter, ξ0, which evolves in time along with
deformation. The critical idea of the current analysis is to

express all variables, e.g., the electric potential and the stream
function in terms of ξ0.

In what follows, we will solve the electrical problem first,
followed by a solution of the hydrodynamic problem. An ODE
for ξ0 is obtained by applying both the stress matching and
kinematic conditions.

A. The electrical problem

The electric potentials inside and outside the droplet obey
the Laplace equation according to the Ohmic law of current
conservation with uniform electrical conductivity:

∇2φi = ∇2φe = 0. (5)

The matching conditions at the interface are

||∇φ · t|| = 0, at ξ = ξ0, (6)

∂q

∂t
− ||σ∇φ · n|| = 0, at ξ = ξ0. (7)

Here || · || denotes a jump across an interface, and t and n are
the unit tangential and normal interfacial vector, respectively.
q = ||−ε∇φ · n|| is the surface charge density. Note that in
Eq. (7), we have included the displacement current, ∂q/∂t .
This term is particularly important for fluids with very low
conductivities (for example, those used in Ref. [8]) such
that the interfacial charging time becomes comparable to
the deformation time. However, we have ignored the effect
of surface charge convection by the hydrodynamic flow in
order to make the theoretical analysis tractable. Note that this
assumption is valid only when the convection time scale is
much greater than the charging time [22,24]. To examine the
effect of charge convection on deformation, direct numerical
simulation needs to be performed [16], which is not pursued
in this article.

Rigorously, the current continuity condition (7) needs to
be observed at every point on the interface. However, such
a constraint cannot be satisfied within the framework of
spheroidal deformation. Instead, we prescribe globe current
balance. Integrating Eq. (7) over the half-interface reveals

∫
S

[(
εe

∂φe

∂ξ
− εi

∂φi

∂ξ

)d 1
hξ

dt
+ 1

hξ

(
εe

∂2φe

∂ξ∂t
− εi

∂2φi

∂ξ∂t

)

+ 1

hξ

(
σe

∂φe

∂ξ
− σi

∂φi

∂ξ

)]
ds = 0, at ξ = ξ0. (8)

Far from the droplet surface the electric field is uniform,

−∇φe = E0 z, at ξ → ∞. (9)

We also require that φi remains finite at ξ = 1. For the initial
condition, we assume both the electric potential and the normal
component of the displacement vector are continuous:

εe

∂φe

∂ξ
= εi

∂φi

∂ξ
, φe = φi, at ξ = ξ0, t = 0. (10)

Solutions for the electric potentials have been obtained
previously without including the displacement current [10,18].
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With its inclusion the approach is similar, and the results are

φe = E0r0 [−λξ + αQ1(ξ )] η, (11)

φi = E0r0βξη. (12)

Here Q1(ξ ) is a first-degree Legendre polynomial of the
second kind, and λ ≡ c/r0 is the dimensionless semifo-
cal length. The coefficients α and β are determined by
the interfacial matching conditions (6) and (8), which
gives

α = βξ0 + λξ0

Q1(ξ0)
, (13)

τ1

τ2

[
Q′

1(ξ0)ξ0

Q1(ξ0)
− 1

εr

]
dβ

dτ
+

{
τ1

τ2

[
Q′

1(ξ0)

Q1(ξ0)
+ Q′′

1(ξ0)Q1(ξ0) − Q′2
1 (ξ0)

Q2
1(ξ0)

ξ0

]
dξ0

dτ
− τ1

τ2

[
Q′

1(ξ0)ξ0

Q1(ξ0)
− 1

εr

][
1

λ

dλ

dξ0
+ f0(ξ0)

]
dξ0

dτ

+ Q′
1(ξ0)ξ0

Q1(ξ0)
− 1

σr

}
β + τ1

τ2

{
Q′

1(ξ0)

Q1(ξ0)
+ Q′′

1(ξ0)Q1(ξ0) − Q′2
1 (ξ0)

Q2
1(ξ0)

ξ0 +
[
1 − Q1′(ξ0)ξ0

Q1(ξ0)
f0(ξ0)

]}
λ

dξ0

dτ
+ λ

[
Q′

1(ξ0)ξ0

Q1(ξ0)
− 1

]
= 0,

(14)

α(0) = λξ0 (εr − 1) , β(0) = εrλ[Q1(ξ0) − Q′
1(ξ0)ξ0]

εrQ
′
1(ξ0)ξ0 − Q1(ξ0)

. (15)

Here εr ≡ εe/εi and σr ≡ σe/σi are the permittivity ratio
and the conductivity ratio, respectively; τ1 ≡ εe/σe is an
electrical charging time, τ2 ≡ r0μe/γ is a characteristic flow
time scale used below in the hydrodynamic problem, and γ

is the coefficient of surface tension. In the above equations,
a dimensionless time τ ≡ t/τ2 has been used. The detailed
expression of f0(ξ0) is found in the Appendix. In general,
Eq. (14) needs to be integrated together with an ODE for ξ0 to
obtain α and β. However, in the limit of instantaneous-charge-
relaxation time, τ1/τ2 → 0, and Eq. (14) can be simplified to
be [

Q′
1(ξ0)ξ0

Q1(ξ0)
− 1

σr

]
β + λ

[
Q′

1(ξ0)ξ0

Q1(ξ0)
− 1

]
= 0. (16)

This result is equivalent to a solution employing the simplified
boundary condition ||σ∇φ · n|| = 0 in place of Eq. (7).

The normal and tangential electrostatic stresses are given
by

Sξξ = ε

2

(
E2

ξ − E2
η

)
, Sξη = εEξEη, (17)

where Eξ = −(∂φ/∂ξ )/hξ and Eη = −(∂φ/∂η)/hη are the
normal and tangential electric fields, respectively. hξ and hη are
metric coefficients of the prolate spheroidal coordinate system.
These stresses can be evaluated with the solutions (11) and (12)
and will be used in the stress matching conditions below.

B. The hydrodynamic problem

In the regime of low-Reynolds-number flow, the governing
equation for the hydrodynamic problem can be rewritten in
terms of the stream function, ψ , as

E4ψ = 0. (18)

Here the expression for the operator E2 can be found in Dubash
and Mestel [9] and Bentenitis and Krause [18]. The stream

function is related to the velocity components as

u = − 1

hξhθ

∂ψ

∂ξ
, v = 1

hηhθ

∂ψ

∂η
, (19)

where hθ is a metric coefficient of the prolate spheroidal
coordinate system. At the interface, u and v represent the
tangential and normal velocities, respectively, and they are
required to be continuous:

ue = ui, ve = vi, at ξ = ξ0. (20)

In addition, we prescribe a kinematic condition relating the
interfacial displacement to the normal velocity:

v(ξ = ξ0, η) = r0
(
1 − ξ−2

0

)−5/6

3ξ 2
0

(1 − 3η2)√
ξ 2

0 − η2

dξ0

dt
. (21)

The total force on the interface resulting from the electrical
stress, the hydrodynamic stress, and the surface tension
should be balanced at every point. However, this constraint
is impossible to satisfy exactly within the framework of
spheroidal deformation. Various authors developed reduced
stress-balance conditions instead [5,7,9,18]. Here we follow
the integrated formulas proposed by Sherwood [7] and Dubash
and Mestel [9]:∫

u · (
T e

ξη − T i
ξη + Se

ξη − Si
ξη

)
ds = 0, (22)∫

v ·
[
T e

ξξ − T i
ξξ + Se

ξξ − Si
ξξ − γ

(
1

R1
+ 1

R2

)]
ds = 0.

(23)

Equations (22) and (23) represent a global balance of the
tangential and normal stresses, respectively, derived from
energy principles. Here T denotes the hydrodynamic stress,
R1 and R2 are the two principal radii of the curvature, and the
integration is carried over the interface.
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The general solution to (18) was proposed by Dassios et al.
[25] using the method of semiseparation:

ψ = g0(ξ )G0(η) + g1(ξ )G1(η)

+
∞∑

n=2

[gn(ξ )Gn(η) + hn(ξ )Hn(η)] . (24)

Here Gn and Hn are Gegenbauer functions of the first
and second kind, respectively, and gn and hn are linear
combinations of Gn and Hn. The detailed expressions for Gn,
Hn, gn, and hn are found in Ref. [25]; interested readers are
referred to Ref. [25] for further details. After considering that
the far field is quiescent, and that the velocities remain finite
at ξ = 1, the stream functions can be simplified to be

ψe =
∞∑

n=1

[
A2n−1

2n+1H2n−1(ξ ) + A2n+1
2n+1H2n+1(ξ )

+A2n+3
2n+1H2n+3(ξ )

]
G2n+1(η), (25)

ψi =
∞∑

n=1

[
B2n−1

2n+1G2n−1(ξ ) + B2n+1
2n+1G2n+1(ξ )

+B2n+3
2n+1G2n+3(ξ )

]
G2n+1(η), (26)

where A and B are unknown coefficients satisfying the
relations A2n+3

2n+1 = A2n+1
2n+3, B2n+3

2n+1 = B2n+1
2n+3 . In general, these

coefficients are interdependent, and the full solution can be
obtained only with the entire infinite series. Here we seek a
truncated solution as an approximation:

ψe = [
A1

3H1(ξ ) + A3
3H3(ξ )

]
G3(η), (27)

ψi = [
B3

3G3(ξ ) + B5
3G5(ξ )

]
G3(η). (28)

Indeed, G3(η) gives a functional form in η confirming with
that in Eq. (21), which can be rewritten as

v(ξ = ξ0,η) =
2c2

√
ξ 2

0 − 1r0
(
1 − ξ−2

0

)−5/6

3ξ 2
0

G′
3(η)

hηhθ

dξ0

dt
. (29)

This agreement in part validates the spheroidal shape assump-
tion: The shape represents the leading mode in the infinite
series.

Equations (20)–(23) are combined to solve for the five un-
known variables, namely, A1

3, A3
3, B3

3 , B5
3 , and ξ0. Specifically,

Eqs. (20) and (21) are first used to eliminate the A1
3, B3

3 , B5
3 ,

A1
3 = H3(ξ0)A3

3 − M
dξ0

dt
, (30)

B3
3 = −G5(ξ0)H ′

3(ξ0)A3
3 + G′

5(ξ0)M dξ0

dt

N
, (31)

B5
3 = G3(ξ0)H ′

3(ξ0)A3
3 − G′

3(ξ0)M dξ0

dt

N
, (32)

where M ≡ 2r3
0 /3(ξ 3

0 − ξ0) and N ≡ G3(ξ0)G′
5(ξ0) −

G′
3(ξ0)G5(ξ0). Further considering Eq. (22), we can express

A3
3 in terms of ξ0,

A3
3 = cr2

0 εiE
2
0{ξ0β

2 − εr [λ − αQ′
1(ξ0)][λξ0 − αQ1(ξ0)]}f11(ξ0) − μi {(μr − 1)f12(ξ0) + f13(ξ0)}M

dξ0

dt

−μi {μrf14(ξ0) + f15(ξ0)} , (33)

where μr ≡ μe/μi is the viscosity ratio. The detailed expres-
sions of f11(ξ0) − f15(ξ0) are found in the Appendix. This
expression is inserted into Eq. (23) to obtain the final result,
an ODE governing the evolution of the ξ0:

dξ0

dτ
=− 1

F

[
QNf21(ξ0) + QT

μrf22(ξ0) + f23(ξ0)

μrf14(ξ0) + f15(ξ0)
− f24(ξ0)

]
,

(34a)

QN = CaE

λ2
{[λ−αQ′

1(ξ0)]2+[λ−αQ1(ξ0)/ξ0]2 − 2β2/εr},
(34b)

QT = CaE

λ2
{[λ − αQ′

1(ξ0)][λ − αQ1(ξ0)/ξ0] − β2/εr}.
(34c)

The detailed expressions of f21(ξ0) − f24(ξ0), and F are also
found in the Appendix. The coefficients α and β are given by
Eqs. (13) and (14), respectively. CaE ≡ r0εeE

2
0/γ is the elec-

tric capillary number. In Eq. (34a), the three terms in the nu-
merator on the right-hand side represent the contributions from
the normal stress, the tangential stress, and the surface tension,
respectively. At the equilibrium, the balance of the three forces

determines the final shape. The leading coefficients QN and
QT arise exclusively from the electrostatic stresses and can
be used to estimate their respective influence on deformation.
In the limit of instantaneous relaxation, and by considering
Eqs. (13) and (16), QN and QT can be simplified to be

QN = CaEK2
(
σ 2

r + 1 − 2σ 2
r /εr

)
,

QT = CaEK2σr (1 − σr/εr ), (35)

K ≡ Q1(ξ0) − ξ0Q
′
1(ξ0)

Q1(ξ0) − σrξ0Q
′
1(ξ0)

. (36)

For this case, the evolution of ξ0 is governed by a single
time scale, τ2. Once ξ0 is obtained by solving the Eqs. (14)
and (34a), the aspect ratio is calculated by the formula

a

b
= (

1 − ξ−2
0

)− 1
2 . (37)

III. COMPARISON WITH PREVIOUS RESULTS

In this section, we compare our model prediction exten-
sively with results from previous work. The comparisons with

043008-4



TRANSIENT SOLUTION FOR DROPLET DEFORMATION . . . PHYSICAL REVIEW E 87, 043008 (2013)

0 0.05 0.1 0.15 0.2 0.25
1

1.2

1.4

1.6

1.8

CaE
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Theory [18]
Current Model

FIG. 2. The equilibrium aspect ratio as a function of electric
capillary number. The parameters are σr = 1.19 × 10−3, εr = 3.24 ×
10−1, and μr = 7.33 × 10−2.

theoretical and numerical results and experimental data are
respectively presented in Secs. III A and III B.

A. Comparison with previous theories and simulation

We first consider the equilibrium shape and compare our
results with those from Bentenitis and Krause [18]. For this
case, the left-hand side of Eq. (34a) is simply set to zero,
resulting in the so-called discriminating equation:

QNf21(ξ0) + QT

μrf22(ξ0) + f23(ξ0)

μrf14(ξ0) + f15(ξ0)
= f24(ξ0). (38)

Here QN and QT are given by Eq. (35), and ξ0 is solved as a
root(s) of this equation from which the equilibrium aspect
ratio, a/b, can be obtained. Equation (38) shows that the
equilibrium shape is determined only by the dimensionless
parameters CaE, σr, εr , and μr . A comparison with the
theoretical prediction by Bentenitis and Krause [18] is shown
in Fig. 2. Note that in this earlier work, the authors solved for
the equilibrium shape directly without obtaining the transient
solution. A good agreement is observed, although a different
stress matching condition has been used by Bentenitis and
Krause [18] [see their Eqs. (38) and (45)].

We next compare with the results from Dubash and
Mestel [9]. In this work, the authors developed a theoretical
model, also with the spheroidal shape assumption, to predict

the transient deformation of a conducting, inviscid droplet
immersed in a viscous, nonconductive solution. This special
consideration leads to significant simplifications: Both the
electric and hydrodynamic fields are absent within the droplet.
In addition, at the equilibrium state (if one is permitted), the
hydrodynamic flow outside the droplet is also quiescent, giving
rise to the phenomenon termed EHS.

In our generalized framework, the solution for this case is
simply achieved by setting σr → 0 and μr → ∞ in Eqs. (34a)
and (35). Note that σr → 0 directly leads to instantaneous
charge relaxation. The resulting comparisons are shown in
Fig. 3 in which the aspect ratio (a/b) is plotted as a function
of time for four different electric capillary numbers (CaE). For
the two lower values of CaE , the current model has excellent
agreement with both the theoretical and numerical predictions
by Dubash and Mestel [9] [Fig. 3(a)]. For these CaE values,
final equilibria are achieved. As CaE increases [Fig. 3(b)], the
deformation becomes unstable and an equilibrium shape is no
longer possible. The rapid expansion with a sharp slope at the
later stage preludes droplet breakup. For these two cases, the
theoretical models still agree with each other, whereas some
discrepancies exist with respect to the numerical simulation,
in particular for CaE = 0.206. However, this discrepancy is in
general only noticeable when the CaE number is above and
very close to the critical threshold of breakup (CaE ∼ 0.2044
for the case studied), due to a slight underprediction of the rate
of deformation by the theoretical models. A similar trend is
observed when comparing with the numerical simulation by
Hirata et al. [17] (not shown). Overall, our model can serve
as a good approximation to the numerical model, which is
considered more accurate.

B. Comparison with experimental data

The main source of experimental data comes from Ha
and Yang [8]. We also begin with an examination of the
final aspect ratio when an equilibrium shape can be achieved.
Figure 4 shows the equilibrium aspect ratio of a castor oil
droplet immersed in silicone oil from Ha and Yang [8], as
well as predicted by various models. The current prediction is
shown as a solid line, whereas the results from first-order [10]
and second-order [12] theories are shown as dot-dashed and
dashed lines, respectively. Following Lac and Homsy [20],

0 20 40 60 80 100
1

1.2

1.4

1.6

1.8

τ

a b

 

 

Simulation [9]

Theory [9]

Current Model

CaE = 0.204

CaE = 0.18

(a)

0 20 40 60 80 100
1

1.5

2

2.5

3

3.5

4

τ

a b

 

 

Simulation [9]

Theory [9]

Current Model

CaE = 0.21

CaE = 0.206

(b)

FIG. 3. The deformation of a conducting droplet in a highly viscous medium. (a) CaE = 0.18 and 0.204. (b) CaE = 0.206 and 0.21. The
dimensionless time τ is defined as τ = t/τ2, where τ2 = r0μe/γ .
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Theory [10] (1st-order)

Theory [12] (2nd-order)

FIG. 4. The prediction from current model is compared with the
small deformation theories [10,12] and experimental data [8]. The
parameters are σr = 0.03, εr = 0.73, and μr = 1.14.

we rescale CaE to best match Ajayi’s second-order correction.
This rescaling is equivalent to adjusting the surface tension
from γ = 3.3 × 10−3 N/m used by Ha and Yang [8] (which is
a fitting parameter in that work) to γ = 4.3 × 10−3 N/m. The
latter value is close to the lower bound, γ = 4.5 × 10−3 N/m,
measured by Salipante and Vlahovska [26]. In addition, we
use σr = 0.03 according to the measurements by Torza et al.
[11], Vizika and Saville [13], and Salipante and Vlahovska
[26], which is slightly different from the value of σr =
0.04 used by Lac and Homsy [20]. The results show good
agreement between the current model and the experimental
data. Most importantly, our theory correctly predicts a critical
CaE (∼0.244) for droplet breakup. In contrast, the small
deformation theories can not capture this critical phenomenon.

We have also compared our theoretical prediction with the
experimental data from Bentenitis and Krause [18], which
measured the equilibrium aspect ratio of a DGEBA droplet
immersed in a PDMS solution. Since our result is in good
agreement with the theoretical prediction in the same work (see
Fig. 2), which in turn agrees well with the data, the comparison
is not shown here for brevity.

Next, we will compare the transient solution from our model
with data from Ha and Yang [8]. In Fig. 5(a) the data are
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σe = 1 × 10−11 S/m
σe = 1.2 × 10−12 S/m
σe = 5 × 10−13 S/m

FIG. 6. Droplet deformation in the limit of extremely low conduc-
tivities. The parameters are σr = 0.03, εr = 0.73, μr = 1.14, E0 =
3.2 kV/cm, r0 = 0.16 cm, μe = 0.9 Pa · s, εe = 2.478 × 10−11 F/m,
and γ = 5 × 10−3 N/m. The best agreement between the data and the
theory is found for σe = 1.2 × 10−12 S/m. For reference, the dotted
line shows the calculation according to the instantaneous-charge-
relaxation (ICR) model.

extracted from Fig. 3 in the latter work, which captures the
deformation of a water droplet in silicone oil. The droplet
is fitted with an ellipse at every instant, based on which the
aspect ratio is calculated. A 10% fitting error is estimated and is
shown as error bars in Fig. 5(a) [the same approach is adopted
to extract the data presented in Figs. 5(b) and 6]. The model
prediction is calculated with Eqs. (34a) and (35), and with σr =
1 × 10−6, εr = 3.55 × 10−2, μr = 1000, E0 = 3.2 kV/cm,
r0 = 0.25 cm, and μe = 0.98 Pa · s all directly taken from Ha
and Yang [8]. For medium permittivity, we use εe = 2.478 ×
10−11 F/m following the measurements by Torza et al. [11],
Vizika and Saville [13], and Salipante and Vlahovska [26].
For surface tension, we use γ = 3.037 × 10−2 N/m, which
is consistent with the values reported by Torza et al. [11] and
Vizika and Saville [13]. In this case, the model is able to predict
the deformation process with good quantitative accuracy. In
Fig. 5(b), a similar comparison is shown for a water-ethanol
droplet in silicone oil. The data are based on Fig. 4 in
Ref. [8]. For our calculation, σr = 1 × 10−5, εr = 0.05, μr =
23.3, E0 = 4.5 kV/cm, r0 = 0.14 cm, μe = 0.98 Pa · s, and
εe = 2.478 × 10−11 F/m. Because the droplet is doped with
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FIG. 5. Comparison of transient droplet deformation. (a) A water droplet in silicone oil. The parameters are σr = 1 × 10−6, εr = 3.55 ×
10−2, μr = 1000, E0 = 3.2 kV/cm, r0 = 0.25 cm, μe = 0.98 Pa · s, εe = 2.478 × 10−11 F/m, and γ = 3.037 × 10−2 N/m. (b) A water-
ethanol droplet in silicone oil. The parameters are σr = 1 × 10−5, εr = 0.05, μr = 23.3, E0 = 4.5 kV/cm, r0 = 0.14 cm, μe = 0.98 Pa · s,
εe = 2.478 × 10−11 F/m, and γ = 3.432 × 10−2 N/m.
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polyvinylpyrrolidone (a polymer solution), the surface tension
is not directly available and is used as a fitting parameter
instead to generate the best agreement between theory and data.
The resulting value is γ = 3.432 × 10−2 N/m, 11% higher
than that for water and silicone oil, which is used in Fig. 5(a).

In contrast to the regime of instantaneous charge relaxation
examined in Fig. 5, Fig. 6 represents droplet deformation in the
finite-charging-time regime. The data are extracted from Fig. 7
in Ref. [8]. For this case, the droplet is made of castor oil and is
immersed in silicone oil. The extremely low conductivities of
these media lead to a charging time (∼seconds) comparable to
the deformation time, and the full model, Eqs. (34a)–(34c),
has to be used. For our calculation, σr = 0.03, εr = 0.73,
μr = 1.14, E0 = 3.2 kV/cm, r0 = 0.16 cm, μe = 0.9 Pa · s,
εe = 2.478 × 10−11 F/m, and γ = 5 × 10−3 N/m. Note that
the values for the surface tension and the conductivity ratio
follow the measurements by Torza et al. [11], Vizika and
Saville [13], and Salipante and Vlahovska [26], which are
believed to be more accurate than the original values of
σr = 0.1 and γ = 3.3 × 10−3 N/m given by Ha and Yang
[8]. In addition, the actual conductivity of silicone oil varies
from 10−10 to 10−13 S/m in the literature [26–28]. In Fig. 6
we show the calculation with three representative values
within this range, namely, σe = 1 × 10−11, 1.2 × 10−12, and
5 × 10−13 S/m. The best agreement is found for σe = 1.2 ×
10−12 S/m. For comparison, the calculation according to the
instantaneous-charge-relaxation model [Eqs. (34a) and (35)]
is also shown and is denoted by ICR. This simplified model
clearly overpredicts deformation by a significant degree.

In general, our model agrees well with experimental data
in both steady and transient states, and for a large parametric
range. These comparisons provide a strong validation for our
model.

IV. THE EFFECTS OF STRESSES ON DEFORMATION

In this section we demonstrate the utility of our theoretical
results by analyzing in-depth the governing equation. For
simplicity, we focus on the regime of instantaneous relaxation,
where QN and QT are given by Eq. (35). A main contribution
of the current work is that Eq. (34a) clearly separates the
effects by different forces. In the numerator of the right-hand
side, the three terms represent, respectively, the effects of
the normal stresses (both electrical and hydrodynamic), the
tangential stresses (both electrical and hydrodynamic), and the
surface tension. Furthermore, all the functions in this equation
are positive (f14, f15, f21 − f24, F ), such that the signs of
QN and QT completely determine whether the normal and
tangential stresses would promote or suppress deformation.
Due to the inverse relationship between ξ0 and the aspect
ratio, a/b [see Eq. (37)], a positive QN or QT indicates a
positive contribution. Evidently, surface tension always resists
deformation. Because QN and QT depend exclusively on
the electrical properties in a simple manner [see Eq. (35)],
their influences can be conveniently analyzed using a diagram
shown in Fig. 7. The dashed and dotted lines correspond to
QN = 0 and QT = 0, respectively. These lines separate the
parametric space into three regimes, where N and T denote
the normal and tangential stresses, and the superscripts + and
− denote a positive or negative contribution to deformation,
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FIG. 7. Regimes of droplet deformation. Here the dotted line
is calculated by satisfying QT = 0. The solid line is calculated
by solving for the root of Taylor’s discriminating function. The
dashed line represents QN = 0. Pr and Ob denote prolate and oblate
deformation, respectively. N and T denote the effect of normal and
tangential stresses, respectively, and a + or − sign denotes facilitating
or suppressing, respectively.

respectively. In addition, the solid line is obtained by solving
for the root of Taylor’s discriminating function [10], which
separates the prolate (denoted by ‘Pr’) and oblate (denoted
by ‘Ob’) regimes [this line can be equivalently obtained by
looking for the steady-state solution of a/b = 1 from Eq. (38)].

Figure 7 can be used to shed light on the physical processes
governing deformation. First, the line for QT = 0 separates
the T + and T − regimes, which corroborates with the previous
results [10,20]. On this dividing line, the velocity field becomes
zero, so does the tangential electrical stress. In Ref. [20],
the viscosity ratio has opposite effects on deformation in the
T + and T − regimes. This behavior is clearly explained by
Eq. (34a). Second, there is a small region within the oblate
regime, namely, the area between the solid and dashed lines
where QN is positive. This suggests that the normal stress still
tends to stretch the droplet along the direction of the applied
field. However, because QT is negative, the tangential stresses
overcome the normal stresses and stretch the droplet into an
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FIG. 8. The behavior of equilibrium droplet deformation in
different regimes. For σr = 0.05, QT > 0; σr = 1, QT = 0; σr = 30,
QT < 0. As CaE → ∞, an equilibrium shape is only possible in the
T − regime. Other parameters are εr = 10 and μr = 1.
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oblate shape. This new insight is not available from previous
analysis or simulations.

Third, in the prolate regime where QN is always positive,
the sign of QT leads to different deformation behavior. Figure 8
shows the equilibrium aspect ratio as a function of CaE for
three specific cases. Note that the new variable

D = a − b

a + b
. (39)

In this new definition, D = 0 corresponds to a/b = 1, and
D = 1 corresponds to a/b → ∞. For all three cases, εr = 10
and μr = 1. For σr = 0.05, QT > 0. We observe hysteresis,
and D approaches 1 rapidly in the upper brunch. The cases
of σr = 1 and σr = 30 correspond to QT = 0 and QT < 0,
respectively. In general, as QT decreases, the deformation be-
comes weaker for comparable CaE values. Most interestingly,
for σr = 30 (QT < 0), D converges to a value less than 1 in
the limit of CaE → ∞. This means that even for the very large
applied electric field strength, a finite equilibrium aspect ratio
can be achieved. We emphasize this scenario is possible only
in the T − regime. For large E0 values, corresponding to large
CaE , the resistive effect from surface tension is negligible,
and the only way to obtain a finite equilibrium aspect ratio
is therefore by balancing the normal and tangential stresses.
Since QN is positive, QT has to be negative.

V. CONCLUSIONS

In conclusion, we have developed a transient analysis
to quantify droplet deformation under DC electric fields.
The full Taylor-Melcher leaky dielectric model is employed
where the charge relaxation time is considered finite. In
this framework, instantaneous charge relaxation is treated
as a special limiting case. The droplet is assumed to be
spheroidal in shape for all times. The main result is an ODE
governing the evolution of the droplet aspect ratio. The model
is validated by extensively comparing predicted deformation
with both previous theoretical and numerical studies, and with
experimental data. In particular, the experimental results by
Ha and Yang [8], which were obtained with extremely low
medium conductivities, are well captured by the simulation
with the finite-time charge-relaxation model. The model is
used to analyze the effects of parameters and stresses on the
deformation characteristics. The results demonstrate clearly
that in different regimes according to the sign of QT , the
stresses contribute qualitatively differently to deformation.
Last but not least, this work lays the foundation for the study of
a more complex problem, namely, vesicle electrodeformation
and relaxation. This problem is the pursuit of our future work.
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APPENDIX

The function f0(ξ0) in Eq. (14) is given by the following expression:

f0(ξ0) = 2ξ0

ξ 2
0 − 1

∫ 1

0

η(η2 − 1)

ξ 2
0 − η2

dη. (A1)

The functions f11(ξ0) − f15(ξ0) in Eq. (33) are given by the following expressions:

f11(ξ0) =
∫ 1

−1

G3(η)η(
ξ 2

0 − η2
) dη, (A2)

f12(ξ0) = 1

ξ 2
0 − 1

{∫ 1

−1

G3(η)η(
ξ 2

0 − η2
)

[
(1 − 3η2)(
ξ 2

0 − η2
) − 3

]
dη

}
, (A3)

f13(ξ0) = G′′
3(ξ0)G′

5(ξ0) − G′
3(ξ0)G′′

5(ξ0)

2N
· f11(ξ0), (A4)

f14(ξ0) = −ξ0H
′
3(ξ0)

∫ 1

−1

G3(η)η(
ξ 2

0 − η2
)2 dη + 1

2
H ′′

3 (ξ0)f11(ξ0), (A5)

f15(ξ0) = −H ′
3(ξ0)

[
G3(ξ0)G′′

5(ξ0) − G′′
3(ξ0)G5(ξ0)

]
2N

f11(ξ0) + ξ0H
′
3(ξ0)

∫ 1

−1

G3(η)η(
ξ 2

0 − η2
)2 dη. (A6)

The functions f21(ξ0) − f24(ξ0) and F in Eq. (34a) are given by the following expressions:

f21(ξ0) = 1

2
ξ 2

0

∫ 1

−1

(η2 − 1)(3η2 − 1)(
ξ 2

0 − η2
) dη, (A7)

f22(ξ0) = ξ0f11(ξ0)

[
−H ′

3(ξ0)
∫ 1

−1

(1 − 3η2)
(
ξ 2

0 − 3ξ 2
0 η2 + 2η4

)
(
ξ 2

0 − η2
)2 dη + 3ξ0H3(ξ0)

∫ 1

−1

1 − 3η2(
ξ 2

0 − η2
) dη

]
, (A8)
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f23(ξ0) = ξ0f11(ξ0)

[
−49

(
1 − 3ξ 2

0

)
G3(ξ0)H ′

3(ξ0)

30N
+ H ′

3(ξ0)
∫ 1

−1

(1 − 3η2)
(
ξ 2

0 − 3ξ 2
0 η2 + 2η4

)
(
ξ 2

0 − η2
)2 dη

]
, (A9)

f24(ξ0) = ξ 3
0

(
1 − ξ−2

0

) 5
6

∫ 1

−1

3η2 − 1(
ξ 2

0 − η2
) 3

2

dη + ξ0
(
1 − ξ−2

0

)− 1
6

∫ 1

−1

3η2 − 1√
ξ 2

0 − η2
dη, (A10)

F = −2

3
[f25(ξ0) + f26(ξ0)/μr ] , (A11)

where

f25(ξ0) = − f22(ξ0)

ξ0f11(ξ0)

(μr − 1)f12(ξ0) + f13(ξ0)

μrf14(ξ0) + f15(ξ0)
− 3ξ0

∫ 1

−1

3η2 − 1(
ξ 2

0 − η2
) dη − ξ0

ξ 2
0 − 1

∫ 1

−1

(
2ξ 2

0 − η2 − 1
)
(1 − 3η2)2(

ξ 2
0 − η2

)2 dη, (A12)

f26(ξ0) = − f23(ξ0)

ξ0f11(ξ0)

(μr − 1)f12(ξ0) + f13(ξ0)

μrf14(ξ0) + f15(ξ0)
− 49

(
1 − 3ξ 2

0

)
G′

3(ξ0)

30N
+ ξ0

ξ 2
0 − 1

∫ 1

−1

(
2ξ 2

0 − η2 − 1
)
(1 − 3η2)2(

ξ 2
0 − η2

)2 dη. (A13)
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