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Dielectric fluid in inhomogeneous pulsed electric field
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We consider the dynamics of a compressible fluid under the influence of electrostrictive ponderomotive forces
in strong inhomogeneous nonstationary electric fields. It is shown that if the fronts of the voltage rise at a sharp,
needlelike electrode are rather steep (less than or about nanoseconds), the region of negative pressure arises,
which can reach values at which the fluid loses its continuity with the formation of cavitation ruptures. If the
voltage on the electrode is not large enough or the front is flatter, the cavitation in the liquid does not occur.
However, a sudden shutdown of the field results in a reverse flow of liquid from the electrode, which leads to
appearance of negative pressure, and, possibly, cavitation.
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I. INTRODUCTION

A study of the behavior of liquid dielectrics in electric fields
has a long history, which was started by Faraday [1]. It is known
that dielectric fluids in strong nonuniform electric field are
influenced by electrostrictive ponderomotive force [2–4]. As a
result, fluid tends to be set in motion and moves into the regions
with the strongest field. However, if the voltage rise time on the
sharp electrode is very steep, the fluid does not have enough
time to come into motion due to inertia. Consequently, the
ponderomotive forces cause significant electrostrictive tensile
stress. In other words, a region of so-called negative pressure
arises in the fluid. It is known (see, e.g., [5–7]) that at a certain
threshold of negative pressure the fluid loses its continuity,
resulting in development of the cavitation ruptures. If the rise
time of the electric field is long enough and the liquid has
time to be set in motion, the flow arising by the action of
electrostriction forces reduces the value of negative pressure
down to below the cavitation threshold and the discontinuities
do not occur.

In recent years, the development of breakdown in liquid
dielectrics in the subnanosecond and nanosecond pulsed
nonuniform electric fields has been extensively studied ex-
perimentally (see, for example, recent works [8–10] and
references therein). As was shown in an earlier paper [11], the
appearance of cavitation ruptures (voids) in the fluid due to
the electrostrictive negative pressure formation, in particular,
may promote the development of electrical breakdown at these
conditions, which we will not consider in this paper. Note, that
ponderomotive electrostrictive effects in the dielectric fluid
also are possible in the nonuniform mean square field of the
laser radiation. Thus, for example, in [12] it was shown that
the shape of liquid droplets can be modified by the volumetric
electrostrictive forces arising in the vicinity of inhomogeneous
laser beam. Also, in [13] it was theoretically demonstrated that
the electrostrictive forces induced by the laser in liquid could
be the source of acoustic pulses.
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II. PHYSICAL MODEL AND EQUATIONS

In this paper, we consider the dynamics of a compressible
fluid under the influence of electrostrictive ponderomotive
forces in strong inhomogeneous nonstationary electric fields,
which are subcritical to the breakdown development.

In general, the volumetric force acting on the dielectric fluid
in nonuniform electric field is determined by the Helmholtz
equation [2–4]:

�F = eδn �E − ε0

2
E2 �∇ε + ε0

2
�∇
(

E2 ∂ε

∂ρ
ρ

)
, (1)

where the first term is the force acting on non-neutral fluid
with the density of free charges eδn, the second and third
terms are volumetric densities of ponderomotive forces, ε0 is
the vacuum dielectric permittivity, ρ is the liquid density, and
�E is the electric field. The second term in (1) is associated with

the force acting on an inhomogeneous dielectric, and the third
term corresponds to electrostrictive forces in a nonuniform
electric field associated with the tensions within the dielectric.

In the absence of breakdown, we can disregard the forces
acting on the free charges and with the inhomogeneity of the
liquid. In this case, the body force acting on the liquid dielectric
is reduced to

�F ≈ ε0

2
�∇
(

E2 ∂ε

∂ρ
ρ

)
≈ ε0

2

(
∂ε

∂ρ
ρ

)
�∇E2, (2)

where for nonpolar dielectrics, as follows from the Clausius-
Mosotti formula [14],

∂ε

∂ρ
ρ = (ε − 1) (ε + 2)

3
, (3)

and for polar dielectrics (water),

∂ε

∂ρ
ρ = αε, (3′)

where α � 1.5 is the empirical factor for most of the studied
polar dielectric liquids, including water [15,16].

The stretching internal stresses, which are associated
with the action of the volumetric forces (1) or (2), can
lead to formation of microruptures (cavitation) in the fluid.
The possibility of rupture of fluid under the influence of
electrostriction is mentioned in [11]. In accordance with the
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nucleation theory [5], the critical tension for the fluid rupture
is given by

pc = psat −
(

16πσ 3

3kT ln(NY/J )

)1/2

. (4)

Here psat is the vapor pressure of liquid at a given temperature
T , k is the Boltzmann constant, σ is the surface tension
coefficient, J is the nucleation rate equal to the density of vapor
bubbles of a critical size appearing per 1 s, Y = 1011 s−1 is the
kinetic coefficient which weakly depends on the temperature,
and N is the density of molecules of the fluid. In practice,
the experimental limit stretching tension is much smaller
than that predicted by the theory of homogeneous nucleation
[Eq. (4)] [5,6]. Experiments [7] show that at initially normal
conditions (room temperature and atmospheric pressure) water
ruptures at a negative pressure of about 0.15 MPa while slowly
stretching. However, at the rapid stretching water preserves
continuity for higher negative pressures [7]. Measurements
show that pc depends on many parameters, including the
degree of purity of the fluid and the presence of dissolved gases
and dust particles. Experimental data for water are in the range
between ∼6 and 50 MPa [6]. In this paper, we are not solving
the self-consistent problem, but we focus on the study of the
conditions for the cavitation development, or the appearance
of negative pressure regions that are sufficient for cavitation.
Specifically, we accept the critical negative pressure of − 30
MPa, which agrees with the data for water collected in [6].

We are studying the dynamics of dielectric liquid (water)
in a pulsed inhomogeneous electric field in the approximation
of compressible fluid dynamics within the standard system of
equations of continuity of mass and momentum [17]:

∂ρ

∂t
+ �∇ · (ρ �u) = 0, (5)

ρ

[
∂ �u
∂t

+ (�u · �∇)�u
]

= −�∇p + ⇀

F + ηd

[
��u + 1

3
�∇( �∇ · �u)

]
,

(6)

and the Tait equation of state for “compressible” water [18,19]:

p = (p0 + B)

(
ρ

ρ0

)γ

− B,

ρ0 = 1000 kg/m3, p0 = 105 Pa, B = 3.07 × 108 Pa, (7)

γ = 7.5.

Here ρ is the fluid density, p is the pressure, �u is the velocity,
and ηd is the dynamic viscosity. Body force in (6) acting on
the polar fluid is given by (2), (3′):

�F = ε0

2
�∇

(
E2 ∂ε

∂ρ
ρ

)
≈ αεε0

2
�∇E2. (8)

Due to the gradient form of the ponderomotive force (8), it is
convenient to write in (6)

−�∇p + �F = −�∇
[
p − 1

2

(
∂ε

∂ρ
ρ

)
ε0E

2

]
. (9)

That is, as noted above, the ponderomotive electrostriction
force is reduced to an additional negative pressure stretching
the liquid. Heating of fluid is neglected, since the change in

fluid kinetic energy during the pulse is considerably smaller
than its internal energy.

A standard set of boundary conditions for Eqs. (5), (6) in a
cylindrical coordinate system with the axis along the electrode
axis was applied:

ur | = 0 uz| = 0
∂ρ

∂r

∣∣∣∣


= 0

ur |r=0
∂uz

∂r

∣∣∣∣
r=0

= 0
∂ρ

∂r

∣∣∣∣
r=0

= 0

(10)
∂ur

∂r

∣∣∣∣
r=R

= 0 uz|r=R = 0
∂ρ

∂r

∣∣∣∣
r=R

= 0

ur |z=L = 0
∂uz

∂z

∣∣∣∣
z=L

= 0
∂ρ

∂z

∣∣∣∣
z=L

= 0.

Here, R, L are the boundaries of the computational domain;
 is the electrode surface (Fig. 1). We assumed the no-slip
condition (the fluid velocity at the electrode goes to zero) and
the continuity of the fluxes of the density and momentum on
the boundaries of the computational domain.

For the nanosecond time scales, the boundary layer d

is much smaller than the radius of the electrode’s tip,
rel ∼ 1 − 10 μm (the characteristic size of the strong electric
field in the fluid), i.e., d ≈ √

νt ≈ 10−7m << rel, where
ν = ηd/ρ is the kinematic viscosity. For water at T = 293 K,
ηd ≈ 10−3 Pa s; ν ≈ 10−6 m2/s. The characteristic time to
establish the boundary layer, whose size is comparable to
the radius of curvature of the electrode, rel, is τ ≈ r2

el/ν =
10−6−10−4 s, is two to four orders longer than the front rise
time for the high-voltage pulse at the electrode. Therefore, the
terms related to the viscosity can be neglected in Eq. (6).

Since we consider the processes in highly inhomogeneous
field in the vicinity of a sharp needlelike electrode, which
can be represented as a prolate ellipsoid, it is convenient to
solve the equations for compressible fluid in prolate spheroidal
coordinates, η,μ [20]. In this case, the equipotential surfaces
� coincide with surfaces η = const:

� (η) = �0
ln [coth (0.5η)]

ln [coth (0.5η0)]
. (11)

Here, �0 = U (t) is the potential on the electrode, the value
η0 = a coth (ξ ) corresponds to an equipotential surface that
coincides with the electrode; ξ is the ratio of the semiaxes of
the prolate ellipsoidal electrode;

a = relcosh (η0) /sinh2 (η0) (12)

is the focal distance; rel is the radius of curvature of the
electrode tip.

The relations linking the cylindrical coordinates with the
prolate spheroidal coordinates in the axisymmetric case are as
follows:

r = a sh (η) sin (μ) ,

z = a ch (η) cos (μ) ,
(13)

η0 � η < ∞,

0 � μ � π/2.
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FIG. 1. The boundaries of the area of integration of Eqs. (5), (6) and the grid in prolate spheroidal coordinates: 1 is the electrode surface, 2
is the symmetry axis, and 3 and 4 are the boundaries of the computational domain. For the area marked with a rectangle, the two-dimensional
distributions of pressure and velocity in Fig. 4 are shown. The dashed line schematically shows the region where the absolute value of the
electrostrictive pressure exceeds the absolute value of the critical negative pressure necessary for cavitation.

The corresponding Jacobian is

H =
∣∣∣∣ ∂(r,z)

∂(η,μ)

∣∣∣∣ = a2[cosh (η) − cos2 (μ)]. (14)

The electric field in the variables η,μ is directed only along
the η axis and is equal to

Eη = 1√
H

∂�

∂η
= 1√

H

�0

sinh(η) ln [coth (0.5η0)]
. (15)

III. RESULTS AND DISCUSSION

We considered the transition process in distilled water when
a voltage is applied to the needle-plane electrode system. The
following set of parameters was chosen in our calculations:
dielectric permittivity ε = 81; α = 1.5; a negative pressure
threshold at which cavitation starts, − 30 MPa; the radius of
the electrode tip, rel = 5 μm; the eccentricity (the ratio of the
major semiaxis of the prolate ellipsoid to the small semiaxis)
ξ = 4.

In Fig. 1, the geometry of the problem and the grid in
the prolate spheroidal coordinates are presented. The time
dependent system of Eqs. (5), (6) together with the equation of
state (7) and the boundary conditions (10) was solved in prolate
spheroidal coordinates (13) using a McCormack second-order
scheme [21].

In all computed cases, the linear form of the voltage pulse
U (t) = U0t/t0,t � t0 was assumed. Here, U0 = 7 kV is the
maximal voltage on the electrode, t0 is the front duration.
To study the effect of voltage rise time, calculations were
performed for t0 = 1, 5, 10, and 15 ns. A negative pressure
in the fluid on the symmetry axis (r = 0, z), caused by the
electrostrictive forces at different moments of the voltage
pulse, is shown in Fig. 2.

Electrostrictive forces cause the fluid flow to the electrode.
As a result, the absolute value of the total pressure in the

fluid is |ptot| = |p + pE| < |pE| , pE = −0.5αεε0E
2. Thus,

at relatively sharp voltage pulse fronts, conditions arise
for the development of cavitation, whereas cavitation under
these conditions cannot arise at more gentle pulse fronts.
This is clearly demonstrated by the computed total pressure
distributions on the symmetry axis at different times shown
in Figs. 3(a)–3(b), where the dashed line shows the threshold
pressure for cavitation.

In [11], it was shown that the size of the area of the negative
pressure, where the conditions for the fluid cavitation ruptures
are fulfilled, is proportional to the square of the applied voltage

FIG. 2. (Color online) Electrostrictive negative pressure pE =
−0.5αεε0E

2 in the fluid along the symmetry axis (r = 0, z) at the
time moments t/t0 = 0.25 (curve 1), 0.5 (curve 2), 0.75 (curve 3),
and 1 (curve 4). The dashed line shows the pressure threshold for
cavitation when a rupture of continuity of fluid occurs.
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FIG. 3. (Color online) Longitudinal distributions of the total pressure ptot, flow velocity uz, and relative density perturbation δρ/ρ0 along
the symmetry axis (r = 0, z). (A) for the pulse with the rise time t0 = 1 ns, (B) t0 = 5 ns, (C) t0 = 10 ns, (D) t0 = 15 ns. Curve 1 corresponds
to the time moment t/t0 = 0.25, (curve 2) t/t0 = 0.5, (curve 3) t/t0 = 0.75, (curve 4) t/t0 = 1. The dashed line shows the pressure threshold
for cavitation when a rupture of continuity of fluid occurs.

amplitude and decreases inversely proportional to the fourth
power of the radius of the tip of the needlelike electrode. The
performed calculations are in agreement with these qualitative
regularities.

Velocity of the fluid flow arising under the considered
conditions during the entire voltage pulse remains subsonic
and does not exceed tens of meters per second (Fig. 3, middle

column). Fluid influx to the electrode causes changes in
density. However, in all computed cases, the maximum change
in fluid density in the vicinity of the electrode does not exceed
a few percent (Fig. 3, right column).

The obtained results show a qualitative difference between
the behaviors of the liquid at a relatively fast or slow rise of a
nonuniform electric field. At a short rise time, there are large
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FIG. 4. (Color online) Contours of the total and ponderomotive pressures, and the relative density perturbation at t = 5 ns for a pulse with
the front duration t0 = 5 ns.

tensile stresses (large negative pressure), which can lead to
discontinuities and cavitation formation of nanovoids. At a
relatively slow increasing of the field, the arising flow leads
to a strong decrease of the negative pressure down to values
below the cavitation threshold, and fluid ruptures do not occur.

Figure 4 shows the contours of the total, ptot, and pon-
deromotive, pE, pressures and the relative density, δ = (ρ −
ρ0)/ρ0, at t = 5 ns for a pulse with the front duration t0 = 5 ns.
The region of the electrode with the absolute value of negative
pressures greater than 30 Mpa, where the conditions are found
for the fluid rupture (formation of cavitation microvoids) (left
panel) is relatively small and extends in the vicinity of the
electrode tip to the distance of about 5 μm. The fluid density
perturbation (right panel) is maximal in the vicinity of the
electrode surface and then, a small region of rarefaction occurs
due to fluid motion and stretching under the influence of
ponderomotive forces.

Note that for a dielectric fluid with the dielectric constant
much lower than that of water, at the same electrode geometry
and parameters of the voltage, pulse cavitation ruptures cannot
be formed for the reason that the tensile stresses, determined
by electrostriction force (8), are linearly dependent on the
dielectric constant of the liquid.

IV. STRETCHING OF CAVITATION MICROVOIDS UNDER
THE INFLUENCE OF ELECTROSTRICTION FORCES

As already noted, if the negative total pressure is greater
than the absolute value of the cavitation threshold, a discon-
tinuity (nanovoids) is formed. These nanovoids are stretching
anisotropically in a nonuniform electric field, mainly in the
direction toward the electrode, i.e., in the direction of the
electric field gradient. Stretching of nanovoids, in the reference
frame associated with the fluid, can be described by the theory
of elasticity [22]. Here, we restrict ourselves to a simple
qualitative analysis.

Consider the nanovoids in the fluid in the electric field
created by the voltage U applied to the spherical electrode of
a small radius rel. In this case, the electrostriction force acting
on the fluid (2),

�F (R) = −ε0

2

∂ε

∂ρ
ρ (Urel)

2
�R

R6
, (16)

where R is the distance from the center electrode to the center
of the spherical voids (Fig. 5). The difference between the
forces acting on the walls of the void of the radius b in the
directions z and r are equal to

Fr ≈ | �F (R)| sin φ ≈ | �F (R)| b

R
= αε0ε(Urel)

2 b

R6
,

Fz ≈ (| �F (R + b/2)| − | �F (R − b/2)|) cos φ ≈ ∂| �F |
∂R

b

= 5αε0ε(Urel)
2 b

R6
. (17)

Thus, in the considered case, the tensile strength on the voids
along the field is five times higher than the force acting in the
radial direction. Therefore, under the action of electrostriction
forces, the voids will be stretched mostly along the electric
field, which is consistent with observations for the bubbles in
dielectric liquids [23–27].

Therefore, an intensive formation of voids in the region
of negative pressure, which exceeds the cavitation threshold,
results in very slight changes of the volume of fluid. Assuming
that l ≈ 10 nm is the longitudinal dimension of stretched voids
and b ≈ 1 nm is the transversal radius, the density of voids
is np ∼ �V

V
1

b2l
. For example, in a case of the density of the

voids np ≈ 103 μm−3 (in this case the distance between the
cavitation voids of the order of 100 nm), the relative change
in volume, �V/V = 10−5.

FIG. 5. (Color online) Directions of the ponderomotive forces
acting on the microvoid in the vicinity of a small spherical electrode
with a center at the point O. Vertical arrows show the compressive
forces, Fr . Force Fz, stretching void in the z direction, is the
difference of the forces acting on the front wall of the void (closer to
the electrode) and the rear, located farther from the electrode.

043004-5



M. N. SHNEIDER AND M. PEKKER PHYSICAL REVIEW E 87, 043004 (2013)

FIG. 6. (Color online) Longitudinal distributions of the hydro-
static pressure along the symmetry axis (r = 0, z) at different time
moments after the voltage interruption.

V. FLOW ARISING AT ADIABATIC SWITCHING
OF VOLTAGE AND ITS RAPID SHUTDOWN

If the voltage on the electrode is switching slowly enough,
the flow occurring in fluid has time to reduce the total pressure
to such an extent that the cavitation ruptures cannot appear.
In this case, the hydrostatic pressure at the electrode can
reach the value p = |pE|. At a sharp turning off of the
applied voltage, the electrostriction pressure disappears, and
a large gradient of the hydrostatic pressure leads to formation
of fluid flow from the electrode. As a result, due to inertia of
the fluid flow, the formation of negative pressure regions and
cavitation ruptures is possible.

Figure 6 shows the formation of negative pressure near
the electrode after a sharp (instantaneous) shutdown of the
electric field. As the initial condition, the hydrostatic pressure

was taken equal to the absolute value of electrostrictive p =
|pE| = 0.5αεε0E

2, at the maximum voltage on the electrode
U0. It is clearly seen that a region of negative pressure forms
in the vicinity of the electrode within a time of about a few
nanoseconds.

VI. LINEARIZED EQUATIONS AND EXAMPLE RESULTS

As can be seen from the calculations, changes in the fluid
density do not exceed a few percent, and the resulting flow
rate is much less than the velocity of sound, so the system
of equations (5)–(7) can be simplified by linearizing it. In the
spherically symmetric case, the system of equations (5)–(7) is
reduced to the form

∂u

∂t
= − 1

ρ0

∂

∂r

(
p − α

2
ε0εE

2

)
∂p

∂t
= ρ0c

2
s

1

r2

∂

∂r
(r2v) (18)

cs =
√

Bγ

ρ0
≈ 1500 m/s.

Figure 7 shows the total pressure and fluid velocity for a
spherical electrode of radius 5 μm, for voltage pulses with
rise 1, 5, 10, 15 ns, obtained by solving the simplified system
of equations (18). The voltage amplitude on the electrode
was chosen U0 ≈ 3.32 kV, so that the electric field on a
spherical electrode was equal to the field at the end of the
ellipsoidal electrode. It shows good agreement with the results
of two-dimensional calculations shown in Fig. 4, for the pulses
with short fronts (1, 5 ns) and a reasonable agreement for
longer pulses. This is related to the fact that sizes of the negative
pressure region are different in the cases of an ellipsoidal
electrode and a spherical electrode.

FIG. 7. (Color online) Radial distributions of electrostriction and the total pressure (left) and the fluid velocity (right) for a spherical
electrode of radius 5 μm at the time t = t0 for the voltage pulses with fronts t0 = 1, 5, 10, and 15 ns obtained as a result of calculation of the
linearized system (18).

043004-6



DIELECTRIC FLUID IN INHOMOGENEOUS PULSED . . . PHYSICAL REVIEW E 87, 043004 (2013)

VII. CONCLUSIONS

Prebreakdown behavior of the dielectric fluid in the pulsed,
strong inhomogeneous electric fields was studied. It is shown
that in the subnanosecond and nanosecond high-voltage pulses
applied to sharp needlelike electrodes, the regions of the
negative pressure in the vicinity of the electrode’s tip are
formed as a result of volumetric electrostrictive forces, which
can lead to rupture of fluid due to cavitation.

A combination of analysis based on nonstationary hydro-
dynamic calculations with data of optical observations in a real
experiment may be an additional source of information on the
cavitation threshold in the negative pressure regions in liquid.
The cavitation microruptures are strongly extended along the
electric field and, even at their significant densities, relative
change in volume of fluid is very small.

If the voltage pulse is relatively long, the flow forms in
the direction toward the electrode, reducing the total pressure
in the fluid. As a result, the negative pressure in the fluid
is insufficient for the cavitation, Hence, the microruptures of
fluid do not occur. At a relatively slow rising of the applied
voltage with subsequent sudden shutdown, a flow of liquid
from the electrode is formed with subsequent development of
the negative pressure region due to inertia of the fluid. In all
considered cases the direct and reverse flows of fluid induced
by the electrostrictive forces are subsonic.
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