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Dielectrophoretic Rayleigh-Bénard convection under microgravity conditions
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Thermal convection in a dielectric fluid layer between two parallel plates subjected to an alternating electric
field and a temperature gradient is investigated under microgravity conditions. A thermoelectric coupling resulting
from the thermal variation of the electric permittivity of the fluid produces the dielectrophoretic (DEP) body
force, which can be regarded as thermal buoyancy due to an effective gravity. This electric gravity can destabilize
a stationary conductive state of the fluid to develop convection. The similarity of the DEP thermal convection
with the Rayleigh-Bénard (RB) convection is examined by considering its behavior in detail by a linear stability
theory and a two-dimensional direct numerical simulation. The results are analyzed from an energetic viewpoint
and in the framework of the Ginzburg-Landau (GL) equation. The stabilizing effects of a thermoelectric feedback
make the critical parameters different from those in the RB instability. The nonuniformity of the electric gravity
arising from the finite variation of permittivity also affects the critical parameters. The characteristic constants
of the GL equation are comparable with those for the RB convection. The heat transfer in the DEP convection is
weaker than in the RB convection as a consequence of the feedback that impedes the convection.
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I. INTRODUCTION

The application of an electric field E on a dielectric fluid
gives rise to the electrohydrodynamic force density fEHD [1]:

fEHD = ρf E − 1

2
E2∇ε + ∇

[
ρ

2

(
∂ε

∂ρ

)
T

E2

]
, (1)

where ρf is the free electric charge density, E is the magnitude
of E, and T is the temperature. The electric permittivity and
mass density of the fluid are denoted by ε and ρ, respectively.
The first term is the electrophoretic force arising from the
Coulomb forces that the field exerts on free charges. It is
often the dominant component of fEHD under a static or
low-frequency electric field. When the frequency f is high
compared with the viscous time scale τν = d2/ν (d is the
length scale of a flow and ν is the kinematic viscosity of the
fluid), the fluid cannot respond to the rapid variation of E and
the electrophoretic force has no influence on its motion, as long
as the charge density ρf does not vary over the period f −1.
Under such a high-frequency electric field, the second term
of Eq. (1), called the dielectrophoretic (DEP) force, becomes
dominant, as E2 has a static component. The third term is an
electrostrictive force which would not influence flows when
the fluid is incompressible and has no mobile boundaries [2].

The DEP force can arise when the fluid is subjected to a
temperature gradient. The electric permittivity ε is a decreasing
function of the temperature in the most of dielectric fluids and
can be modeled by a linear relationship:

ε(θ ) = ε1(1 − eθ ), (2)

where ε1 is the electric permittivity at a reference temperature
T1 and θ is the temperature deviation from the reference
temperature: θ = T − T1. A temperature gradient then results
in a DEP force directed from low- to high-temperature regions
in the fluid. This thermoelectric force can generate a thermal
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convection, and, hence, it can be used to enhance heat transfer
in dielectric fluids even under microgravity conditions.

The electric gravity ge is often employed in the analysis of
the DEP thermal convection for its intuitive comprehension.
With use of Eq. (2), the DEP force can be developed as
−E2∇ε/2 = ∇(eθε1E

2/2) − θe∇(ε1E
2/2). The first term is

a gradient force that can be lumped with the pressure term in
the dynamical equations of fluid motion. The second term can
be regarded as a thermal buoyancy force, −ραθ ge (α is the co-
efficient of thermal expansion), due to an effective gravity ge:

ge = e

αρ
∇

(
ε1E

2

2

)
, (3)

which represents the variation of the electric energy stored
in the dielectric fluid per volume. This electric gravity varies
in space and time in general. The electric Rayleigh number
L = α	θge0d

3/κν is then introduced as control parameter
of the DEP thermal convection, where ge0 is the characteristic
value of the electric gravity (d and 	θ are the gap and
the temperature difference between the electrodes, κ is the
thermal diffusivity).

Roberts [3], Turnbull [4], and Stiles [5] have investi-
gated the linear stability of a horizontal fluid layer between
two parallel plane electrodes kept at different temperatures.
Under the assumption that the DEP force was the primary
component of the electrohydrodynamic force, they found
its destabilizing effects on the stationary conductive state.
Convection developed beyond critical values Lc of the electric
Rayleigh number, even in ordinarily stable thermal stratifi-
cation where the temperature gradient was directed upwards.
Under microgravity conditions, it was found that Lc = 2128.7
with the critical wave number kc = 3.226/d. Takashima and
Hamabata [6] have considered the same problem but in a
vertical configuration of electrodes, assuming a vertical basic
flow in the conductive regime. Instability occurred in different
modes: hydrodynamic, thermal, and electric, depending on the
values of L and the Grashof number Gr. In the limit of small
Gr, the electric mode instability appeared at the same Lc and kc
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as those in microgravity. The DEP convection in its nonlinear
regime has not been investigated so much. Stiles et al. [7] have
performed a weakly nonlinear analysis. They have estimated
the heat transfer enhancement by convection for a Prandtl
number Pr (=ν/κ) = 10 and found Nu − 1 ≈ 0.8(L/Lc − 1)
in the vicinity of the criticality.

The similarity of the DEP thermal convection with the
ordinary thermal convections has been noticed for a long time.
However, the above critical parameters and Nusselt numbe are
different from those in the RB convection. These differences
have never been explained to the authors’ knowledge. Fur-
thermore, the DEP convection involves a parameter γe = e	θ

which has no corresponding part in the RB convection. This
dimensionless permittivity variation γe has been assumed
to be small: |γe| � 1 in the previous theoretical works
[3,5–7], although it can be significant in some dielectric fluids
with a large thermal coefficient e, e.g., in acetonitrile and
nitrobenzene, e ≈ 0.2.

In the present work, we examine the similarity of the DEP
thermal convection in plane geometry with the RB convection
by detailed theoretical considerations. We perform a linear
stability analysis in a system with an infinite lateral extension,
taking into account finite values of γe. A two-dimensional
direct numerical simulation for a system with a large aspect
ratio is also carried out for different Pr (�1) to investigate
the nonlinear behavior of the convection. Obtained results are
analyzed from an energetic viewpoint and in the framework of
the Ginzburg-Landau equation.

The governing equations of the DEP thermal convection
are given in Sec. II with the basic conductive state. An energy
equation is also given there for later discussions. The linear
stability theory and its results are presented in Sec. III. The
results of the direct numerical simulation are given in Sec. IV
with their analysis by the Ginzburg-Landau (GL) equation.
The heat transfer enhancement is also discussed. The final
section gives our conclusions.

II. PROBLEM FORMULATION

A. Governing equations

A dielectric fluid layer subjected to an alternating electric
voltage

√
2V0 sin(2πf t) and to a temperature difference 	θ is

considered (Fig. 1). For an electric field with a high frequency
compared to the viscous time scale τν , only the time-averaged
component of the DEP force can induce the convective motion
of the fluid [8,9]. In this high-frequency approximation, the
equations of continuity, of motion, and of heat conduction and
Gauss’s law of electricity read in the electrohydrodynamic

FIG. 1. Geometrical configuration of the problem.

Boussinesq approximation [8]:

∇ · u = 0, (4)

∂t u + u · ∇u = −∇π + ∇2u − L

Pr
θ ge, (5)

∂tθ + u · ∇θ = 1

Pr
∇2θ, (6)

∇ · [ε(θ )∇φ] = 0 with E = −∇φ (7)

where u is the two-dimensional velocity field: u = ux̂ + v ŷ
(x̂, ŷ being the unit vectors along the x and y axes), π

is the generalized pressure including electrohydrodynamic
components, and φ is the electric potential. The equations
have been nondimensionalized with scales d of length, d2/ν

of time, V0 of electric potential, and 	θ of temperature. In the
present study the scale of time d2/ν is more appropriate than
the time scale of thermal diffusion d2/κ , as the former is the
smallest when Pr > 1, the case in which we are interested. The
permittivity is scaled by ε1 and its thermal variation is given
by ε = 1 − γeθ according to Eq. (2).

These equations are completed by the boundary conditions
on the electrodes at y = ±1/2 and on the walls at x = ±�/2
(�: the aspect ratio):

u = 0, θ = 1
2 , φ = 1 at y = − 1

2 , (8)

u = 0, θ = − 1
2 , φ = 0 at y = 1

2 , (9)

u = 0, ∂xθ = 0, ∂xφ = 0 at x = ±�
2 . (10)

We have assumed that the walls are thermally adiabatic and
made of a material with a small electric permittivity compared
to the fluid [Eq. (10)], considering the problem in its simplest
configuration.

In the theoretical model formulated by Eqs. (4)–(10), we
have considered an initially electroneutral fluid layer and have
assumed that no space charge accumulation is induced by
the electric field: ρf = 0 in the bulk of the fluid during the
entire development of convection flow. This assumption is
valid under the following conditions: (i) f � τ−1

e ,τ−1
m ,τ−1

d

and (ii) d � λD , where τe, τm, and τd are the time scales
of the charge relaxation, migration, and diffusion processes,
respectively. The Debye length λD represents the thickness
of the diffusion layer, which is an electrically charged layer
constituting the outer part of the electric double layer formed
on each fluid-electrode interface. Under condition (i), the
electric field varies too rapidly to alter the spatial distribution
of charges in the fluid; under condition (ii), the charge transport
by the convection flows from the diffusion layer into the bulk
will be negligible.

For a bipolar system consisting of positive and negative
charges of the same magnitude q, the time scales and the
Debye length are given by [10]

τe = ε

σ
, τm = h

E(b+ + b−)
, τd = h2

K+b−+K−b+
b++b−

,

λD =
√

εkBT

2q2n∞
, (11)
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where σ is the electric conductivity, h is a length scale, kB is the
Boltzmann constant, n∞ is the number density of both charges
far from electrodes, and b± and K± are, respectively, the
mobilities and diffusion coefficients of positive and negative
charges. In silicone oils, the time scales are estimated for the
diffusion layer (i.e., h = λD) as τe ∼ 10–102 s, τd ∼ 102 s,
and τm ∼ 8.2 × 106ν1/2E−1(q/qe)−1/2 [s] with λD ∼ 10−4 m,
where qe is the elementary charge and ν and E are their values
in the units of m2/s and V/m, respectively [11]. The migration
time τm gives the smallest value among the three time scales
at practical field strengths (E ∼ 105–106 V/m), being, e.g.,
τm = 0.026 s for a silicone oil with ν = 10−5 m2/s. According
to conditions (i) and (ii), the theoretical model (4)–(10) would
enable one to describe the flow in a layer of the latter oil,
thicker than a few millimeters and subjected to an electric
field with a frequency higher than τ−1

m = 38 Hz.

B. Conductive state

When the imposed temperature difference is small, the
purely conductive state (u = 0) is established. The temperature
and electric fields, θ = θ̄ (y) and φ = φ̄(y), are then obtained
analytically from Eqs. (6) and (7) with the boundary conditions
(8)–(10):

φ̄ =
log

( 1+γey

1+γe/2

)
log

( 1−γe/2
1+γe/2

) , θ̄ = −y. (12)

This conductive state is independent of the aspect ratio � due
to the idealized boundary condition (10). It will therefore be
considered as the basic state both in the linear stability theory
performed for � → ∞ and in the DNS for a large but finite �.
The electric gravity (3) in the conductive state is given by

ḡe = ḡe ŷ with ḡe = − 1

(1 + γey)3
. (13)

We have chosen for scaling ḡe the electric gravity at the
middle of the gap: ge0 = eε1V

2
0 γ 3

e /ραd3[log{(1 − γe/2)/
(1 + γe/2)}]2. The electric Rayleigh number L in Eq. (5) is
based on the characteristic gravity ge0:

L = ε1V
2

0 γ 4
e

ρκν

[
log

(
1 − γe/2

1 + γe/2

)]−2

, (14)

which recovers the electric Rayleigh number introduced in the
previous works [3,5–7] in the limit of small γe.

C. Energy equation

An equation that governs the evolution of the flow kinetic
energy can be derived from the Navier-Stokes equation (5).
Taking the inner product of the equation with u and integrating
over the whole fluid domain, we have

dK

dt
= WBG + WPG − Dv, (15)

where K , WBG, WPG, and Dv are the flow kinetic energy, the
work done by the basic electric gravity ḡe, the work done
by the perturbation electric gravity g′

e = ge − ḡe, and the
viscous dissipation, respectively. They are computed by inte-
grating over the fluid domain the corresponding quantities per

volume:

K = |u′|2/2, (16)

wBG = −Pr−1Lθ ′u′ · ḡe, (17)

wPG = −Pr−1L(θ̄u′ · g′
e + θ ′u′ · g′

e), (18)

dv = ∇u′ : (∇u′)T , (19)

where the primes indicate perturbation quantities.
The basic electric gravity ḡe can be regarded as the coun-

terpart in the DEP thermal convection to the Earth’s gravity in
the ordinary thermal convections. The perturbation electric
gravity g′

e represents a thermoelectric feedback associated
with the electric field perturbations that arise from temperature
disturbances [Eq. (7)]. The contribution of the work WPG to
the kinetic energy evolution is hence distinctive of the DEP
convection.

III. LINEAR STABILITY THEORY

Governing equations (4)–(7) are linearized about the basic
state (12). Developing perturbations into normal modes est+ikx

with the complex growth rate s and the wave number k, we
have

0 = ikU + DV, (20)

sU = (D2 − k2)U − ik� − L

Pr
θ̄Gex, (21)

sV = (D2 − k2)V − D� − L

Pr
ḡe� − L

Pr
θ̄Gey, (22)

s� = V + 1

Pr
(D2 − k2)�, (23)

0 = −γe[Dφ̄D + D2φ̄]� + [(1 + γey)(D2 − k2) + γeD]�,

(24)

where (U, V, �, �, �) are the normal mode amplitudes of the
perturbations (u′, v′, π ′, θ ′, φ′), respectively, and the operator
D = d/dy. The normal mode amplitudes (Gex,Gey) of the
perturbation electric gravity g′

e are given by

Gex x̂ + Gey ŷ = 1

γ 3
e

[
log

(
1 − γe/2

1 + γe/2

)]2

×[ikDφ̄D�x̂ + (Dφ̄D2� + D2φ̄D�) ŷ].

(25)

On the electrodes the perturbations satisfy the following
boundary conditions corresponding to Eqs. (8) and (9):

U = DU = V = � = � = 0 at y = ± 1
2 . (26)

The condition on the adiabatic walls (10) has been removed,
as we consider a system with an infinite lateral extension
(� → ∞) in the present linear theory.

The set of equations (20)–(24) are discretized by a spectral
collocation method. All the unknown functions are developed
into Chebyshev series, and the equations are considered only at
the Chebyshev-Gauss-Lobatto collocation points. The highest
order of considered Chebyshev polynomials is set at 60 to
ensure the convergence. The discretized governing equations
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FIG. 2. Critical values of the electric Rayleigh number L and
the wave number k as functions of the thermal variation of electric
permittivity γe. The predictions of the previous linear stability theories
(Lc = 2128.7, kc = 3.226) [3,5,6] are indicated for comparison.

are coupled with the boundary conditions (26) to form a gen-
eralized eigenvalue problem. Its eigenvalues and eigenvectors
are computed by employing the QZ decomposition.

Marginal stability curves are obtained by solving the
eigenvalue problem for different values of L and k at given
Pr and γe. The minimum of a marginal curve gives the critical
parameters (kc,Lc), which are found to be independent of the
Prandtl number. The corresponding critical mode is stationary
as in the RB problem [12,13]. The critical parameters for small
γe (<0.1) are constant, recovering the results of the existing
theories [3,5,6]. For large γe (>0.1), the critical parameters
depend on it (Fig. 2): significant decrease and increase are
found in Lc and kc, respectively.

The basic electric gravity ḡe provides energy to perturbation
flow, i.e., WBG > 0 (Fig. 3). The mechanism driving the
convection is hence the thermal buoyancy associated with
a temperature perturbation θ ′ in the gravity ḡe, similar to
the RB instability. In contrast, the perturbation gravity g′

e

dissipates energy, WPG < 0 (Fig. 3). This stabilization by g′
e

is absent in the RB convection and explains why Lc at small
γe is larger than the critical Rayleigh number Rc (=1708)
in the RB convection in spite of the apparent similarity in
the driving mechanism. The effect of WPG is also found to
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FIG. 3. Different terms in the energy equation (15) at critical
conditions. The work done by the basic electric gravity WBG, the
work done by the perturbation electric gravity WPG, and the viscous
dissipation Dv are all normalized by twice the kinetic energy K .

-0.4 -0.2 0 0.2 0.4
0

0.5

1

1.5

2

y

(b)

K

-0.4 -0.2 0 0.2 0.4
0

1

2

3

4

y

(a)

wBG
0.01
0.5
1.5
1.9

e

FIG. 4. Profiles of the local work done by the basic electric
gravity wBG and the local flow kinetic energy K, averaged along
the x direction and normalized, respectively, by WBG and K .

be more significant at small wave number, giving an expla-
nation to kc = 3.226 that is larger than in the RB instability
(kc = 3.117).

For large γe, the work WBG is enhanced, although the work
WPG is almost constant (Fig. 3). This suggests that the basic
electric gravity performs work more efficiently at large γe

than at small γe to destabilize the conductive state at small Lc.
Indeed, the spatial nonuniformity of the basic electric gravity
ḡe is reinforced at large γe [Eq. (13)] and strong electric
gravity in the vicinity of the hot electrode (y = − 1

2 ) provides
energy to the fluid locally [Fig. 4(a)]. The instability is then
provoked within a fluid sublayer attached to the electrode. As
a consequence, the kinetic energy of developed flow is also
concentrated in the region near the hot electrode [Fig. 4(b)]:
The convection develops within an effective sublayer of a
small thickness. This explains the observed large critical wave
numbers (i.e., small wavelengths) at large γe.

IV. DIRECT NUMERICAL SIMULATION

We have considered the nonlinear behavior of the DEP
thermal convection for a small γe (=0.03) and a large
aspect ratio � = 114, solving the set of partial differential
equations (4)–(7) with the boundary conditions (8)–(10) by
the finite element method implemented in a commercial
software package (COMSOL Multiphysics 3.5, Comsol AB,
Stockholm, Sweden). Numerical grids are made of identical
rectangles with sides of 	x = 0.15 and 	y = 0.1 so that
the fluid domain is divided by 760 and 10 along the x

and y directions, respectively. The backward differentiation
formula is used for the time integration. The convergence of
computation was verified by grid refinements. The initial fields
are specified as null for the velocities, the temperature, and the
electric field: The solved problem corresponds to a situation
where the electric potential V0 and the temperature difference
	θ are imposed instantaneously on a steady isothermal fluid
layer at t = 0.

For a value of L larger than Lc, small disturbances grow
exponentially to develop convection cells. This linear growth
stage is followed by a saturation where hot and cold cells
are shifted toward the low- and high-temperature electrodes,
respectively, yielding a net heat transfer enhancement by the
convection [Figs. 5(a) and 5(b)]. The cells have a well-defined
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FIG. 5. (Color online) Convection flow in the saturated state
for Pr = 10 at L = 2200: (a) velocity (arrows) and perturbation
temperature (color), (b) equipotentials of perturbation electric field,
and (c) the profile of the transversal velocity component v at the
middle of the gap (y = 0). The left end (x = −57) corresponds to
one of the adiabatic lateral walls.

wave number k along the x direction. Its Fourier spectrum has
a sharp peak with a width around 	k = 0.05 arising from the
perturbation suppression at the lateral walls.

A. Description by the Ginzburg-Landau equation

The bifurcation at L = Lc is found to be supercritical. As
the critical mode is stationary and has a finite wave number kc

(i.e., Type I-s instability [14]), the behavior of the perturbation
amplitude in the weakly nonlinear regime is hence expected
to be described by the Ginzburg-Landau (GL) equation:

τ0∂tA = δA + ξ 2
0 ∂2

xA − �|A|2A, (27)

where δ is the supercriticality δ = L/Lc − 1. The constants
τ0, ξ0, and � are characteristics of a given system. In the
present work, the envelope of the velocity profile v = v(x) at
the middle of the gap (y = 0) will be taken as the amplitude A.
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FIG. 6. Behavior of (a) the healing length ξ and the saturation
amplitude A0 and (b) the wave number k in the vicinity of the
criticality (Pr = 10). The supercriticality δ (=L/Lc − 1) is computed
with Lc = 2130. (b) Also shown are the marginal curve obtained in
the linear stability theory (LS) and the Eckhaus instability boundary
(EI): δ = 3ξ 2

0 (k − kc)2.

TABLE I. Critical parameters and characteristic constants of the
Ginzburg-Landau equation (27) determined from the DNS (γe =
0.03).

Pr Lc τ0 ξ0 �

1 2128.2 0.0783 0.388 0.0121
10 2128.9 0.590 0.377 1.15
100 2130.1 5.62 0.380 118
1000 2130.0 55.9 0.381 11 800

In the saturated state, the amplitude is constant far from the
adiabatic walls [Fig. 5(c)] where the GL equation predicts
|A| = √

δ/� = √
(L/Lc − 1)/� (=A0). The critical electric

Rayleigh number Lc can be deduced from the intersection
point of the A2

0 line with the L axis [Fig. 6(a)]. We find
Lc = 2130, independent from the Prandtl number (Table I
) as in the linear stability theories [3,4,6,7]. The perturbation
suppression by the lateral walls affects the critical parameters
little, since the aspect ratio � is large.

In a large system, the solution of the GL equation in the
vicinity of a suppressing lateral boundary is given by A =
ei�

√
δ/� tanh[(x − xw)/ξ ]. On the first order, xw is identical

to the wall position, and the phase � is an arbitrary constant.
The constant ξ represents a distance over which perturbations
heal from the suppression at the boundary and is given by
ξ = √

2ξ0δ
−1/2. The hyperbolic tangent is a correct envelope

function of (v)y=0 [Fig. 5(c)]. The determined healing length
ξ behaves as the theoretical predictions: ξ−2 increases linearly
with L and intersects the L axis at L = Lc [Fig. 6(a)].

The values of the characteristic constants τ0, ξ0, and � were
found from the linear fits for δ/τ0 (the growth rate), ξ−2, and
A2

0 as functions of the supercriticality δ. Table I shows the
determined values of the constants for different values of Pr.
The characteristic time τ0 increases linearly with Pr and can
be correlated by the same relationship derived for the RB
convection: τ0 = (Pr + 0.5117)/19.65 [15]. The values of ξ0

do not vary with Pr and are also identical to the value found
in the RB problem: ξ0 = 0.385. The determined ξ0 enables
us to draw the stability boundary of the Eckhaus instability:
δ = 3ξ 2

0 (k − kc)2 [Fig. 6(b)]. The wave numbers obtained in
the DNS are inside the stable zone. The constant � behaves
as � ∝ Pr2, implying |A| ∝ Pr−1. Since we have chosen the
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FIG. 7. Heat transfer enhancement by saturated convection flows.
The Nusselt number Nu is shown as a function of the supercriticality
δ for different Prandtl numbers Pr (γe = 0.03).

043003-5



H. N. YOSHIKAWA et al. PHYSICAL REVIEW E 87, 043003 (2013)

-0.05 0 0.05 0.1 0.15 0.2 0.25 0.3

-400

-200

0

200

400

600
E

ne
rg

y 
ge

ne
ra

ti
on

 te
rm

s

WBG

WPG

-DV

FIG. 8. Different terms in the energy equation (15) in the vicinity
of the criticality in saturated states (Pr = 10). The work done by the
basic electric gravity WBG, the work done by the perturbation electric
gravity WPG, and the viscous dissipation Dv are all normalized by
twice the kinetic energy K .

envelope of the velocity v as the amplitude A, this means that
the convection velocity is scaled by Pr−1(ν/d) = κ/d, as in
the ordinary thermal convections.

B. Heat transfer enhancement

The heat transfer is enhanced by the developed convection
for L > Lc. Figure 7 shows the Nusselt number Nu as a
function of the supercriticality δ:

Nu = 1

�

(
−

∫ �/2

−�/2
∂yθ dx + Pr

∫ �/2

−�/2
vθ dx

)
. (28)

This number is the ratio of the total heat transfer to the conduc-
tive heat transfer in the basic state (12). The behavior of Nu is
correlated by Nu − 1 = 0.78δ [16] for small supercriticality
δ, independent of the Prandtl number Pr (�1). The coefficient
0.78 agrees with its value obtained in a weakly nonlinear
analysis for Pr = 10 [7].

In the RB convection, the relationship Nu − 1 ≈ 1.43
(R/Rc − 1) [17] has been found for steady roll modes for
Pr > 1. The coefficient of the supercriticality found for the
DEP convection is hence substantially smaller than in the RB
convection. This difference is too large to be explained by
the spatial nonuniformity of the basic gravity (13) or by the
presence of the lateral walls: The former effect will be of
the order of O(γe) = 10−2 and the latter one will be about
O(�−1) = 10−2. In the linear stability theory, it was found
that g′

e tends to dissipate the kinetic energy of flow (Fig. 3).
This tendency persists even after the saturation (Fig. 8). The
reduction in convective heat transfer by the perturbation elec-

tric gravity will be of the order of WPG/WBG ≈ 0.3, agreeing
with the relative difference between the coefficients in the Nu
correlations. The impeding effect of the perturbation electric
gravity g′

e on convection flows hence gives an explanation to
the weaker heat transfer enhancement in the DEP convection
than in the RB convection.

V. CONCLUSIONS

In the present study, the similarity of the DEP thermal
convection in plane geometry with the RB convection has
been examined in detail by a linear stability analysis and
a direct numerical simulation. The problem was formulated
with regarding the DEP force as thermal buoyancy due to the
electric gravity (3). The difference from the RB convection was
highlighted by introducing the perturbation electric gravity
g′

e, which represents the thermoelectric feedback, and by
considering finite values of the permittivity variation γe, which
is associated with the nonuniformity in the basic gravity ḡe

[Eq. (13)].
The linear stability theory revealed that the electric gravity

perturbation dissipates flow kinetic energy and tends to
stabilize the basic conductive state. The critical parameters Lc

and kc are hence different from those of the RB instability
even when ḡe is almost uniform over the gap. When the
nonuniformity of ḡe is important (γe > 0.1), the instability
occurs within a fluid sublayer attached on the hot electrode
where the electric gravity is strong and provides energy
efficiently to convective flows. As a consequence, the critical
values of L and k decrease and increase, respectively, from
their values at small γe.

The results obtained by the DNS showed that the convection
develops when L > Lc with wave numbers inside the Eckhaus
stable zone. The convection flow in the nonlinear regime is well
described by the GL equation. The determined characteristic
time τ0 increases with Pr in the same manner as that obtained
for the RB convection. The characteristic length ξ0 is constant,
being also the same as that in the RB convection. In spite of this
similarity, impeding effects of the perturbation electric gravity
persist in the nonlinear regime and result in a heat transfer
enhancement weaker than in the RB convection.

ACKNOWLEDGMENTS

This work has benefited from partial financial support from
the CNES (Centre National des Etudes Spatiales). M.T.F. was
supported by the doctor scholarship from the French Ministry
of Higher Education and Research. H.N.Y. wishes to thank
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[17] A. Schlüter, D. Lortz, and F. Busse, J. Fluid Mech. 23, 129
(1965).

043003-7

http://dx.doi.org/10.1143/JPSJ.53.1728
http://dx.doi.org/10.1143/JPSJ.53.1728
http://dx.doi.org/10.1063/1.858684
http://dx.doi.org/10.1063/1.858684
http://dx.doi.org/10.1063/1.1692646
http://dx.doi.org/10.1063/1.1692646
http://dx.doi.org/10.1016/0094-5765(84)90106-1
http://dx.doi.org/10.1016/0094-5765(84)90106-1
http://dx.doi.org/10.1063/1.4792833
http://dx.doi.org/10.1063/1.4792833
http://dx.doi.org/10.1103/RevModPhys.65.851
http://dx.doi.org/10.1103/RevModPhys.65.851
http://dx.doi.org/10.1063/1.863198
http://dx.doi.org/10.1017/S0022112065001271
http://dx.doi.org/10.1017/S0022112065001271



