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Interaction of equal-size bubbles in shear flow
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The inertia-induced forces on two identical spherical bubbles in a simple shear flow at small but finite Reynolds
number, for the case when the bubbles are within each other’s inner viscous region, are calculated making use of
the reciprocal theorem. This interaction force is further employed to model the dynamics of air bubbles injected
to a viscous fluid sheared in a Couette device at the first shear flow instability where the bubbles are trapped inside
the stable Taylor vortex. It was shown that, during a long time scale, the inertial interaction between the bubbles
in the primary shear flow drives them away from each other and, as a result, equal-size bubbles eventually assume
an ordered string with equal separation distances between all neighbors. We report on experiments showing the
dynamic evolution of various numbers of bubbles. The results of the theory are in good agreement with the
experimental observations.
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I. INTRODUCTION

Interaction of suspended bubbles with the flow and with
other bubbles is an important issue for many natural and
technological processes. Bubbles suspended in a quiescent
liquid tend to rise due to buoyancy. However, in intensive
flow, bubbles exhibit complicated behavior, e.g., they may be
trapped by vortices. Djéridi et al. [1,2] performed experimental
study of bubbles capture and migration in a Couette-Taylor
flow at Reynolds numbers, corresponding to the first classical
instabilities of the flow. The study of Deng et al. [3] is focused
on the behavior of individual bubbles embedded in such flow.
It was demonstrated that the bubbles are trapped either near
the wall at stagnation points or in the vortex core. Equal-size
bubbles entrapped in the core eventually assume an ordered
string with equal separation distances between all neighbors.
Thus, doublets assume opposite positions, triplets will form a
triangle, four bubbles will arrange in a square, and so on. This
phenomenon repeats itself with the introduction of additional
bubbles to the flow up to a certain number. Experiments
performed in our laboratory reproduce these results and also
provide detailed measurements of the process evolution. A
brief report of these results can be found in Byk et al. [4]
and more details are presented in the present paper. Thus, the
equilibrium configurations for 2, 3, 4, 5, 12, and 14 bubbles
are shown in Fig. 1. Additional configurations with 6 and 18
bubbles can be found in Ref. [4]. As it is evident in Fig. 1,
the dimensions of the bubbles in the experiments are small
compared to that of the device, and the shapes of the inclusions
are practically spherical.

Obviously, the observed ordering of the bubbles is due to
a repulsive force induced by their interaction, but the nature
of this force remains unclear so far. Our hypothesis is that the
relative repulsion observed in the experiment is due to inertia
effects on the scale of the bubbles. Byk et al. [4] computed the
force acting on two circles in a simple shear flow of an inviscid
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liquid in 2D geometry and demonstrated that the interaction
force is repulsive and decays relatively fast with the separation
distance d as 1/d5, which agrees qualitatively with the
observations. However, the experimental phenomenon takes
place at moderate bubble Reynolds numbers (see Refs. [3,4])
and the flow in the experiments is far from being two
dimensional. Thus, the applicability of the theoretical model
of Ref. [4] is merely qualitative. The current work is devoted
to another limiting case, e.g., small Reynolds number (Re).
It follows from simple symmetry considerations that under
the creeping flow conditions (Re = 0) no interaction force
is expected for two undeformed bubbles located at the same
streamline in a simple shear flow. In this paper, we study the
interaction of identical spherical bubbles in a simple shear for
small but finite Reynolds numbers. A brief review of the results
on the effect of finite inertia on the motion and interaction of
solid and fluid particles in viscous flow is given below.

Series of works available in the literature concerns the
motion of inclusions in linear low-Reynolds-number flows.
Saffman [5,6] obtained the lift force on a small rigid sphere
in a linear shear flow in the limit of small Reynolds number
and large shear. His solution is based on a matched asymptotic
expansion in which the flow in the inner region is modified
by the inertia effects induced by the shear in the outer region.
McLaughlin [7] extended Saffman’s analysis by considering
the case where inertia effects related to the mean flow are of the
same order as those induced by the shear. Recently, Legendre
and Magnaudet [8] reconsidered Saffman’s and McLaughlin’s
analyses for a spherical drop of arbitrary viscosity. Their
analytical solution is, therefore, valid for a spherical bubble
with a vanishing viscosity. In that case the lift force was found
to be (2/3)2 times that of a solid sphere, the coefficient 2/3
corresponds to the ratio of the magnitude of the vorticity at
the surface of each kind of particle, which is also the ratio
of translational resistance corresponding to a spherical bubble
and a solid sphere in Stokes flow. McLaughlin [9] found that
for the outer (inviscid) region the velocity in the direction
of the shear-rate gradient (cross streamlines velocity) decays
with the distance from the sphere in the same direction as
r−5/3. This result was used to evaluate the effect of a distant
rigid wall on the lift force. Asmolov and Feuillebois [10]
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FIG. 1. (Color online) Top view of the bubble ring composed of
2, 3, 4, 5, 12, and 14 bubbles of the same size in a Couette device.

calculated the disturbance velocity induced by a solid particle
in an unbounded shear flow, including the outer region and the
viscous wakes. An essential feature of the above-mentioned
papers is the role played by the velocity of the particle relative
to the undisturbed fluid velocity at the position occupied by
the particle. Indeed, the lift force is proportional to this relative
velocity.

Another series of works concerns the effect of weak inertia
on the flow field around neutrally buoyant inclusions in sheared
flows. Lin et al. [11] employed the matched asymptotic
expansion technique to study the case of a neutrally buoyant
solid sphere immersed in an incompressible Newtonian fluid
which, at large distances from the sphere, is in a state of simple
shear flow. In particular, the inner expansion of the flow field
was constructed in Ref. [11] up to O(Re3/2) terms and it was
demonstrated that the effect of the outer region on the inner
expansion enters first at this order, while O(Re) terms are
correctly predicted by the regular perturbation technique. Lin
et al. [11] also studied the effect of the weak inertia on the
suspension rheology in the infinitely dilute (noninteracting)
limit. Ho and Leal [12] made use of a reciprocal theorem
to study the O(Re) inertia-induced lateral migration of a
neutrally buoyant rigid sphere in a simple shear flow and
two-dimensional Poiseuille flow, respectively, between solid
walls. It is shown that the sphere reaches a stable lateral
equilibrium position independent of the initial location of
release, this position is midway between the walls for simple
shear flow, and it is 0.3 of the channel width from the center

line for Poiseuille flow. Subramanian et al. [13] extended the
results of Ref. [11] to the case of viscous drops and dilute
emulsions. Subramanian and Koch [14] showed that small
fluid inertia alters the closed-streamline configuration in the
near region of a neutrally buoyant sphere, predicted in the
creeping flow limit. As a result, the streamlines are spiralling
outward rather than closed.

Most of the analytic and semianalytic studies on inertial
interaction of inclusions in viscous flow are devoted to
interesting effects observed for sedimentation of small clus-
ters of particles, such as unstable separating configurations,
periodic or quasiperiodic trajectories, and chaotic solutions
(see, e.g., Rosenstein and Leshansky [15] and the literature
cited therein). Inertial effects on the pairwise interaction of
inclusions were studied via numerical simulations at finite Re,
making use of the lattice-Boltzmann (Kulkarni and Morris
[16]), finite-element (Mikulencak and Morris [17]) and front
tracking finite difference (Olapade et al. [18] and Singh and
Sarkar [19]) methods. Kulkarni and Morris [16] obtained
numerically reversing and spiralling trajectories of interacting
solid particles pair in finite-inertia shear flow. Olapade et al.
[18] simulated interaction of deformable drops, initially placed
at the same shear plane, in the case of matched density and
viscosity of the phases. It was found that the interacting drops
show two distinct types of trajectory—drops passing each
other similar to those seen in Stokes flow and drops reversing
their trajectories on coming together. Singh and Sarkar [19]
extended the investigations of Ref. [18] to cases where the
viscosity of the dispersed phase differs from that of the matrix,
and drops are initially placed in different shear planes.

In this paper, we report on the analytical study of the
leading-order effect of weak inertia on the interaction of
identical spherical bubbles freely suspended in a simple shear
flow. We also suggest three simplified models of interaction of
bubbles in a Couette-Taylor device that are based on the results
of this analytical study and compare the results of the bubbles
dynamic simulations to the experimental measurements. The
paper is organized as follows: In Sec. II, the problem of the
interaction of two spherical bubbles in a simple shear flow
is formulated and expansion of solutions in powers of Re is
discussed, and two methods are employed to construct the
zeroth-order solutions. In Sec. II C the reciprocal theorem is
used to obtain the leading-order term of the inertia-induced
force on the interacting bubbles in the form of a volume
integral depending solely on the solution of the creeping
flow equations, and the computed force is presented as
function of the separation distance. In Sec. III, we formulate
three simplified models of the dynamics of bubbles in a
Couette-Taylor vortex. Further, we present the experimental
observations on such a dynamic interaction and compare them
to the dynamic simulations according to the theoretical models.
Conclusions and discussion are given in Sec. IV.

II. TWO BUBBLES IN A SIMPLE SHEAR FLOW

A. Formulation of the problem

Consider two stationary spherical bubbles of equal radii
a suspended in an incompressible fluid of viscosity μ and
density ρ, which is subjected to an unbounded simple shear
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FIG. 2. Geometry of the problem.

flow field v∗ = (0,0,Gx∗) along the z axis, where G is the
shear rate. The location of the bubbles is assumed to be on the
same streamline x = y = 0.

In the following analysis, length, velocity, and stress will
be nondimensionalized using a, Ga, and μG, respectively. Let
� be the domain occupied by the continuous fluid, �i, i = 1,2
denote the boundary of the bubbles, and d be the distance
between the centers of the bubbles (see Fig. 2).

Let v, p, and σ denote the scaled disturbances of velocity,
dynamic pressure, and stress fields, respectively, due to the
presence of the bubbles. The disturbed flow around the bubbles
is governed by the steady Navier-Stokes equations,

∇2v − ∇p = ∇ · σ

= Re[(v · ∇)v + (v∞ · ∇)v + (v · ∇)v∞], (1)

∇ · v = 0, x ∈ �, (2)

where Re = ρGa2/μ is the Reynolds number and v∞ =
(0,0,x). At the boundaries of the bubbles, �1 and �2, and
far from the inclusions the stress and the velocity satisfy

(σ + σ∞) · n = ∇ · n
Ca

n, x ∈ �i, i = 1,2, (3)

v · n = −v∞ · n, x ∈ �i, i = 1,2, (4)

v → 0 as |x| → ∞. (5)

Here n is the unit normal vector pointing into the fluid, σ∞ is
the stress tensor corresponding to the basic flow v∞, and Ca =
μaG/γ is the capillary number, with γ being the constant
surface tension.

In order to isolate the effect of inertia on the interaction
of the bubbles and in agreement with the high surface tension
at the fluid-air interface and small dimensions of the bubbles
in the experiments of Refs. [3] and [4] we assume absence of
gravity and Ca vanishingly small. Under this assumption, the
bubbles remain spherical and condition (3) reduces to

σ : ns = −σ∞ : ns, x ∈ �i, i = 1,2, (6)

where the colons denote scalar product between tensors and
s is an arbitrary tangential vector to the bubble surface. In
this paper, we are interested in the interaction of bubbles
located along the same streamline in the shear flow, x = y = 0
(see Fig. 2).

Further, we assume a small but finite Reynolds number and
look for a solution in the form of an expansion in terms of
Re. At Re = 0, Eqs. (1) and (2) become the steady Stokes
equations,

∇ · σ = 0, ∇ · v = 0, x ∈ �. (7)

Let v0,σ 0 be a solution of (4)–(7). It seems natural to consider
v0, σ 0 as a leading-order approximation of the solution of (1),
(2), and (4)–(6). However, as in the case of a single inclusion
in a simple shear, it is not a uniformly valid approximation in
an unbounded domain at any finite Re, whatever small. For a
single drop, this approximation breaks down for distances from
the inclusions of O(Re−1/2) and the correct approximation to
the velocity field in this outer region must be obtained from
a solution of the linearized Navier-Stokes equations (1). The
two cases, d < O(Re−1/2) and d > O(Re−1/2), with d being
the separation distance between two bubbles submerged in the
fluid, should be considered separately and, in this paper, we
concentrate on the first case when the two inclusions have a
common inner region. The second case is briefly discussed at
the end of Sec. II C.

Previous studies [11,13] employed a matched asymptotic
expansions technique to evaluate the velocity field around a
rigid sphere and a single drop in a linear flow and obtained
the inner expansion up to O(Re3/2). Also, it was demonstrated
that the formal use of regular perturbations provides a correct
result for the leading-order O(Re) perturbations in the vicinity
of the inclusions. These results can be directly applied to a
multibubble case, when the inclusions are located in a common
inner region, yielding that, in the inner region, the expansions
can be expressed as

v = v0 + Rev1 + O(Re3/2),

p = p0 + Rep1 + O(Re3/2), (8)

σ = σ 0 + Reσ 1 + O(Re3/2).

The individual terms (v0,p0,σ 0) and (v1,p1,σ 1) satisfy the
equations

∇2v0 − ∇p0 = ∇ · σ 0 = 0,

∇ · v0 = 0, x ∈ �,

v0 · n = −v∞ · n, σ 0 : ns = −σ∞ : ns,

x ∈ �i, i = 1,2,

v0 → 0 as |x| → ∞. (9)

and

∇2v1 − ∇p1 = ∇ · σ 1

= (v0 · ∇)v0 + (v∞ · ∇)v0 + (v0 · ∇)v∞,

∇ · v1 = 0, x ∈ �,

v1 · n = 0, σ 1 : ns = 0, x ∈ �i, i = 1,2. (10)

B. Solution of the zeroth order

In order to solve the zeroth-order problem (9), i.e., creeping
flow field, we adopt two different methods, namely bispherical
coordinates and method of reflections. Below, we give the
solution methodology in brief.
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FIG. 3. Flow pattern around two bubbles in a creeping simple
shear flow at the midplane y = 0 and separation distance d = 3.

Following Lin, Lee, and Sather [20], the general solution of
the Stokes equation in the bispherical coordinates is presented
in the form of a series in spherical harmonics, and coefficients
of the series are determined from the boundary conditions.
The details of this procedure are presented in the Appendix.
The advantage of bispherical coordinate systems is that it
allows one to satisfy boundary conditions on two bubbles
simultaneously. The cross-section plot of the flow around two
equal-size bubbles with separation distance d = 3 is shown
in Fig. 3.

Note that closed streamlines regions, surrounding either
of the bubbles or both, were not found for close proximity
or large separation. This is in contrast to observations in the
cases of solid particles [21,22] and of viscous drops [23], where
both open and closed streamlines exist in a Couette flow. The
solution also yields that, at any value of d, the flow does not
separate at the bubble surfaces, reflecting the zero tangential
stress there. Furthermore, as can be observed in Fig. 3, the
velocity disturbance in the lateral direction decays rather fast.
It follows from simple symmetry considerations that in the
creeping simple shear flow, no force is exerted on spherical
bubbles located at the zero streamline. This result can also
be obtained by a direct calculation. Hence, it follows that the
velocity disturbance decays as 1/|x|2 at infinity.

We present the solution of the two-bubble problem in shear
flow using an approximate method called method of reflections
for calculating the force exerted on the two bodies. This method
complements the solution via bispherical coordinates since it
can be easily extended to study multiparticle systems. For the
two spherical bubbles in Fig. 4, the solution is presented in the
form

v0 =
2∑

i=1

∞∑
k=1

v0
i,k(ri,θi,φ), σ 0 =

2∑
i=1

∞∑
k=1

σ 0
i,k(ri,θi,φ),

p0 =
2∑

i=1

∞∑
k=1

p0
i,k(ri,θi,φ), (11)

FIG. 4. Spherical coordinate systems connected to two bubbles.

where (ri,θi,φ) are spherical coordinate systems originating at
the center of bubble i. Here v0

i,k is the solution of the Stokes
equations in the domain ri > 1, decaying at infinity, with the
index k indicating the number of reflections and with v0

i,0
satisfying the conditions (4) and (6) at ri = 1, while

v0
i,k+1 · n = −v0

j,k · n,

σ 0
i,k+1 : ns = −σ 0

j,k : ns, x ∈ �i, i �= j. (12)

It is easy to show that

v0 = − 1

r2
1

sin θ1 cos θ1 cos φer1

− 1

r2
2

sin θ2 cos θ2 cos φer2 + O

(
1

d3

)
, (13)

where er1 ,er2 are unit vectors with respect to spherical coordi-
nate systems in the direction of increasing r1,r2, respectively.
From (13) it may be concluded that the velocity field decays
as O(1/|x|2) at infinity, which is consistent with the argument
presented above (zero net force). Note that the generalization
of this method to a multiparticle case is straightforward.

C. Force exerted on bubbles at small Re

As mentioned above, the zeroth-order solution provides
no net force on the bubbles. Since the force exerted on each
inclusion by the flow is obviously determined by the stress
field in the vicinity of it, i.e., by the inner expansion, one can
conclude that this force is of O(Re),

Fi = Re
∮

�i

σ 1 · nd� + O(Re3/2), i = 1,2, (14)

where σ 1 results from the O(Re) problem; see (10). Ho and
Leal [12], who addressed the Segre Silberberg effect of lateral
migration of solid spherical particles embedded in shear flow
due to inertia effects at small Reynolds numbers, suggested
that it was not necessary to obtain a detailed solution of (10)
to calculate (14). Instead of constructing v1 and σ 1 explicitly,
they proposed to employ the well-known Lorentz reciprocal
theorem to obtain the leading-order term for the expansion of
the force in the form of a volume integral depending solely
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on v0 and σ 0. This approach is followed here to calculate the
force on the bubbles induced by the small inertia effect.

We define an auxiliary problem. Let u and τ be a solution
of

∇2u − ∇q = ∇ · τ = 0, ∇ · u = 0, x ∈ �,

u → 0 as |x| → ∞,

u · n = ez, τ : ns = 0, x ∈ �1,

u · n = −ez, τ : ns = 0, x ∈ �2, (15)

with ez being a unit vector along the z axis, i.e., the anticipated
departure direction of the bubbles. Application of the recip-
rocal theorem (see, e.g., Ho and Leal [12], Subramanian and
Koch [14], and Kim and Karrila [24]) to the fields v1,σ 1 and
u,τ results in∮

�1∪�2

n · σ 1 · ud� −
∮

�1∪�2

n · τ · v1d� =
∫

�

f · ud�, (16)

where f is the inhomogeneous part of the governing equation
(10), i.e.,

f = (v0 · ∇)v0 + (v∞ · ∇)v0 + (v0 · ∇)v∞. (17)

The identity (16) has been written assuming that the corre-
sponding surface integrals vanish at infinity and the volume
integral in its right-hand side is absolutely convergent. This is,
indeed, the case since the auxiliary velocity field u decays as
O(1/|x|2) for large |x|, because the bubbles are translating in
opposite directions and the O(1/|x|) terms cancel each other
at large distances, and the corresponding stress fields decays
as O(1/|x|3), while the disturbance velocity v1 is bounded at
infinity and the disturbance stress decays as O(1/|x|).

The second term in the left-hand side of (16) vanishes due
to the boundary conditions of zero tangential stress for the
auxiliary fields and zero normal disturbance velocity. The first
term in the left-hand side of (16) becomes∮

�1∪�2

n · σ 1 · ud� =
∮

�1

n · σ 1 · ud� +
∮

�2

n · σ 1 · ud�

=
∮

�1

n · σ 1 · ezd� −
∮

�2

n · σ 1 · ezd�,

(18)

i.e., it equals the sum of the force exerted by the flow v1,σ 1 on
bubble 1 in the direction of axis z, F 1, and the force exerted
on bubble 2 in the opposite direction. Due to the symmetry of
the problem, these two forces are equal. Hence,

F 1 = 1

2

∫
�

f · ud�, (19)

and the force exerted on bubble 1 in the direction of axis z, at
the leading order, is

F = ReF 1 = Re

2

∫
�

f · ud�. (20)

The calculation of the force on a bubble requires solu-
tion of two problems for the creeping flow: the one for
the zeroth-order expansion term v0,σ 0 and the other for
the auxiliary problem (15), u and τ . In order to solve the
latter, we adopt the two methods, namely the bispherical
coordinates system and method of reflections, as described

FIG. 5. Force exerted on the right bubble in a pair of bubbles
embedded in a simple shear flow. The solid curve is calculated by
making use of bispherical coordinates. Dashed and dashed-dotted
curves are calculated by use of the reflection method with the
accuracies O(1/d2) and O(1/d), respectively.

before. For the axisymmetric auxiliary solution, application
of the bispherical coordinate system follows the classical
approach for axisymmetric problems (see, e.g., Stimson and
Jeffrey [25]) and is not detailed here. The integral in (20)
is, consequently, evaluated numerically for any separation
distance, d, to satisfy the desired accuracy. Application of the
method of reflections to (15) provides the explicit expression
for the velocity

u =
[(

1 + 1

d
+ 1

d2

)(
1

r1
cos θ1er1 − 1

r2
cos θ2er2

− 1

2r1
sin θ1eθ1 + 1

2r2
sin θ2eθ2

)
+ 1

2d2

1

r2
1

(3 cos2 θ1− 1)er1

+ 1

2d2

1

r2
2

(3 cos2 θ2 − 1)er2 + O

(
1

d3

)]
. (21)

Thus, substituting (17) and (21) into (19) and performing
analytical integration results in

F 1 = 2π

9

(
1 + 1

d
− 4

5

1

d2

)
+ O

(
1

d3

)
. (22)

The forces calculated by the two methods are depicted
and compared in Fig. 5 where logarithmic scale is used
for d. Solid curve is calculated making use of bispherical
coordinates. Dashed and dashed-dotted curves are calculated
by the reflection method with the accuracy O(1/d2) and
O(1/d), respectively. It may be noted that at relatively
large separation distance, both methods estimate the force in
excellent agreement. Thus, for d > 5, the difference between
the “exact solution” computed via bispherical coordinates and
approximate ones calculated by the reflection method, with
the accuracy O(1/d) and O(1/d2), does not exceed 10% and
5%, respectively. For d > 20, the results of both variants of
reflection method are within 0.5% of the exact solution.

An immediate conclusion from the calculations presented
in Fig. 5 is that the force is of a repulsive nature and that it
decreases with the growth of the separation distance between
bubbles and, as this distance tends to infinity, it approaches a
nonzero limiting value, F 1 → 2π/9 ≈ 0.6981. Note, though,
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that these results are obtained under the assumption that
the bubbles share a common inner region, i.e., that the
distance between them does not exceed O(Re−1/2). Also, F 1 is
multiplied by the expansion parameter Re [see Eq. (20)]. The
larger the distance between the bubbles the smaller is Re for
which the two bubbles remain located in the mutual viscous
region. Note also that the situation that occurs when this effect
of weak inertia on the interaction of inclusions that share a
common inner (outer) region in a fluid does not vanish at large
separation is typical also for the interaction of particles settling
under gravity (see, e.g., Rosenstein and Leshansky [15] and the
literature cited therein for further examples). The contribution
of the outer region should be added to the above analysis in
order to render the calculation of the force complete. When the
separation, d � O(Re−1/2), a noninteracting model developed
in, e.g., Subramanian et al. [13] can be applied. Nevertheless,
as is discussed below, it is possible that the above analysis
of this section is sufficient for the study of the dynamics of
bubble interaction located on the center streamline in the core
of a vortex of the Couette device, where typical separations
between the bubbles are moderate and consideration of the
case d � O(Re−1/2) is not required.

III. BUBBLE DYNAMICS IN A COUETTE DEVICE

A. Simplified models

In order to apply the results of Sec. II C to the motion
of bubbles in a Couette-Taylor device, we formulate here
simplified models of the process. Consider N spherical bubbles
of unit radii located along a center closed streamline in a Taylor
vortex. Let l be the length of this streamline and ln be the
distance between bubbles n and n + 1. Note that if N bubbles
of unit radii are present it follows that l must be larger than
2N . The distance between bubbles 1 and N can be written as

lN = l −
N−1∑
n=1

ln (N � 2). (23)

The values ln change dynamically due to the repulsive force
experienced by bubbles embedded in the shear flow and the
drag felt by the bubbles during their relative motion. The
following assumptions are made in order to simplify the model

(i) Interaction is mostly due to the primary shear flow
that is considered unbounded in all directions. The effect
of the Taylor vortex in the experiment that keeps bubbles at
certain horizontal position in the experiment corresponds to
the absence of gravity in the model.

(ii) The primary flow is modeled by a unidirectional simple
shear, neglecting nonzero curvature of the streamlines. This
follows from the diminishingly small ratio of bubble to
streamline radii.

(iii) The velocity of translation of bubbles along the stream-
line connecting their centers results from a balance between
the repulsive force induced by the inertia in the shear flow and
the viscous resistance to this translation.

We consider three models of the process that differ in the
assumed mode of bubble interaction: (i) the nearest-neighbors
interaction model, (ii) the pairwise interaction model, and (iii)
the periodic model.

Model (i) assumes that each bubble interacts solely with its
nearest neighbors. Thus, following (22), it can be calculated
to O(1/d2). Model (ii) assumes the pairwise interaction, i.e.,
that each bubble interacts with every other bubble in the ring
as if the others are not present, with the resulting force on
each bubble being the sum of all forces resulting from these
pairwise interactions. This assumption is valid for relatively
large separations between the bubbles and with the accuracy
of O(1/d), with d denoting the minimal separation. Model
(iii) extends the number of pairwise interactions in model (ii)
by considering an infinite periodic structure. Thus, models (ii)
and (iii) assume that the repulsive force exerted on a bubble
in a simple shear flow due to the presence of another bubble
somewhere in the field separated by distance δ, contributes to
the total force,

F = ReF 1
1 (δ), F 1

1 (δ) = 2π

9

(
1 + 1

δ

)
+ O

(
1

δ2

)
. (24)

According to the assumptions of model (i), the force exerted
on the nth bubble by the shear flow equals Re[F 1(ln−1) −
F 1(ln)], where F 1 is defined in (22) and which is balanced by
the Stokes drag on this bubble calculated by taking into account
the presence of translating (n − 1)th and (n + 1)th bubbles.
Hence, the force balance on the bubbles has the form

R1,NUN + R1,1U1 + R1,2U2 = Re[F 1(lN ) − F 1(l1)],

Rn,n−1Un−1 + Rn,nUn + Rn,n+1Un+1

= Re[F 1(ln−1) − F 1(ln)], n = 2, . . . ,N − 1,

RN,N−1UN−1 + RN,NUN + RN,N+1UN+1

= Re[F 1(lN−1) − F 1(lN )], (25)

where Rn,m(n = 1, . . . ,N ; m = n − 1,n,n + 1) is the viscous
force exerted on the nth bubble by the Stokes flow induced by
the translational motion of the mth bubble with unit velocity
in the otherwise quiescent fluid in a three bubble (n − 1,n and
n + 1) configuration, and Un is the velocity of bubble n. Note
that the large separation limit of F 1 discussed in Sec. II C is
canceled on the right-hand side of (25) and, thus, has no effect
on the dynamics of bubbles.

Assume now that all the separations are larger than the
bubble diameters and are of the same order of magnitude (ln =
O(d),d 
 1,n = 1, . . . ,N). It follows from (22) that the right-
hand side of (25) contains the terms of O(1/d) and of O(1/d2)
since the O(1) terms cancel. In order to obtain Un with the
accuracy of O(1/d2), it is sufficient to have Rn,m with the
accuracy of O(1/d). The use of the reflection method results
in (see also Happel and Brenner [26])

Rn,n = −4π + O

(
1

d2

)
, Rn,n−1 = 4π

ln−1
+ O

(
1

d2

)
,

Rn,n+1 = 4π

ln
+ O

(
1

d2

)
, n = 2, . . . ,N − 1,

RN,1 = R1,N = 4π

lN
+ O

(
1

d2

)
,

R1,1 = RN,N = −4π + O

(
1

d2

)
. (26)
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According to models (ii) and (iii), the force balance on the nth bubble reads, respectively,

4πUn = Re

⎧⎨
⎩

N−1∑
k=n

⎡
⎣F 1

1

⎛
⎝k−1∑

j=0

ln+j

⎞
⎠ − F 1

1

⎛
⎝l −

k−1∑
j=0

ln+j

⎞
⎠
⎤
⎦ +

n−1∑
k=1

⎡
⎣F 1

1

⎛
⎝l −

k∑
j=1

lj

⎞
⎠ − F 1

1

⎛
⎝ k∑

j=1

lj

⎞
⎠
⎤
⎦
⎫⎬
⎭

= Re
2π

9

[
N−1∑
k=n

(
1∑k−1

j=0 ln+j

− 1

l − ∑k−1
j=0 ln+j

)
+

n−1∑
k=1

(
1

l − ∑k
j=1 lj

− 1∑k
j=1 lj

)]
, n = 1, . . . ,N, (27)

and

4πUn = Re
∞∑

m=1

⎛
⎝N−1∑

k=n

⎧⎨
⎩F 1

1

⎡
⎣(m − 1)l −

k−1∑
j=0

ln+j

⎤
⎦ − F 1

1

⎛
⎝ml −

k−1∑
j=0

ln+j

⎞
⎠
⎤
⎦

+
n−1∑
k=1

⎡
⎣F 1

1

⎛
⎝ml −

k∑
j=1

lj

⎞
⎠ − F 1

1

⎛
⎝(m − 1)l −

k∑
j=1

lj

⎞
⎠
⎫⎬
⎭
⎞
⎠

= Re
2π2

9l

⎡
⎣N−1∑

k=n

cot

⎛
⎝π

k−1∑
j=0

ln+j

l

⎞
⎠ −

n−1∑
k=1

cot

⎛
⎝π

k∑
j=1

lj

l

⎞
⎠
⎤
⎦ , n = 1, . . . ,N. (28)

Note that the consideration of a periodic structure results in a
considerable simplification of the expression (27).

The system of Eqs. (25), (27), and (28) can be solved with
respect to Un, resulting in

Un = ReG(k)
n (l1, . . . ,lN ), n = 1, . . . ,N, k = i,ii,iii, (29)

and the temporal evolution of ln is governed by

dln

dT
= Re
(k)

n (l1, . . . ,lN ), where 
(k)
n (l1, . . . ,lN )

= G
(k)
n+1(l1, . . . ,lN ) − G(k)

n (l1, . . . ,lN ), (30)

and with T denoting the time. Obviously
∑N

n=1 
(k)
n = 0, and,

hence,
∑N

n=1 ln is an integral of (30) that we use to reduce the
order of the system. For example, we consider the first (N − 1)
equations in (30) after substituting lN from (23). Finally, we
stretch the time by the Reynolds number, t = ReT and obtain
the following dynamic system:

dln

dt
= 
(k)

n

(
l1, . . . ,lN−1,l −

N−1∑
n=1

ln

)
,

n = 1,2, . . . ,N − 1, k = i,ii,iii, (31)

In the case of two bubbles system for model (i)
that corresponds to the nearest-neighbor interaction model,
(31) reduces to a single first-order ordinary differential
equation,

dl1

dt
= 


(i)
1 (l1,l − l1)

= 1

9

[
1

l1
− 1

l − l1
− 9

5l2
1

+ 9

5(l − l1)2

]
, (32)

where all the terms of the order �O(1/d3) in the right-hand
side are neglected. The pairwise interaction model (ii) results

in the equation

dl1

dt
= 


(ii)
1 (l1,l − l1) = 1

9

(
1

l1
− 1

l − l1

)
, (33)

whereas the periodic model (iii) leads to

dl1

dt
= 


(iii)
1 (l1,l − l1) = π

9l
cot

(
πl1

l

)
. (34)

Recall that the models are applied to the motion of two
bubbles of unit radii along the streamline of length l that
requires l 
 4. Under this condition, it follows from each
of equations (32), (33), or (34) that



(k)
1 (l1,l − l1) > 0 if l1 < l/2 and



(k)
1 (l1,l − l1) < 0 if l1 > l/2.

Hence, the smaller separation grows monotonically and the
larger one decreases monotonically with time. Also, all these
equations can be solved analytically. Thus solution of (32) and
(33) can be expressed as

t =
∫ l1

l1(0)

dζ


i
1 (ζ,l − ζ )

= 9

4

[
l2
1 − ll1 − l2

1(0) + ll1(0)
]

+ 729l

25l − 80
ln

∣∣∣∣ 9l − 5ll1 + 5l2
1

9l − 5ll1(0) + 5l2
1(0)

∣∣∣∣
− 45l3

8(5l − 36)
ln

∣∣∣∣ 2l1 − l

2l1(0) − l

∣∣∣∣ (35)

and

t = 9

4

[
l2
1 − ll1 − l1(0)2 + ll1(0)

] − 9l2

8
ln

∣∣∣∣ 2l1 − l

2l1(0) − l

∣∣∣∣,
(36)
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FIG. 6. Evolution of the minimum separation distance between
two bubbles for various lengths of the center streamline in the Couette
device, calculated following model (i) [Eq. (35)].

respectively. Analytical solution of (34) is

l1(t) = l

π
arccos

[
cos

(
π

l
l1(0)

)
exp

(
− π2

9l2
t

)]
. (37)

Obviously, for all three models, l1 → l/2 as t → ∞.
Note that Eqs. (32), (33), and (34) depend on a single

parameter l. Figure 6 shows the evolution of separation
distance between two bubbles for various streamline lengths
(l), i.e., l = 64π,83.87π,90π (the length 83.87π corresponds
to the experiments presented in the next subsection) computed
via nearest-neighbors interaction model (i).

It may be observed that, as expected, the relaxation time
increases with the length of streamline.

Equations (33) and (34) allow a transformation of variables
in the form

ζ1 = l1

l
, t1 = t

l2
, (38)

which eliminates the parameter l. Hence,

dζ1

dt1
= 


(ii)
1 (ζ1,1 − ζ1) = 1

9

(
1

ζ1
− 1

1 − ζ1

)
(39)

and

dζ1

dt1
= 


(iii)
1 (ζ1,1 − ζ1) = π

9
cot (πζ1) . (40)

Obviously, similar transformation for models (ii) and (iii) can
be made for any number of bubbles and, thus, one can conclude
that in the framework of these models and in view of (38), the
relaxation time grows with the relative length of the ring as l2.

In the case of three bubbles, all the models lead to systems of
two simultaneous autonomous ordinary differential equations.
For the nearest-neighbor interaction, model (i), using the
reflection method, we obtain

dl1

dt
= 


(i)
1 (l1,l2,l − l1 − l2)

= 1

18

(
2

l1
− 1

l2
− 1

l − l1 − l2
+ 1

l1l2
− 2

l2(l − l1 − l2)

+ 1

l1(l − l1 − l2)
+ 9

5l2
2

− 18

5l2
1

+ 9

5(l − l1 − l2)2

)
,

dl2

dt
= 


(i)
2 (l1,l2,l − l1 − l2)

= 1

18

(
2

l2
− 1

l1
− 1

l − l1 − l2
+ 1

l1l2
− 2

l1(l − l1 − l2)

+ 1

l2(l − l1 − l2)
+ 9

5l2
1

− 18

5l2
2

+ 9

5(l − l1 − l2)2

)
.

(41)

For the pairwise interaction model (ii), the equations are

dl1

dt
= 1

18

(
2

l1
− 2

l − l1
− 1

l2
+ 1

l − l2

+ 1

l1 + l2
− 1

l − l1 − l2

)
,

dl2

dt
= 1

18

(
2

l2
− 2

l − l2
− 1

l1

+ 1

l − l1
+ 1

l1 + l2
− 1

l − l1 − l2

)
, (42)

and for the periodic model (iii), the form is

dl1

dt
= π

18l

[
2 cot

(
πl1

l

)
− cot

(
πl2

l

)

+ cot

(
π (l1 + l2)

l

)]
,

dl2

dt
= π

18l

[
2 cot

(
πl2

l

)
− cot

(
πl1

l

)

+ cot

(
π (l1 + l2)

l

)]
. (43)

It is easy to see that in each of the systems (41), (42), or (43),
if l1 = l2 at some initial moment, then dl1/dt = dl2/dt and,
hence, l1 = l2 at any further time. An immediate corollary is
that if l1(0) > l2(0), then l1(t) > l2(t)∀t > 0. The same applies
to the pairs l1,l3 = l − l1 − l2 and l2,l3 = l − l1 − l2. Hence,
the initially shortest separation remains the shortest, and the
initially longest remains the longest.

It is interesting to see a phase plane (l1,l2) corresponding
to systems (41), (42), and (43). Note that only the domain
l1 > 2, l2 > 2, l1 + l2 < l − 2 corresponds to separate bubbles
and, thus, is physically relevant. In Fig. 7 the trajectories
corresponding to models (i) and (ii) are shown by solid and
dotted lines, respectively. Trajectories corresponding to model
(iii) are visibly indistinguishable from the dotted lines. The
phase plane (l1,l2) has a singular point l1 = l2 = l/3 and three
singular lines (trajectories), l2 = l1 = l/3, l2 = l − 2l1, and
l2 = (l − l1)/2, which intersect at the singular point and divide
the phase plane into six subdomains, as shown in Fig. 7. Any
trajectory that starts inside one of these subdomains remains
there at any moment of time. In Fig. 7, it is also evident that the
shortest separation distance approaches the equilibrium value
l/3 monotonically and no overshooting takes place. Similarly,
the longest separation monotonically decreases and exhibits no
undershooting. However, for certain initial conditions, the third
separation exhibit nonmonotonic behavior and undershooting
of the equilibrium value denoted by the dashed lines.
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For the particular solutions along the singular line l1 = l2,
the systems (41), (42), and (43) reduce finally to

dl1

dt
= 


(i)
1 (l1,l1,l − 2l1)

= 1

18

(
1

l1
− 1

l − 2l1

)(
1 − 4

5l1
− 9

5

1

l − 2l1

)
, (44)

dl1

dt
= 1

18

(
3

l1
− 1

l − l1
− 1

l − 2l1

)
, (45)

and

dl1

dt
= π

18l

[
cot

(
πl1

l

)
+ cot

(
2πl1

l

)]
. (46)

The analytical integration of Eq. (44) provides

t = 2l1(3l1 − l) − 6

5
l1 + 9

50

ln |4 l − 5 ll1 + l1 + 10 l1
2|

5 l − 39
(565l − 13) − 10l3

3

ln |3 l1 − l|
5 l − 39

− tanh−1

(
20 l1 − 5 l + 1√
25 l2 − 170 l + 1

)
9√

25 l2 − 170 l + 1

(1225l2 − 1670l + 13)

25 (5 l − 39)
− h1(0), (47)

where h1(0) is given by

h1(0) = 2l1(0)(3l1(0) − l) − 6

5
l1(0) + 9

50

ln |4 l − 5 ll1(0) + l1(0) + 10 l1(0)2|
5 l − 39

(565l − 13)

− tanh−1

[
20 l1(0) − 5 l + 1√
25 l2 − 170 l + 1

]
9√

25 l2 − 170 l + 1

(1225l2 − 1670l + 13)

25 (5 l − 39)
− 10l3

3

ln |3 l1(0) − l|
5 l − 39

.

Equation (45) can be integrated to yield

t = 3l2
1 − 5

2
ll1 − 3l2

1(0) + 5

2
ll1(0)

− 27

40
ln

∣∣∣∣ 4l1 − 3l

4l1(0) − 3l

∣∣∣∣ − 8

15
ln

∣∣∣∣ 3l1 − l

3l1(0) − l

∣∣∣∣, (48)

FIG. 7. (Color online) Phase planes: Trajectories calculated by
the systems (41) and (42) are shown by solid and dotted lines,
respectively, for the streamline length l = 66.67π .

and the analytical solution of (46) is

l1(t) = l

2π
arccos

{
[2 cos (2πl1(0)) + 1] exp

(− 2π2

9l2 t
) − 1

2

}
.

(49)

Similar analytical expressions can be obtained for the particu-
lar cases l2 = l − 2l1 and l2 = (l − l1)/2.

Two other examples of the time evolution of separation
distances in three bubbles case with l = 66.67π , obtained via
numerical simulation of (41), (42), and (43), are given in Fig. 8.
Solid, dashed, and dashed-dotted lines are computed making
use of models (i), (ii), and (iii), respectively. In Figs. 8(a),
8(c), and 8(e) the evolution curves are computed for the
initial conditions, l1(0) = 3, l2(0) = 65, while in Figs. 8(b),
8(d), and 8(f) the initial conditions are l1(0) = 3, l2(0) = 80.
Evolution of the shortest separation is depicted in Figs. 8(a)
and 8(b) and the evolution of the longest one is shown in
Figs. 8(e) and 8(f). Here, again, in all the cases the approach
to equilibrium of the shortest and longest separations are
monotonic and exhibit no overshooting or undershooting.
The intermediate separation distance, however, is typically
nonmonotonic and can actually undershoot the equilibrium
separation distance [see Fig. 8(d)] as is also evident in the
phase plane (Fig. 7). One can see that the three models give
qualitatively similar behavior of the evolution of the separation
distances. However, as can be anticipated, the relaxation
time according to the nearest-neighbors interaction model
is higher than that those computed according to the other
two models.

According to the nearest-neighbors interaction model (i),
the evolution of separation distances in cases of more than
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(a) (b)

(c) (d)

(e) (f)

FIG. 8. Examples of the time evolution of separation distances among three bubbles: (a) and (b) correspond to the shortest, (c) and (d) to
the intermediate, (e) and (f) to the longest separation distances.
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(a) (b)

(c) (d)

FIG. 9. Examples of the time evolution of separation distances among four bubbles: (a) and (d) correspond to minimal and maximal
separation distances, respectively. (b) and (c) correspond to initial intermediate separation distances.

three bubbles is governed by

dln

dt
= 
n

(
l1, . . . ,lN−1,l −

N−1∑
k=1

lk

)

= 1

18

(
2

ln
− 1

ln−1
− 1

ln+1
− 1

ln−2ln−1
+ 1

ln−1ln
+ 1

lnln+1

− 1

ln+1ln+2
+ 9

5l2
n−1

− 18

5l2
n

+ 9

5l2
n+1

)
,

n = 1, . . . ,N − 1, (50)

where l−1 = lN−1,lN+1 = l1 and l0 = lN = l − ∑N−1
k=1 lk . Sim-

ilar expressions corresponding to models (ii) and (iii) follow
from Eqs. (29) and (31).

In the case of four bubbles, if at some moment there are
two pairs of equal adjacent intervals between the bubbles,
say l1 = l2 while l3 = l4 = (l − 2l1)/2 at some moment, then
dl1/dt = dl2/dt and dl3/dt = dl4/dt and, hence, l1 = l2 and

l3 = l4 = (l − 2l1)/2 at any time. In this case, again, system
(50) is reduced to a single ordinary differential equation on
l1 that can be integrated analytically. This applies to all three
models.

An example of the evolution of separation distances in
the case of four bubbles having unequal separations is
presented in Fig. 9, where l = 66.67π , l1(0) = 15, l2(0) = 75,
l3(0) = 55. Solid, dashed, and dashed-dotted lines are com-
puted making use of models (i), (ii), and (iii), respectively.
Minimal and maximal separation distances among four bub-
bles are presented in Figs. 9(a) and 9(d), respectively, while the
intermediate separations are shown in Figs. 9(b) and 9(c). Here
in all the cases, the approach to equilibrium of the shortest and
longest separations are monotonic and exhibit no overshooting
or undershooting phenomena. However, the intermediate
separation distance may undershoot the equilibrium separation
distance as depicted in Figs. 9(b) and 9(c). As in the case
of three bubbles, all three models show qualitatively similar
dynamics of the bubbles, with the longest relaxation time
corresponding to model (i).

043002-11



PRAKASH, LAVRENTEVA, BYK, AND NIR PHYSICAL REVIEW E 87, 043002 (2013)

B. Experimental results

An experimental study of the interaction of air bubbles in
a mineral oil, captured by steady Taylor vortices in a Couette
device, was performed in a setup that consists of a stationary
outer cylinder of radius Rout = 3.2 cm and a concentric rotating
inner cylinder of radius Rin = 2 cm, which provided a uniform
gap width of 1.2 cm. A microsyringe pump attached to a teflon
microtube drives air through a needle in order to generate
uniform bubbles. The diameter of the bubbles was determined
by the volume of the injected air and, in these experiments,
was of O(1 mm). More details about the experimental setup
and procedure can be found in Byk et al. [4].

It was demonstrated that the dynamics of the bubbles exhibit
two different time scales: The short one (of the order of 1 min)
is the time required for a bubble to be trapped by a vortex,
preventing it from rising due to buoyancy. The redistribution of
the bubbles along the center streamline of the vortex, that is, of
the primary interest of the current research, takes much longer
[O(10–100 min)], especially for a low number of injected bub-
bles. At a certain range of rotation velocity, during the longer
time scale, equal-size bubbles are repulsed from each other and
eventually assume an ordered ring with equal separation dis-
tances among all neighbors. The equilibrium configurations for
various numbers of bubbles were shown in Fig. 1. The bubbles
in the ring move with equal velocities. This quasistationary
structure exists for a long time and appears to be stable.

Several results depicting the evolution of an arbitrary initial
distribution to the established uniform ring, depending on the
number of injected bubbles, together with evolution predicted
by the theoretical models are presented in Figs. 10–12. The
dynamics follow the evolution of the initial minimal separation
distance among bubbles which is the most remote from the
equilibrium separation at all time.

In Figs. 10(a) and 11(a), the measured minimum separation
distance between bubbles of radii a = 0.78 mm in a fluid
of viscosity μ = 30 cp and density ρ = 0.88 g/cm3 is plotted
versus time for the cases of three and four bubbles, respectively.
The separation was measured along the center streamline. The
angular velocity of the inner cylinder in these experiments
was � = 396 rpm corresponding to bubble Reynolds number
Re = 2πρ�Rina

2/μ(Rout − Rin) ∼ 1.23 in the shear flow.
The three overlapping curves in Figs. 10(a) and 11(a)

correspond to different experimental runs under the same
experimental conditions and, thus, demonstrate that the large-
time-scale behavior is reproduced for different arbitrary initial
conditions. One can see that, after a relatively short period
of nonmonotonic behavior [negative time in Figs. 10(a) and
11(a)] varying from run to run, which probably depends on
the initial location of the bubbles in the vortex, the curves
merge to a single monotonically growing one that tends to the
value corresponding to the equilibrium symmetric distribution
of bubbles in the ring. The higher the number of bubbles
in the ring, the shorter the relaxation time. This leads to
the assumption that the interaction of the bubbles results in
some repulsive force, decaying with the separation distance,
which is in a qualitative agreement with characteristics of the
inertia-induced force calculated in the previous section.

The comparison of the experimental observations and the
theoretical predictions for three and four bubbles is presented
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FIG. 10. (Color online) Evolution of minimum separation dis-
tance among three bubbles with radii a = 0.78 mm in a fluid having
viscosity μ = 30 cp, density ρ = 0.88 g/cm3, and angular velocity
� = 396 rpm. (a) Various markers in the figure correspond to various
experimental runs. (b) Markers correspond to experiment 8. Solid,
dashed, and dashed-dotted lines are computed via models (i), (ii),
and (iii), respectively.

in Figs. 10(b) and 11(b), respectively. Markers in these figures
correspond to experiments 8 and 12, respectively. Solid,
dashed, and dashed-dotted lines are computed via models
(i), (ii), and (iii), respectively. To translate the dimensionless
theoretical results into dimensional ones, we take into account
that the length and time were scaled by the radius of the bubble
a and by 1/(ReG), respectively, where 1/G = (Rout − Rin)/
2π�Rin ∼ 2.4 × 10−4 min. Note that the time scale for the
evolution of the bubbles distribution is related to the above by a
factor of (L/a)2 [see also Eqs. (39) and (40)], L being a typical
dimensional translation distance. In the case of three bubbles,
computations presented in Fig. 10(b) were performed for the
initial conditions l1(0) = l2(0) = 10, while for the four-bubble
case presented in Fig. 11(b), the initial conditions were taken
as l1(0) = 3, l2(0) = l3(0) = 45. A variation of the initial
conditions for l2 and l3 show that the dynamics of evolution
of the shortest separation distance, l1, is relatively insensitive
to the former values. One can see that in the cases of three
and four bubbles all three models provide similar results that
qualitatively agree with the experimental observations. Model
(i) evidently overestimates the relaxation time compared to the
experimental observation, while the other two model’s results
are remarkably close to the experiment.
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FIG. 11. (Color online) Evolution of minimum separation dis-
tance between four bubbles with radii a = 0.78 mm in a fluid
having viscosity μ = 30 cp, density ρ = 0.88 g/cm3, and angular
velocity � = 396 rpm. (a) Various markers in the figure correspond to
various experimental runs (Byk et al. [4]). (b) Markers correspond to
experiment 12. Solid, dashed, and dashed-dotted lines are computed
via models (i), (ii), and (iii), respectively

The dynamics of two bubbles in viscous fluid in a Couette
device at various values of velocity of rotation is illustrated
in Fig. 12(a), where we follow the evolution of a chosen
(initially minimal) separation. The Reynolds numbers at the
bubble scale in these experiments vary from 0.63 to 1.0, thus,
being again of �O(1).

A comparison of the experimental observations and the the-
oretical predictions for two bubbles is presented in Fig. 12(b).
Markers in this figure correspond to experiment 4, while
solid, dashed, and dashed-dotted lines are computed via
models (i), (ii), and (iii), respectively, with initial condition
l1 = 10 [the results obtained via model (i) in this case are
almost indistinguishable from those by model (ii) in view of
Eqs. (32) and (33)]. To translate the dimensionless results we
take into account that the length and time were scaled by the
radius of the bubble a and by 1/(ReG), respectively, where
1/G = (Rout − Rin)/2π�Rin ∼ 2.5 × 10−4 min.

Here, again, a good agreement of experimental and theo-
retical results is observed, especially at the advanced stages
of the process. However, several effects observed in the
experiments are not reflected by the theoretical models. The
experimental study suggests that for the two-bubble case
the relaxation time increases with the growth of the angular
velocity. It also reports that at high-enough angular velocity
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FIG. 12. (Color online) Evolution of the initial minimum sep-
aration distance between two bubbles with radii a = 0.62 mm in
a fluid having viscosity μ = 30 cp and density ρ = 0.88 g/cm3.
(a) Various markers are measured in the experiments with various
angular velocities. (b) Markers correspond to experiment 4. Solid,
dashed, and dashed-dotted lines are computed via models (i), (ii),
and (iii), respectively.

the repulsive nature of the force may reverse and the bubbles
would tend to be attracted to each other and eventually coalesce
[experiments 1 and 2 in Fig. 12(a)]. Another interesting result
obtained for the two-bubble case is that the evolution of
the separation distance may not be monotonic (experiments
4 and 5), and an overshoot of the equilibrium separation is
observed (experiment 6). These effects may be due to the fact
that when the bubbles are injected into the Taylor vortices
they approach the center streamline with a different pace,
particularly for different G. In the theoretical analysis the
bubbles are assumed on the same streamline and, therefore,
an overshoot in equilibrium separation or reversal of the
bubble motion are not predicted. Our hypothesis is that these
complicated types of behavior are associated with bubbles
positioned on different streamlines having different angular
velocity. Such a deviation from the middle streamline may
be caused by gravitational effect or lateral departure due to
increased inertia at relatively lower or higher angular velocity,
respectively.

IV. CONCLUSIONS

In this paper, we used the reciprocal theorem to calculate
the inertia-induced forces on two identical spherical bubbles
in a simple shear flow at a small but finite Reynolds number.
This force was shown to be of a repulsive nature and was
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further employed to model the dynamics of air bubbles
injected into a viscous fluid sheared in a Couette device that
experiences the first shear flow instability where the bubbles
are trapped inside a stable Taylor vortex.

Three simplified models of such dynamics are suggested:
The first assumes that each bubble interacts solely with its
nearest neighbors, the second takes into account pair-wise
interactions among all the bubbles in the ring, and the third
one models the ring by a periodic line of bubbles. We
hypothesize that the experimentally observed ordering of the
bubbles is due to their inertial interaction in a primary shear
flow. The application of the models results in systems of
ordinary differential equations describing the evolution of the
separations among the bubbles.

It was shown that, according to all of the three suggested
models, the inertial interaction among the bubbles in the
primary shear flow drives them away from each other and,
as a result, equal-size bubbles eventually assume an ordered
string with equal separation distances among all neighbors.
The relaxation time decreases with the growth of the number
of the bubbles.

We report also on experiments showing the dynamic
evolution of minimal separation distance for various numbers
of bubbles and compare this to the results of computations.
The Reynolds numbers in these experiments were of the
order 1, while the developed theory assumes small values
of Re. Nevertheless, the results computed according to all
the models are in good agreement with the experimental
observations, i.e., they describe the main effect of approaching
the equilibrium position and provide a good measure of the
evolution relaxation time. The nearest-neighbors interaction
model overestimates the relaxation time, especially with the
relatively high number of bubbles in the ring. The results of the
other two models are very close to each other and reproduce
the experimental dynamics of the minimal separation
distance remarkably good. However, neither the overshooting
of the equilibrium separation, nor the reversal of the effect that
were observed in several experimental runs at various rotation
velocities with two bubbles, is reproduced. Our models
predict interesting nonmonotonic evolution of separation
distances for cases involving more than two bubbles that was
not reported in the experimental study, which focused on the
minimum separation distance.
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ξ α
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ξ
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ξ α

η π
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FIG. 13. Schematics of bispherical coordinate system.
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APPENDIX: BISPHERICAL COORDINATES

Consider the bispherical coordinate system connected with
the two bubbles of radii unity as shown in Fig. 13 and linked
with the cylindrical system (ρ,z,φ) by the following relation:

ρ = c sin η

cosh ξ − cos η
, z = c sinh ξ

cosh ξ − cos η
, φ = φ, (A1)

where −∞ < ξ < ∞, 0 � η � π , and 0 � φ � 2π and c is
related to the distance between the centers of bubbles and d

by c = 1
2

√
d2 − 4. The interface of bubble 1 is described by

the coordinate surface ξ = α > 0 and the interface of bubble
2 corresponds to ξ = −α > 0, where α is a constant given by
α = sinh−1(c).

The link provided by Eq. (A1) between bispherical and cylindrical coordinates allows one to derive the solution to Laplace
equation in terms of the former from the latter. The dimensionless Stokes equations given in (9) in component form in cylindrical
coordinates together with mass conservation are

(
∇2 − 1

ρ2

)
v0

ρ − 2

ρ2

∂v0
φ

∂φ
= ∂p0

∂ρ
,

(
∇2 − 1

ρ2

)
v0

φ + 2

ρ2

∂v0
ρ

∂φ
= 1

ρ

∂p0

∂φ
, ∇2v0

z = ∂p0

∂z
,

∂v0
ρ

∂ρ
+ 1

ρ
v0

ρ + 1

ρ

∂v0
φ

∂φ
+ ∂v0

z

∂z
= 0.

(A2)

Following Lin, Lee, and Sather [20], the pressure and velocity components are of the form

p0 = 1

c

∞∑
n=1

(cosh ξ − cos η)1/2

[
A0

−1n cosh

(
n + 1

2

)
ξ + B0

−1n sinh

(
n + 1

2

)
ξ

]
P 1

n (cos η) cos φ, (A3)
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v0
ρ = 1

2
(cosh ξ − cos η)1/2

[
sin η

cosh ξ − cos η

∞∑
n=1

B0
−1n sinh

(
n + 1

2

)
ξP 1

n (cos η)

+
∞∑

n=0

B−1
−1n sinh

(
n + 1

2

)
ξPn(cos η) +

∞∑
n=2

B1
−1n sinh

(
n + 1

2

)
ξP 2

n (cos η)

]
cos φ, (A4)

v0
z = 1

2
(cosh ξ − cos η)1/2

[
sinh ξ

cosh ξ − cos η

∞∑
n=1

B0
−1n sinh

(
n + 1

2

)
ξP 1

n (cos η) + 2
∞∑

n=1

A0
−1n cosh

(
n + 1

2

)
ξP 1

n (cos η)

]
cos φ,

(A5)

v0
φ = −1

2
(cosh ξ − cos η)1/2

[ ∞∑
n=0

B−1
−1n sinh

(
n + 1

2

)
ξPn(cos η) −

∞∑
n=2

B1
−1n sinh

(
n + 1

2

)
ξP 2

n (cos η)

]
sin φ, (A6)

where A0
1n, B0

−1n, B−1
−1n, and B1

−1n are unknown constants to be determined from the boundary conditions and Pn = P 0
n , P 1

n , and
P 2

n are associated Legendre polynomials of degree n and order 0, 1, 2, respectively. In (A3)–(A6) symmetry and antisymmetry
of the flow field with respect to ξ were taken into account.

In order to determine the unknown constants A0
1n, B0

−1n, B−1
−1n, and B1

−1n, the expressions (A3)–(A6) are substituted into the
equation of continuity and boundary conditions (4) and (6). The relations among associated Legendre polynomials then are used
to express both sides of the obtained equations in terms of P 1

n . These equations are, thus, reduced to an infinite system of linear
algebraic equations on the coefficients

5B0
−1n − (n − 1)B0

−1n−1 + (n + 2)B0
−1n+1 − 2B−1

−1n + B−1
−1n−1 + B−1

−1n+1 + 2(n − 1)(n + 2)B1
−1n − (n − 1)(n − 2)B1

−1n−1

− (n + 2)(n + 3)B1
−1n+1 + 2(2n + 1)A0

−1n − 2(n − 1)A0
−1n−1 − 2A0

−1n+1 = 0, n = 1, . . . ,∞. (A7)

(n − 1)

(2n − 1)
B0

−1n−1 sinh

(
n − 1

2

)
α + (n + 2)

(2n + 3)
B0

−1n+1 sinh

(
n + 3

2

)
α − 1

(2n − 1)
B−1

−1n−1 sinh

(
n − 1

2

)
α

+ 1

(2n + 3)
B−1

−1n+1 sinh

(
n + 3

2

)
α

(n − 1)(n − 2)

(2n − 1)
B1

−1n−1 sinh

(
n − 1

2

)
α − (n + 2)(n + 3)

(2n + 3)
B1

−1n+1 sinh

(
n + 3

2

)
α

−2A0
−1ncosechα cosh

(
n + 1

2

)
α + 2(n − 1)

(2n − 1)
A0

−1n−1 coth α cosh

(
n − 1

2

)
α

+2(n + 2)

(2n + 3)
A0

−1n+1 coth α cosh

(
n + 3

2

)
α = 4

√
2c coth α

(2 n + 3)(2 n − 1)

{
(n + 2)(2 n − 1) exp

[
−
(

n + 3

2

)]
α

+ (n − 1)(2 n + 3) exp

[
−
(

n − 1

2

)]
α − (2 n + 3)(2 n − 1)sechα exp

[
−
(

n + 1

2

)]
α

}
, n = 1, . . . ,∞. (A8)

(n − 1)

(2n − 1)
B−1

−1n−2cosechα cosh

(
n − 3

2

)
α + 1

(2n − 1)
h−1

−1n−1B
−1
−1n−1

− (2n + 1)

(2n + 3)(2n − 1)
B−1

−1ncosechα cosh

(
n + 1

2

)
α − 1

(2n + 3)
h−1

−1n+1B
−1
−1n+1

+ (n + 2)

(2n + 3)
B−1

−1n+2cosechα cosh

(
n + 5

2

)
α − (n − 1)(n − 2)(n − 3)

(2n − 1)
B1

−1n−2cosechα cosh

(
n − 3

2

)
α

+ (n − 1)(n − 2)

(2n − 1)
h1

−1n−1B
1
−1n−1 + 3(n − 1)(n − 2)(2n + 1)

(2n + 3)(2n − 1)
B1

−1ncosechα cosh

(
n + 1

2

)
α

− (n + 2)(n + 3)

(2n + 3)
h1

−1n+1B
1
−1n+1 + (n + 2)(n + 3)(n + 4)

(2n + 3)
B1

−1n+2cosechα cosh

(
n + 5

2

)
α = 0, (A9)
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where

h−1
−1n =

[
3 sinh

(
n + 1

2

)
α − (2n + 1) coth α cosh

(
n + 1

2

)
α

]

h1
−1n =

[
3 sinh

(
n + 1

2

)
α + (2n + 1) coth α cosh

(
n + 1

2

)
α

]
, n = 1, . . . ,∞

(n − 1)(n − 2)

2 (2 n − 3) (2 n − 1)

[
B−1

−1n−3 − (n − 3)B0
−1n−3 − (n − 3)(n − 4)B1

−1n−3 + 2(n − 3)A0
−1n−3

]
×

[
sinh

(
n − 5

2

)
α − coth α cosh

(
n − 5

2

)
α

]
+ (n − 1)(n − 2)

2(2n − 1)(2n − 3)
cosh α
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[

(2n − 5) sinh

(
n − 3

2

)
α − (2n − 3) coth α cosh

(
n − 3

2
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α

]
B0

−1n−2 − (n − 1)

2(2n − 1)(2n + 3)(2n − 3)
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(2n3 − 5n2 − 6n + 18) sinh
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n − 1

2
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n − 1

2

)
α
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B0

−1n−1

+ 1

(2n − 1)(2n − 3)
cosh α
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3 sinh

(
n + 1

2

)
α + n(n + 1)(2n + 1) coth α cosh

(
n + 1

2

)
α
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B0

−1n

+ (n + 2)

2(2n − 1)(2n + 3)(2n + 5)

[
(2n3 + 11n2 + 10n − 17) sinh
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2
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(
n + 3

2

)
α

]

×B0
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(2n + 7) sinh
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2
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2
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α
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2
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2

)
α

]
− 1

2(2n − 1)(2n + 3)(2n − 3)

×
[

(2n3 + 5n2 − n − 15) sinh
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2
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2

)
α
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− (2n + 3)(5n2 + 13n − 10) coth α cosh
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(A10)

This system is truncated at some large N and is solved numerically using MATLAB. The accuracy is checked by repeating the
procedure at 2N and comparing the results.
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