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Mode competition in cylindrical flows driven by sidewall oscillations
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The transition from a two-dimensional to three-dimensional flow in systems with spatial O(2) symmetry and
spatiotemporal Z2 symmetry happens in many fluid systems, like wakes or periodically forced flows. In most of
these systems, the dynamics after the first bifurcation is very complex and involves cascades of bifurcations in
a very narrow parameter range. A numerical study of a flow in an enclosed cylindrical cavity driven by axial
oscillations of the sidewall, which allows a detailed study of the secondary bifurcations and the corresponding
mode interactions, is presented. The study focuses on a codimension-2 point that acts as the organizing center
of the dynamics for moderate values of the forcing frequency. The unraveled dynamics is very rich, including
slow-fast dynamics and hysteresis, and may help understand the bifurcation cascades in more complex systems.
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I. INTRODUCTION

The transition from two-dimensional to three-dimensional
flows is of fundamental interest in fluid dynamics. The term
two-dimensional refers to flows whose velocity field only
possesses two components that solely depend on the corre-
sponding two coordinates in a convenient coordinate system.
Planar two-dimensional flows, like the Von Kármán vortex
street, or axisymmetric flows with zero azimuthal velocity are
examples of such two-dimensional flows. The time-periodic
Kármán vortex street and other bluff-body wakes are invariant
in the spanwise direction to both translations and reflections,
thus generating the O(2) symmetry group. Furthermore, these
flows have an additional space-time symmetry: a reflection
about the wake centerline followed by a half-period temporal
evolution. In several wake flows, two distinct synchronous
modes that break into the spanwise direction (with real Floquet
exponent) have been observed experimentally [1–4], computed
as direct instabilities from the flow [2,5–8], and studied
theoretically [9–11]. These modes are associated with breaking
or preserving the spatiotemporal symmetry. Unfortunately,
wake flows can only be studied in terms of a single control
parameter; therefore, only one of both synchronous modes
can be observed at onset, the other one appearing at secondary
bifurcations in the form of mixed modes or complex time-
dependant flows. Additionally, there are instabilities of the
basic periodic flow with complex Floquet multipliers, resulting
in quasiperiodic flows, which may also appear in secondary
instabilities.

In order to better understand the three-dimensional bi-
furcated modes, other fluid problems with the same sym-
metry group [spatial O(2) symmetry and spatiotemporal Z2

symmetry] have been studied. These problems possess more
governing parameters, and by a convenient selection of them,
the different modes appear at the first bifurcation. One of
these problems is the flow in a rectangular cavity driven by
the periodic oscillation of one wall [11–15]. In this case,
both the synchronous and the quasiperiodic modes have been
obtained and analyzed experimentally and numerically as the
primary bifurcation for different control parameters. However,
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as in many wake scenarios, the spanwise direction is not truly
periodic but of infinite extent. By expanding in Fourier series,
this flow can be made periodic, but the wave number varies
continuously, resulting in a continuum of bifurcating modes
that interact in a complex manner. Moreover, the presence
of end walls in the spanwise direction, no matter how far
apart, modifies the properties of the pure periodic modes [15].
Therefore, it would be very convenient to have a flow with
the mentioned symmetries and the SO(2) symmetry fulfilled
exactly. Axisymmetric bluff body wakes are an option, like
the flow past a ring [16,17]. Unluckily, in this setting the
spatiotemporal symmetry is only satisfied in the limit of zero
curvature, and the effects of the broken symmetry result in
the presence of subharmonic modes that are absent in the
presence of the exact symmetry. Similar phenomena occurred
in the wakes produced in a square cylinder that has been rotated
about its axis [18]. A periodically driven annular cavity solves
this issue and has been considered in Ref. [8]. This case is
a continuous deformation of the planar driven cavity flow
in the sense that the infinite spanwise direction becomes a
periodic angular direction. The curvature of the annulus in
conjunction with the Reynolds number determines the first
mode to become unstable. It is found that even very near
the onset of three-dimensional instabilities, the dynamics are
dominated by a variety of mixed modes with complicated
spatiotemporal structures. Even though the latter problem has
the correct symmetries and it is possible to select which one
of the three-dimensional modes becomes unstable first, the
complexities of the dynamics and the mode interactions right
from the onset do not allow a detailed analysis of the bifurcated
modes and their interactions. This phenomenon is attributed
to the fact that the azimuthal wave numbers of the bifurcated
solutions are large, so there are many modes bifurcating in a
very narrow parameter range, rendering it impossible to follow
the cascade of secondary bifurcations taking place.

In the present study, a problem with the same symmetries
such that the azimuthal wave numbers of the bifurcated
solutions are small, has been suitably selected. The system
consists of a fluid confined in a finite cylinder, driven by axial
oscillations of the sidewall. The linear stability analysis of
this flow [19] revealed that by an appropriate selection of the
forcing frequency both the synchronous and the quasiperiodic
modes could be obtained, and three codimension-2 points
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where two of these different modes bifurcate simultaneously
have been found. These codimension-2 points act as orga-
nizing centers of the dynamics, and detailed analysis of the
bifurcations and mode interactions around one of this points is
presented here, revealing very rich dynamics, including differ-
ent symmetry-breaking bifurcations, hysteresis, and slow-fast
dynamics associated with heteroclinic cycles.

II. BACKGROUND

The system under consideration is a Newtonian fluid of
kinematic viscosity ν enclosed in a cylindrical cavity of radius
R and height h, whose lateral wall oscillates harmonically in
the axial direction, with period τ and maximum axial velocity
Vmax, while the top and bottom lids remain at rest, as shown
schematically in Fig. 1. The radius R and the viscous time
R2/ν are the length and time scales, respectively. The system
is governed by three independent nondimensional parameters
(�,Re,St). The aspect ratio � = h/R describes the cylinder
geometry and, in the current study, it is kept fixed to � = 2. The
Reynolds number Re = VmaxR/ν measures the amplitude of
the forcing, while the Stokes number St = R2/ντ is the inverse
of the nondimensional forcing period, T1 = 1/St. The flow is
governed by the nondimensional Navier-Stokes equations

(
∂

∂t
+ u · ∇

)
u = −∇p + ∇2u, ∇ · u = 0, (1)

where u = (u,v,w) is the velocity field in cylindrical coor-
dinates (r,θ,z) ∈ [0,1] × [0,2π ] × [−�/2,�/2], and p is the
kinematic pressure. The vorticity associated to the velocity
field is ∇ × u = (ξ,η,ζ ). No-slip velocity boundary condi-
tions are used on all walls:

u(r,θ,±�/2,t) = (0,0,0),
(2)

u(1,θ,z,t) = (0,0,Re sin(2πt/T1)).

The governing equations have been solved using a second-
order time-splitting method, with spectral spatial discretiza-
tion, described in detail in Refs. [19,20].

The governing equations and boundary conditions are
invariant under the following spatial and spatiotemporal
symmetries:

Kβ(u,v,w)(r,θ,z,t) = (u,−v,w)(r,2β − θ,z,t), (3a)

Rα(u,v,w)(r,θ,z,t) = (u,v,w)(r,θ + α,z,t), (3b)

H (u,v,w)(r,θ,z,t) = (u,v,−w)(r,θ,−z,t + T1/2), (3c)

for any angles α and β. Kβ is the reflection about the
meridional plane θ = β, and Rα is the rotation of angle α

about the cylinder axis. Kβ and Rα do not commute (KβRα =
R−αKβ) and generate the group O(2) acting on the periodic
azimuthal θ direction. H consists of a reflection about the
midplane z = 0 together with a half-forcing-period evolution
in time. This transformation commutes with O(2) and, acting
on the governing equations, its square H 2 is the identity.
Therefore, the complete symmetry group of the problem is
O(2) × ZST

2 . The action of these symmetries on the vorticity is
given by

Kβ(ξ,η,ζ )(r,θ,z,t) = (−ξ,η,−ζ )(r,2β − θ,z,t), (4a)

Rα(ξ,η,ζ )(r,θ,z,t) = (ξ,η,ζ )(r,θ + α,z,t), (4b)

H (ξ,η,ζ )(r,θ,z,t) = (−ξ,−η,ζ )(r,θ,−z,t + T1/2). (4c)

As a consequence, the basic flow, which possesses all the
symmetries of the problem, is always axisymmetric and time
periodic, synchronous with the forcing. The axial oscillations
of the cylinder sidewall produce periodic Stokes-type bound-
ary layers on the oscillating wall. These layers collide with the
end walls to form rollers; they are formed every half-period
alternately on each end wall. These alternating rollers can be
observed in Figs. 1(a) and 1(b), where isosurfaces of axial
velocity w half-period apart are plotted. The axial velocity is
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FIG. 1. (Color online) Schematic of the apparatus. Panels (a) and (b) display the base state, synchronous and axisymmetric, half a forcing
period apart, exhibiting the space-time symmetry H . Translucent isosurfaces of axial velocity show the rollers alternating at the end walls, and
the sidewall boundary layer. Panel (c) is a snapshot of a synchronous B1 bifurcated state. Solid isosurfaces of axial vorticity show the braid
structures associated with three-dimensional instabilities of the rollers. Dark and light (red and yellow online) isosurfaces indicate positive and
negative values respectively.
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the only nonzero component of the driving mechanisms; the
sidewall oscillation and the isosurfaces of w show both the
rollers and the sidewall boundary layer structure.

When the basic flow undergoes succesive bifurcations,
some of the symmetries are broken, and it is convenient to
have a measure of the symmetry breaking. If SO(2), i.e.,
the azimuthal rotation symmetries Rα are broken, the kinetic
energies of the nonzero azimuthal Fourier components of
the velocity field [zero for an axisymmetric solution SO(2)
equivariant] give a good measure of the symmetry-breaking
process. It will be employed,

En =
∫
D

unu∗
n rdrdz, u(r,θ,z,t) =

N∑
n=−N

un(r,z,t)einθ ,

(5)

where the integration domainD is (r,z) ∈ [0,1] × [−�/2,�/2]
and un is the nth Fourier mode of the velocity field. As the basic
flow has zero radial and axial vorticity, any of these vorticity
components is also a good measure of the three-dimensional
nature of the bifurcated flow. The axial vorticity will be used
to visualize 3D solutions, as has been done in the snapshot of
a bifurcated state in Fig. 1(c).

A symmetry check for the reflection symmetry Kβ can be
implemented as follows. Let g(r,θ,z,t) be a variable such that

Kβg(r,θ,z,t) = g(r,2β − θ,z,t),
(6)

g(r,θ,z,t) =
N∑

n=−N

Gn(r,z,t)einθ ,

for example, the axial velocity or the azimuthal vorticity, with
Fourier components Gn. Since g is real, G−n = Gn. Assuming
that g is Kβ invariant,

Kβg(r,θ,z,t) = g(r,θ,z,t) ⇒ e2inβGn = G−n = Gn

⇒ einβGn = einβGn ⇒ arg Gn = −nβ, (7)

where β can be time dependent, but it is independent of (r,z).
In order to define a symmetry parameter, the phases of the
Fourier components Gn must be examined. Introducing Gn =
|Gn|eiφn , the mean phase and the corresponding standard
deviation can be easily computed:

βn(t) = 2

�

∫
D

φn(r,z,t) rdrdz,

(8)

σ 2
βn

(t) = 2

�

∫
D

(φn(r,z,t) − βn)2rdrdz.

The standard deviation σβn
is a good measure of the reflection

symmetry of the different Fourier modes. For a global measure
of this asymmetry, the correlation of the angles of the Fourier
modes respect to the first one has to be checked, βn = nβ1.
Therefore, the symmetry parameter SKβ

is defined as

S2
Kβ

=
N∑

n=1

wn

[
sin2(βn − nβ1) + σ 2

βn

]
,

(9)

wn = ‖Gn‖∞/

N∑
k=2

‖Gk‖∞,

which is always positive, and zero precisely when the symme-
try line of mode n coincides with the symmetry line of mode
one; in other words, when g is Kβ invariant. Each mode has
been weighted according to its contribution to the full solution
using the maximum norm ‖Gk‖∞ in the domain D.

Last but not least, it remains to give a good measure of the H

symmetry. One option is to observe the flow half-period apart
in symmetric planes with respect to z = 0. A more rigorous
estimation is

SH = ‖w(r,θ,z,t) + w(r,θ,−z,t + T1/2)‖2, (10)

which is zero for an H -symmetric solution, according to (3c).
In particular, SH = 0 means that w is time periodic and can be
expanded in Fourier modes:

w(r,θ,z,t) =
∑

n

wn(r,θ,z)e2πint/T1 . (11)

At the midplane z = 0, from Eq. (3c) it is obtained that

w(r,θ,0,t) = −w(r,θ,0,t + T1/2) ⇒ wn(r,θ,0)

= (−1)n+1wn(r,θ,0), (12)

and the even temporal Fourier components of the axial velocity
on the midplane are zero for an H -symmetric solution. As a
consequence, the magnitude of the even Fourier components
is a suitable measure of the H symmetry breaking, a result
useful in the analysis of the solutions.

A. Previous results

It was observed [19] that by increasing the amplitude of
the forcing, Re, beyond a critical value, Rec(St), the basic
state underwent a symmetry-breaking bifurcation yielding
bifurcated three-dimensional states. Depending on St, the basic
state might undergo either synchronous or Neimark-Sacker
bifurcations. The synchronous bifurcations are pitchforks of
revolution that can break (mode A) or preserve (mode B) the
space-time symmetry H . The Neimark-Sacker bifurcations
result in quasiperiodic solutions that are modulated traveling
or standing waves [11]. Figure 2 shows the bifurcation curves
in the (St,Re) space. For small and high St, the synchronous
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FIG. 2. (Color online) Critical Reynolds number, Rec, as a
function of the Stokes number, St, for the transition from the basic
state to the different three-dimensional states, B1, B2, MRW1, and
A2. The crosses correspond to the three bicritical points, Ci ; symbols
are computed critical points, and solid lines are splines. Adapted from
Ref. [19].

043001-3



C. PANADES, F. MARQUES, AND A. MESEGUER PHYSICAL REVIEW E 87, 043001 (2013)

modes (A and B) bifurcate first, while at intermediate values,
the quasiperiodic mode, in the form of modulated rotating
waves (MRW), leads the process. The subscript 1 or 2 indicates
the azimuthal wave number n (Fourier mode) of the bifurcated
solution. Curves with solid triangles, circles, and diamonds
are the linear stability curves for B1, B2, and A2 synchronous
modes, while circumferences correspond to the quasiperiodic
mode MRW1.

Three-dimensional synchronous states appear when a pair
of real eigenvalues cross the unit circle at +1 in the complex
plane. As its name indicates, the synchronous states only
possess the frequency associated with the forcing and, since
they are no longer axisymmetric, the symmetry O(2) has been
broken. Nevertheless, there still remain the discrete symmetry
R2π/n (a rotation of angle 2π/n around the axis) and its powers,
and a collection of n reflection planes at angles π/n apart. The
rotation and meridional reflection symmetries just described
generate the so-called Dn symmetry group (or dihedral group)
with 2n elements, consisting of n rotations (including the
identity) and n meridional reflections. The modes B are
invariant under the symmetry H , while the A modes are not.
In particular, the complete symmetry group of the bifurcated
mode Bn is Dn × ZST

2 ; Dn is generated by the rotation R2π/n

and the reflection Kβ0 , and ZST
2 is produced by H . The angle β0

characterizes the solution considered, and there is a continuous
family of solutions (0 � β0 < 2π ) bifurcating simultaneously
in the pitchfork of revolution.

III. DYNAMICS CLOSE TO THE CODIMENSION-2 POINT

The intersection of two linear stability curves determines
what is called a codimension-2 or bicritical point. For instance,
in Fig. 2, there are three points of this kind (crosses),
because of the B1-B2, B2- MRW1, and MRW1-A2 intersec-
tions. The present study is focused on the analysis of the
first codimension-2 point, C1, where the modes B1 and B2

bifurcate simultaneously, and which is located at (Stc,Rec) =
(15.636,394.57). Comprehensive numerical explorations of
the two-dimensional parameter space around this bicritical
point C1 have been performed, looking at the subsequent
bifurcations of the B1 and B2 states, their interactions and
multiplicity, and transitions between them. A summary of
these results is detailed in Fig. 3, which shows the critical
Reynolds number, Rec, as a function of the Stokes number,
St, near C1. The solid black curves of this figure are the same
bifurcation curves that appear in Fig. 2, but without symbols,
which are used for the bifurcated states. For instance, on the
left side of C1, B1 modes (black circles) bifurcate first, while on
the other side B2 modes (blue solid triangles) do. In addition
to these known solutions, other states that might stem from
C1 are achieved. These novel states are the rotating waves
B1RW (blue circumferences) that bifurcate from B1, the B1-B2

mixed modes (violet solid squares) that bifurcate from B2, and
the bursting solutions (red solid diamonds) covering a large
region in parameter space. In the following sections, all of
these states are discussed in detail. Some additional curves
are sketched to delimit their regions of existence. The inset in
Fig. 3 displays a zoom near the linear stability curve at St = 16
in order to unravel the different states that appear very close
to the B2 bifurcation curve. Similar cascades of bifurcations

15 15.2 15.4 15.6 15.8 16
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385

395

405

415

Re

B1

B1RW
Bursts
B1−B2

B2

16

396

397

FIG. 3. (Color online) Families of bifurcated states near the
bicritical point C1. The bifurcation curves from the base state are
indicated as black solid lines.

resulting in flows with complex dynamics have been reported
in an annulus of radius ratio close to one also driven by axial
oscillations of the sidewall [8]. In this problem, the azimuthal
wave numbers of the bifurcated solutions are at least one order
of magnitude larger than in our problem, so there is a strong
competition between the bifurcating modes. Consequently, the
system suffers a rapid succession of bifurcations in a very
narrow parameter range and cannot be resolved numerically.
In our scenario, this succession of bifurcations is discernible
because of the relatively small wave numbers, as is exhibited
in the inset of Fig. 3.

A. Below the bicritical point

As can be observed in Fig. 3, for Stokes number values
below C1, St < Stc = 15.636, the bifurcated mode B1 exists
for a wide range of Reynolds numbers. However, on the
vicinity of the codimension-2 point, this mode becomes un-
stable in a small Re region before becoming stable again. The
synchronous mode B1 preserves the H symmetry. Regarding
to the spatial symmetries, O(2) reduces to D1, generated by
the reflection symmetry about a meridional plane Kβ0 , and no
rotational symmetry remains; the notation Z2 is also used in
the literature instead of D1. Therefore, the symmetry group of
B1 is D1 × ZST

2 .

1. B1 RW solution

Starting with a pure B1 state and increasing Re for frequen-
cies within the range 15.1 < St < Stc = 15.636, the mode B1

undergoes a bifurcation, becoming a modulated rotating wave
B1RW (blue circumferences in Fig. 3). Figure 4(a) depicts the
time series of the axial velocity of one of these B1RW states in a
fixed point near the sidewall at midheight (r = 0.9, z = θ = 0)
that looks periodic and very similar to the corresponding
time series for B1. However, by looking at the maximum
values of this time series over a long time interval, a slow
variation with a large period is clearly observable in Fig. 4(b);
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FIG. 4. Rotating-wave solution B1RW for (St,Re) = (15.5,395). Time series of the near-wall axial velocity at midheight (r = 0.9, z =
θ = 0). Panel (a) shows about eight forcing periods. Panel (b) plots the maximum values in (a), which displays the slow variation of the axial
veocity due to the slow precession rate of the rotating wave, in a much larger time scale.

for the depicted solution at (St,Re) = (15.5,395), its value
is T2 ≈ 12.321 ≈ 190.98T1, two orders of magnitude larger
than the forcing period T1. Figures 5(a) and 5(b) compare the
common mode B1 with the B1RW, and, by looking at the latter
after 28 forcing periods in Fig. 5(c), its rotating nature becomes
evident; the solution has rotated about 53◦, in full agreement
with the measured precession frequency f2 = 1/T2 ≈ 0.0812.
In fact, this state is a modulated rotating wave, because the flow
structure changes during the forcing period; nevertheless, if the
flow is strobed with the forcing frequency, the structure looks
the same but rotated a certain angle, as shown in Figs. 5(b) and
5(c).

B1RW is a quasiperiodic solution with two well-defined
frequencies, the forcing frequency f1 = St = 15.5 and a much
smaller frequency related with the rotation, f2 = 0.0812.
Figure 6(a) exhibits the power spectral density (PSD) of
Fig. 4(b), showing a single frequency f1 and its first harmonic;
the very small second frequency f2 is made apparent at the
inset showing f1 ± jf2 for j = 1,2, and 3, in the form of
additional peaks very close to the f1 = 15.5 peak. In order
to understand the reason of such small frequencies, Fig. 6(b)
exhibits the periods T2 for the B1RW states in the region where

these solutions exist. It is observed that the period goes to
infinity, so the precession frequency f2 = 1/T2 goes to zero
along the bifurcation curve B1 → B1RW. The pure mode B1

does not precess, because it is Kβ-reflection invariant, and
there is a continuous family of B1, the group orbit of SO(2)
acting on them. What occurs is that in the bifurcation B1 →
B1RW, the Kβ-reflection symmetry is broken (as it is discussed
shortly), and the bifurcated solutions start to drift along the
group orbit, resulting in a (modulated) rotating wave. Although
the bifurcated state is quasiperiodic (it has two frequencies,
so it lives on a two-torus), the bifurcating eigenvalue is real,
and the second frequency comes from the symmetry breaking
and the corresponding drift along the group orbit [21]; the
bifurcation is a pitchfork breaking Kβ , that generates a drift
because of the continuous family of B1 solutions. It has been
manifested in Ref. [21] that the period T2 must vary as the
inverse of the square root of the distance to the bifurcation
point, a result consistent with the periods computed and shown
in Fig. 6(b). The curves displayed in the figure are splines to
guide the eye, except the curves for St = 15.2 that correspond
to square-root fits. The data adjust very well, corroborating
the mentioned square-root law. The largest period computed

(a () b () c)

B1 B1RW at t = t0 B1RW at t = t0 + 28T1

FIG. 5. (Color online) (a) Pure B1 mode at (St,Re) = (15.5,393). The straight line is the Kβ reflection symmetry axis. [(b) and (c)]
Rotating-wave solution B1RW for (St,Re) = (15.5,395). All snapshots are taken at the beginning of a forcing period; (b) and (c) are taken 28
forcing periods apart. Plots show axial vorticity contours at the horizontal section z = −�/4. Solid (dashed) contours are positive (negative);
light and dark (yellow and red online) colors correspond to negative and positive values. This contour-color convention is used in all subsequent
cross sections.
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FIG. 6. (Color online) (a) FFT of the time series in Fig. 4(b). (b) Period T2 of the B1RW solutions as a function of Re for different Stokes
numbers St as indicated.

corresponds to the curve for (St,Re) = (15.2,395), which gives
T2 ≈ 259, and which in the figure is out of range.

Concerning the symmetries of the B1RW solutions, it is
obvious from Figs. 5(b) and 5(c) that the reflection symmetry
Kβ has been broken, so no purely spatial symmetry remains.
This can be verified by computing the symmetry parameter
of this B1RW solution, which gives SKβ

(B1RW) = 0.478, to
be compared with the value corresponding to the symmetric
solution B1 in Fig. 5(a), SKβ

(B1) = 8.29 × 10−10. This pa-
rameter is an appropriate measure of the symmetry breaking,
and it is plotted in Fig. 25(a) in order to be contrasted with
other solutions. Figure 7 displays the contributions of the
first [Fig. 7(a)] and second [Fig. 7(b)] azimuthal Fourier
components of the B1RW solution and helps in understanding
the reason behind the breaking of the Kβ symmetry. First, the
angle β2 for the azimuthal Fourier component n = 2 is not
the same in different points of the domain. Figure 7(b) shows
that close to the sidewall and in the bulk the flow possesses
a different symmetry axis (straight lines in the figure), and
they differ in about 6◦. Moreover, in both modes the β angles
of the Kβ symmetry do not satisfy the relation β2 = 2β1:
From the figure, β1 ≈ 55◦ and β2 ≈ 168◦ (the averaged value).
Therefore, in the expression of the symmetry parameter (9),
both values sin2(β2 − 2β1) and σ 2

β2
differ from zero.

(a () b)

n = 1 n = 2

FIG. 7. (Color online) Axial vorticity contours of the rotating-
wave solution B1RW in Fig. 5(c). The plots show the contributions of
the first (n = 1) and second (n = 2) Fourier modes. Straight lines are
reflection Kβ symmetry axes. Contour-color convention as in Fig. 5.

About the spatiotemporal symmetry H , since the solution
is quasiperiodic and synchronous with the forcing, it cannot
be considered H symmetric. However, the Fourier transform
of the axial velocity on the midplane shown in Fig. 6(a)
has zero (or very small) even temporal Fourier components,
indicating that the solution is almost H symmetric. There are
two reasons for this approximate symmetry. The first one is that
the amplitude of the modulation due to the second frequency is
very small; comparing Figs. 4(a) and 4(b), it is perceived that
the modulation amplitude is about 1% of the amplitude of the
axial velocity. The second reason is that the two frequencies
are almost in resonance, so T2 is very close to an integer
multiple of T1: T2 = 190.98T1 ≈ 191T1. When the ratio is
integer, the solution is periodic and exactly satisfies the H

symmetry (with period T2).

2. Bursting solution

For forcing frequencies close to the codimension-2 point
C1, 15.3 � St < Stc = 15.636, the stable B1 existing at large
Re does not bifurcate into the rotating-wave solution B1RW
when decreasing Re but undergoes a bifurcation to a more
complicated bursting state (red solid diamonds in Fig. 3). The
bursting state and the B1RW coexist in a narrow hysteretic
region observable in Fig. 3 and become unstable exiting the
region, one evolving into the other.

Figure 8(a) exhibits the time series of the energies of
the first and second azimuthal Fourier components of the
bursting solution at (St,Re) = (15.5,400). Both modes have
comparable energies, and the resulting state alternates between
both, showing plateaus where the energy is almost constant
followed by rapid excursions, thus the name bursting solution.
These solutions are periodic in time, and the period from
the energy plot is T2 ≈ 8.2417. The solution is most of the
time very close to a B2 mode, with excursions to a mode B1.
But the energy, being a global measure, does not capture the
details of the flow. Figure 8(b) provides the evolution of the
maximum values of the axial velocity at z = 0 near the wall.
Measuring the period using this figure, a different result is
obtained, T2 ≈ 33.065. This value is 4 times the one obtained
from the energy plot. The reason behind this is the fact that
the energy does not distinguish among solutions with the same
structure but only those rotated at a certain angle.
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FIG. 8. (Color online) Bursting solution at (St,Re) = (15.5,400). Time series of (a) the energy of the Fourier modes E1 and E2, and
(b) maximum values of the near-wall axial velocity at midheight (r = 0.9, z = θ = 0) [same plot as in Fig. 4(b)].

In Fig. 9, contours of axial vorticity at z = −�/4 corre-
sponding to consecutive minima of E1 and E2 in Fig. 8(a) are
depicted; t0 is taken at the beginning of the forcing period.
The solutions are almost identical to the pure synchronous
modes B1 (at the minimum of the n = 2 mode, blue open
squares in the figures) and B2 (at the minimum of the n = 1
mode, red circumferences in the figures). But the solutions
at two consecutive minima of the n = 2 mode (almost pure
B1 modes) are rotated π/2; therefore, the initial state is
recovered after four alternations of the synchronous modes and
the discrepancy between the measures of T2 in the previous
paragraph gets explained.

As it happens with the rotating waves, the bursting
solution is also quasiperiodic and there are two well-defined

frequencies, the forcing frequency, f1 = St = 15.5, and a
very small frequency associated with the bursts, f2 = 0.0302.
Figure 10(a) shows the Poincaré section of the bursting
solution considered, using two axial velocities measured at
z = 0 and z = 0.95, close to the sidewall. The Poincaré section
is quite convoluted, and the slowdown where the solution is
close to a pure B2 mode and the fast excursion approaching
a pure B1 mode are captured. The bullets represent 513
consecutive points in the reduced space and corroborate that
the mentioned f2 is correct, because f1/f2 = 512.51, and a
whole lap around the cycle is done. The blue open squares and
red circumferences correspond to the minima of the first and
second Fourier mode displayed in Fig. 9. Moreover, there seem
to be two accumulation points, which are the two possibilities

t = t0 t = t0 + 50T1 t = t0 + 128T1 t = t0 + 178T1

t = t0 + 256T1 t = t0 + 306T1 t = t0 + 384T1 t = t0 + 434T1

FIG. 9. (Color online) Axial vorticity contours at z = −�/4 and different times of the bursts at (St,Re) = (15.5,400); t0 ≈ 45.94 is at the
beginning of the forcing period and each snapshot corresponds to consecutive minima of E1 and E2. Contour-color convention as in Fig. 5.
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FIG. 10. (Color online) Bursting solution at (St,Re) = (15.5,400). (a) Poincaré section (bullets) using two axial velocities measured near
the wall (r = 0.9, θ = 0, and z as indicated). The minima of E1 (circumferences) and E2 (open squares) indicated in Figs. 8 and 9 are also
plotted. (b) Time evolution of the Kβ asymmetry parameter, SKβ

; symbols refer to Fig. 11.

for the B2 modes depicted in Fig. 9. Apparently, there are two
ways of entering and another two of escaping each one of these
accumulation points (pure B2 modes).

This solution seems to preserve the spatial symmetries of
the pure modes, because most of the time is close to a pure
synchronous mode, but it is not the case. Figure 10(b) exhibits
the evolution of SKβ

along a burst: This parameter is most of
the time constant, except for a remarkable peak and valley
that coincide with the minima of the energies, also plotted
in the figure. Therefore, the reflection symmetry is broken
mainly when the energy of the n = 1 mode is minimum.
Figure 11 helps to understand how this symmetry-breaking
process takes place. The first row shows a time sequence of the

first Fourier mode near the peak of SKβ
(minimum of the first

mode, red circles in the figure), while the second one exhibits
the behavior of the second mode at the valley (minimum of
the second mode, blue solid squares in the figure). At the
peak, the first mode becomes almost negligible (the amplitude
decreases three orders of magnitude and the energy seven),
while precessing in a fashion similar to the B1RW of the
former subsection; the total rotation of the first Fourier mode
is exactly π/2. When this mode is rotating, the reflection
planes between the first and the second Fourier mode become
uncorrelated, thus enhancing SKβ

. The second mode does not
rotate continuously at any stage, and it changes sign when it is
close to the minimum of the second mode; the change of sign

t = t0 + 375T1 t = t0 + 381T1 t = t0 + 384T1 t = t0 + 390T1

t = t0 + 300T1 t = t0 + 304T1 t = t0 + 306T1 t = t0 + 310T1

FIG. 11. (Color online) Axial vorticity contours at z = −�/4 and different times of the bursts at (St,Re) = (15.5,400); t0 is at the beginning
of the forcing period. The first row represents the first Fourier mode contribution near its minimum, while the second one the analogous for the
second mode. The snapshots shown correspond to symbols in Fig. 10(b). Contour-color convention as in Fig. 5.
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FIG. 12. (Color online) (a) Period T2 of the bursting solutions. The symbols are computed values, and the solid lines are splines plotted to
guide the eye. (b) Square-root fits to some of the SNIC bifurcations in (a). The dashed lines indicate the Re bifurcation value obtained from the
fit.

is not uniform but begins near the axis and propagates towards
the sidewall. Therefore, the valley in SKβ

is created when the
second mode becomes minimum. The maximum of SKβ

is a
good measure of the symmetry breaking for this solution, and
it is plotted in Fig. 25 for comparison with other solutions.

Regarding the spatiotemporal H symmetry, we note that it is
not preserved because of the second frequency associated with
the bursts, which makes it a quasiperiodic solution. Curiously,
but for the same reasons as the rotating-wave solution B1RW,
the even temporal Fourier components of the axial velocity on
the midplane are very close to zero, indicating that the solution
is almost H symmetric, as shown in Fig. 23(b).

In order to understand the origin of the small frequency
of the bursting solutions and the kind of bifurcations they
undergo, the period T2 is plotted in Fig. 12(a) as a function
of the Reynolds number Re for different St values. The
periods T2 become very large when approaching the upper
Re bifurcation curve in Fig. 3, where B1 bifurcates to the
bursting solution. This happens not only for St < Stc, below
the codimension-2 point C1, but also for Stc < St � 16. This
infinite period bifurcation is called a saddle-node infinite
cycle (SNIC) bifurcation and occurs when a saddle-node
bifurcation takes place on an invariant cycle [22]. Previously
to the bifurcation, there exists a stable limit cycle. At the
bifurcation a saddle-node appears on the limit cycle. After
the bifurcation, the saddle-node splits into two fixed points,
one stable and the other unstable, destroying the limit cycle in
the process. In our problem, there is a quasiperiodic solution on
a two-torus, the bursting solution, instead of a limit cycle, but
the dynamics on a Poincaré section of the torus are the same
as the dynamics just described for the SNIC bifurcation. The
fixed points that appear on the SNIC bifurcation correspond
in our case to the B1 synchronous solution. This scenario
is common in fluid dynamics and is described in detail, for
example, in Ref. [23] in a rotating convection problem. A
characteristic signature of a SNIC bifurcation is the square-root
law followed by the period when approaching the bifurcation,
which scales as the inverse of the square root of the distance
to the bifurcation point [24]. Indeed, the periods shown in
Fig. 12(a) that connect the bursts with the B1 mode follow
the square-root law, as shown in Fig. 12(b). The bifurcation
of the bursting solutions for low Re values is also an infinite

period bifurcation for St ∈ [15.8,17], above the bicritical C1

point, as is clearly seen in Fig. 12(a). In this scenario, T2 also
follows the square-root law, as shown in Fig. 12(b), so it is
considered a SNIC bifurcation, this time with the synchronous
mixed-mode solution B1-B2 that is described in Sec. III B.
However, below C1, there are no stable limit cycles available,
and the bifurcation of the bursts takes place at a finite value of
the period and might be considered a saddle-node bifurcation
of bursting solutions. When approaching the bicritical point C1

from below (St < Stc), the period at the bifurcation becomes
very large (St = 15.5 and 15.6), suggesting that it is likely
to become infinite at the C1 point, exactly what happens just
on the other side of C1 (St > Stc). The periods for St = 16.5
and 17 do not go to infinity because for these large St values
other branches of solutions appear and the bursting solutions
no longer bifurcate from B1, as it can be observed in Fig. 14.

In summary, the two quasiperiodic solutions obtained below
the codimension-2 point break the reflection symmetry Kβ

and are immersed in a large parameter region where the pure
B1 synchronous mode is stable. In addition, the bifurcations
from B1 to the quasiperiodic solutions (B1RW and bursts) are
infinite period bifurcations.

B. Above the bicritical point

For St > Stc, at the right side of C1 in Fig. 3, the bifurcated
mode B2 exists in a very narrow region very close to the
linear stability curve, as presented in the inset of Fig. 3. This
synchronous mode becomes rapidly unstable when increasing
Re, and a synchronous mixed mode emerges subsequently.
This mixed-mode solution persists longer, but rapidly becomes
unstable and reverts to the bursting solution already obtained in
the previous section, in an infinite period bifurcation (SNIC).
By further increasing Re, the pure B1 mode is achieved as in
the previous section.

The synchronous B2 mode (blue solid triangles in Fig. 3)
has been analyzed in Ref. [19]. Summing up, this solution is
synchronous and possesses the symmetry group D2 × ZST

2 . The
spatial symmetries D2, which are illustrated in Fig. 13(a), de-
picting axial vorticity contours of B2 at (St,Re) = (16,396.25),
are generated by two orthogonal reflection planes, whose
product is a half-turn (a rotation of π around the cylinder

043001-9



C. PANADES, F. MARQUES, AND A. MESEGUER PHYSICAL REVIEW E 87, 043001 (2013)

(a () b () c () d)

t = t0, z = −Γ/4 t = t0, z = −Γ/4 t = t0 + T1/2, z = −Γ/4 t = t0 + T1/2, z = +Γ/4

FIG. 13. (Color online) (a) Axial vorticity contours of the B2 pure mode at (St,Re) = (16,396.15). [(b), (c), and (d)] Axial vorticity contours
of the B1-B2 mixed mode at (St,Re) = (16,396.25), in the z sections and times indicated; t0 is at the beginning of the forcing period. The
straight lines are the Kβ reflection symmetry axes. Contour-color convention as in Fig. 5.

axis). This pure B2 mode is also H symmetric. Since it is a
pure B2 mode, only even azimuthal Fourier components are
present in this solution.

Synchronous B1-B2 mixed-mode solutions (violet solid
squares in Fig. 3) emerge rapidly from the B2 solutions. Start-
ing from B2 and augmenting Re, the first azimuthal Fourier
mode becomes unstable, and after an oscillatory transient, a
B1-B2 mixed-mode state is obtained, that is synchronous with
the forcing. A steady bifurcation occurs here and in the process
the D2 symmetry is lost. Figure 13(b) displays contours of axial
vorticity for the mixed mode B1-B2. This solution has the
same spatial symmetries as the pure B1 mode: D1, consisting
of a single reflection symmetry Kβ . As can be observed in
the figure, the even azimuthal modes are still dominant, but
the presence of the modus one modifies the symmetries of the
mixed solution. Figures 13(c) and 13(d) exhibit the invariance
of this mixed-mode solution under the spacetime symmetry
H . This feature is also confirmed by scrutinizing the PSD of
the axial velocity on the midplane and checking the absence
of the even temporal Fourier components.

The main difference between the dynamics below and above
the bicritical point is the rapid sequence of bifurcations taking
place above C1, resulting almost immediately in bursting states
that are quasiperiodic and possess very rich dynamics. In
contrast, below C1 the pure mode B1 exists and is stable in
a very large parameter domain, except in a region close to
the codimension-2 point, where modulated rotating waves and
bursting solutions come into sight.

IV. DYNAMICS AWAY FROM THE CODIMENSION-2
POINT

In the previous sections the dynamics and bifurcations
close to the codimension-2 point C1 were analyzed. In the
present section, the analysis to secondary bifurcations is
extended in a larger region of parameter space, where a wealth
of additional bifurcations is found. These new results are
summarized in Fig. 14, where the different symbols correspond
to numerically computed states. The previous bifurcations of
Fig. 3 correspond to the region close to C1 indicated by a

dashed rectangle in Fig. 14. As in Fig. 3, the black solid curves
correspond to the bifurcation curves of the basic state that meet
at C1, and the states sketched in the previous section have
been included. In addition to the mentioned states, some novel
states emerge away from C1. For instance, for Stokes numbers
below Stc, the synchronous B1 modes become quasiperiodic
(brown open down triangles), while for St > Stc, new families
of mixed modes (violet open squares) and bursting solutions
(orange open diamonds), differing from the ones previously
obtained, enter the stage. Moreover, at sufficiently high Re,
chaotic solutions develop from the B1QP and asymmetric
bursts (not shown in Fig. 14). This cascade of bifurcations
towards chaotic states complements the picture sketched in
the previous section and helps to better understand the process
described in Ref. [8].

14 14.5 15 15.5 16 16.5 17
St

370

385

400

415

Re

B1QP
a B1−B2

a Bursts

FIG. 14. (Color online) Families of bifurcated states around the
bicritical point C1. The bifurcation curves from the base state are
indicated as black solid lines. The dashed rectangle corresponds to
Fig. 3. The new bifurcated states away from the bicritical point C1

are indicated in the figure legend.
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(a () b () c)

t = t0 t = t0 + T1 t = t0

FIG. 15. (Color online) Axial vorticity contours at z = −�/4 and different times; t0 is at the beginning of the forcing period.
[(a) and (b)] Quasiperiodic solution B1QP at (St,Re) = (14,425). (c) B1 chaotic solution for (St,Re) = (14,500); see Supplemental Material [25].
Contour-color convention as in Fig. 5.

A. Small St numbers

The pure mode B1 is very robust for small Stokes numbers
St. By increasing the Reynolds number Re enough, B1

undergoes a sequence of bifurcations strongly resembling the
Ruelle-Takens route to chaos. The periodic solution B1 bifur-
cates first to a quasiperiodic solution with two frequencies, and,
by further increasing Re, the torus is destroyed and a chaotic
state appears. The quasiperiodic solution, B1QP (brown open
down-triangles in Fig. 14), is a B1 mode pulsating with an
additional characteristic frequency; this is clearly observed in
Figs. 15(a) and 15(b), showing two axial vorticity contours at
the beginning of the forcing period. They strongly resemble the
pure mode B1 in Fig. 5(a), but the intensity of the flow increases
and decreases with the second frequency. By further increasing
the Reynolds number, other frequencies become apparent, and
eventually the B1QP solutions acquire a chaotic pattern. A
snapshot of these chaotic solutions is shown in Fig. 15(c).
See Supplemental Material [25] associated with Fig. 15(c)
that reproduces snapshots over 100 forcing periods taken at
the beginning of the forcing period (a Poincaré section movie)
and clearly exhibits the chaotic nature of this solution [25]. The
main difference with B1QP is that the reflectional symmetry
Kβ is clearly broken. This can be verified by computing the

symmetry parameter of these two solutions: SKβ
(B1QP) =

(a)0.0234,(b)0.0132 and SKβ
(chaotic) = 0.362. The two flows

are no longer symmetric, but the symmetry parameter of the
chaotic state is one order of magnitude larger, so the symmetry
breaking can be visually observed. As both states have more
than one frequency and are not periodic, the H symmetry is
broken too.

The chaotic character of the state at (St,Re) = (14,500)
cannot be discerned in the snapshot shown in Fig. 15(c), but
it is evident by comparing the time series of the energies of
the first and second Fourier modes shown in Fig. 16(a) for the
B1QP and Fig. 16(b) for the chaotic state. The chaotic state is
much more complex and shows random time intervals where
the azimuthal mode n = 2 is dominant. The solution alternates
between pure modes, mixed modes or largely distorted modes
without a precise pattern. The comparison of the Fourier
transforms of the axial velocity on the midplane for the two
states is shown in Fig. 17. The PSD of B1QP is clearly
quasiperiodic with two well-defined frequencies and their
linear combinations, while the PSD of the chaotic state exhibits
a broad band of frequencies, and only a few multiples of the
forcing frequency are outstanding. Notice that in both Fourier
transforms the even multiples of the forcing frequency are very
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FIG. 16. (Color online) Time series of energy of the Fourier mode E1 and E2 for (a) the B1QP at (St,Re) = (14,425) and for (b) the B1

chaotic solution at (St,Re) = (14,500).
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FIG. 17. FFT of the time series of the near-wall axial velocity at midheight (r = 0.9, z = θ = 0) for the (a) B1QP at (St,Re) = (14,425)
and (b) B1 chaotic solution at (St,Re) = (14,500).

small, indicating that the spatiotemporal symmetry H is still
approximately fulfilled.

Figure 18 represents the Poincaré section of two axial
velocities measured at z = 0 and z = 0.95 near the sidewall
after performing a sampling of points every forcing period
(bullets). The Poincaré section for the B1QP displayed in
Fig. 18(a) produces a perfect cycle, so this solution lives in a
two-torus. The big circumferences represent four consecutive
points in the reduced space, and it is observed that the second
iteration approaches the initial point and the third one surpasses
it, in excellent agreement with the second frequency f2 = 5.89
measured from the Fourier transform in Fig. 17(a), which
provides f1/f2 = 2.38, indicating that going around the circle
takes 2.38 iterates. Figure 18(b) represents the Poincaré section
of the chaotic state at (St,Re) = (14,500). The result cannot be
considered a limit cycle in any case. The two-torus has been
destroyed, and the points observed might be considered the
Poincaré section of a chaotic attractor.

B. Large St numbers

Observing Fig. 14, for higher St than the bicritical value,
two new branches of solutions turn up. These two new
solutions are called asymmetric mixed modes and asymmetric
bursts. The asymmetric mixed modes are very similar in some
aspects to the former mixed modes but do not preserve the
spatiotemporal symmetry H , thus the asymmetric adjective.

Since the asymmetric bursts bifurcate from the asymmetric
mixed modes, they are called asymmetric, too. By further
increasing Re above the range of Fig. 14, irregular or chaotic
bursting solutions are obtained.

1. B1-B2 asymmetric mixed-mode solution

The mentioned asymmetric B1-B2 mixed-mode solutions
(violet open squares in Fig. 14) are obtained far away from
C1 and its branch coexists in the parameter space with the
bursts. By increasing Re at St = 17, the symmetric bursts of
the former section become unstable, and after a transient the
new asymmetric mixed mode is achieved. When continued
to smaller Re, this new branch of solutions coexists with the
burst branch and there is a noticeable hysteresis region, as
can be seen in Fig. 14. This asymmetric mixed mode has a
single characteristic time, the forcing period, and, hence, this
solution is synchronous, like the B1-B2 H -symmetric mixed
modes discussed in Sec. III B.

In Figs. 19(a) and 19(b), contours of axial vorticity are
depicted in the separated half-forcing period, and in symmetric
planes with respect to z = 0, for the asymmetric mixed mode
at (St,Re) = (17,414). At first sight, the solution resembles
the pure mode B2 of Fig. 13(a). Nevertheless, the difference
in strength of the four quadrants in Figs. 19(a) and 19(b)
breaks the rotational symmetry of π . Therefore, this solution
preserves exactly the same spatial symmetries as the pure B1

modes do: of the continuous family of symmetries O(2) of
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FIG. 18. Poincaré sections (bullets) using two axial velocities measured near the wall (r = 0.9, θ = 0 and z as indicated) for the (a) B1QP
at (St,Re) = (14,425) and (b) B1 chaotic solution at (St,Re) = (14,500).
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FIG. 19. (Color online) Asymmetric B1-B2 mixed mode at (St,Re) = (17,414). [(a) and (b)] Axial vorticity contours in the z sections and
times indicated; t0 is at the beginning of the forcing period. Straight lines are Kβ reflection symmetry axes. Contour-color convention as in
Fig. 5. (c) FFT of the time series of the axial velocity at midplane near the wall (r = 0.9, z = θ = 0).

the governing equations, the final state only has one reflection
plane of symmetry. As is easily observed, this solution does not
preserve the spatiotemporal H symmetry: the two snapshots,
which should be identical if this solution was H symmetric, are
rotated a factor of π . Therefore, as occurred with the A2 modes
in the previous paper, a new spatiotemporal symmetry arises:
the H symmetry combined with a rotation of π . Figure 19(c)
represents the PSD of the time series of the axial velocity at
midplane near the wall, and there is clearly a single frequency,
the forcing frequency; therefore, it is a synchronous state. In
contrast with all the previous solutions, the spectrum manifests
even and odd harmonics of this sole frequency, which is
also a clear indication of the breaking of the spatiotemporal
symmetry H .

2. Asymmetric bursting solution

Starting with the asymmetric B1-B2 mixed modes and
further increasing Re, these modes become unstable and
evolve towards a branch of asymmetric bursts (orange open
diamonds in Fig. 14). Both asymmetric solution branches can
be continued to smaller St values, and they coexist in a wide
parameter region with the symmetric mixed modes and bursts,
as it can be seen in Fig. 14.

Figure 20(a) shows the time series of the energies of the
asymmetric bursts at (St,Re) = (17,425). This time series is
very similar to the one corresponding to the symmetric bursts in
Fig. 8(a), but now the energy of the second mode is at least one
order of magnitude larger than the first one, except in a very
narrow temporal window where it dominates. Figure 20(b)
displays the evolution of the maximum values of the axial
velocity at z = 0 near the wall. As for the symmetric bursts,
in Fig. 8(b), the period measured from the axial velocity is
4 times the value obtained from the energy plot. The reason
is the same as in the symmetric bursts: the solutions at two
consecutive minima of the n = 2 mode (almost pure B1 modes)
are rotated π/2, so it takes four bursts to recover the initial state.
The period measured in Fig. 20(b) is T2 ≈ 12.212, very long
when compared with the forcing period T1 = 1/St = 0.0588:
T2/T1 ≈ 207.6.

The bullets in Fig. 21(a) represent the Poincaré section of
the asymmetric bursting solution considered, using two axial
velocities measured at z = 0 and z = 0.95, the same section as
in Fig. 10(a) from the symmetric bursts. Figure 21(b) exhibits
the evolution of SKβ

along an asymmetric burst: this parameter
is constant most of the time, except for a remarkable peak
and valley that coincide with the minima of the energies,
also plotted in the figure. Therefore, the reflection symmetry
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FIG. 20. (Color online) Asymmetric bursting solution at (St,Re) = (17,425). Time series of (a) the energy of the Fourier modes E1 and E2

and (b) maximum values of the near-wall axial velocity at midheight (r = 0.9, z = θ = 0).
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FIG. 21. (Color online) Asymmetric bursting solution at (St,Re) = (15.5,400). (a) Poincaré section (bullets) using two axial velocities
measured near the wall (r = 0.9, θ = 0, and z as indicated). The minima of E1 (circumferences) and E2 (open squares) indicated in Fig. 20
are also plotted. (b) Time evolution of the Kβ asymmetry parameter, SKβ

; symbols refer to Fig. 22.

is broken mainly when the energy of the n = 1 mode is
minimum, and the plot is similar to Fig. 10(b) for the symmetric
bursts. However, the asymmetric bursts break the Kβ reflection
symmetry in a way that differs from the symmetric bursts.
Azimuthal mode one preserved reflection symmetry, while
mode two slightly broke it in the symmetric bursts. The spike
in the evolution of the symmetry parameter SKβ

was due to the
fact that mode one rotated π/2 when it was very close to its
minimum, but remained reflection-symmetric while rotating,
as illustrated in the first row of Fig. 11. For the asymmetric
bursts the azimuthal mode two behaves in the same way as
for the symmetric bursts, but mode one differs enormously.

Figure 22 shows a time sequence of the first Fourier mode
along the rapid decrease and about the minimum value of its
energy. The eight snapshots in Fig. 22 correspond to the eight
red circles in Fig. 21(b). The first five snapshots along the
rapid decrease of mode one show that the symmetry line does
not change and the mode is reflection-symmetric, although
the shape of this mode changes remarkably. The three last
snapshots, about the minimum, show that mode one breaks the
reflection symmetry becoming distorted near the axis, where
the pattern starts rotating, while the pattern close to the sidewall
does not move at the beginning of the process (snapshot 6), and
then rapidly rotating (snapshot 7), until, finally, the reflection

t = t0 + 146T1 t = t0 + 148T1 t = t0 + 150T1 t = t0 + 152T1

t = t0 + 153T1 t = t0 + 154T1 t = t0 + 155T1 t = t0 + 156T1

FIG. 22. (Color online) Axial vorticity contours at z = −�/4 and different times of the asymmetric bursts at (St,Re) = (17,425); t0 is at
the beginning of the forcing period. Only the first azimuthal Fourier component is plotted, at the points indicated by red circles in Fig. 21(b).
Contour-color convention as in Fig. 5.
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FIG. 23. FFT of the time series of (a) the asymmetric burst in Fig. 20(b) and (b) the symmetric burst in Fig. 8(b).

symmetry is restored with mode one having rotated π/2 with
respect to the starting point (snapshot 1). The distorted spiral
pattern near the axis resembles the quasiperiodic mode MRW1

that bifurcates at much larger St values (see Fig. 2), St ≈ 40.6.
This MRW1 solution has been described in Ref. [19]. This
resemblance suggests that the influence of the quasiperiodic
modes could be the origin of the two families of asymmetric
solutions found.

Figure 23(a) represents the PSD of the asymmetric bursting
time series in Fig. 20(b), while Fig. 23(b) shows the same PSD
but for the symmetric bursting solution of Fig. 8(b). The main
difference is the presence of the even Fourier components of
the axial velocity on the midplane for the asymmetric bursts,
which were absent in the symmetric bursts, clearly manifesting
that these are not H symmetric. This is not surprising, because
the asymmetric bursts bifurcate from the asymmetric mixed
modes, as neither are H symmetric. The PSDs in Fig. 23 show
an enhancement of the forcing frequency peaks due to the
presence of the very low frequency associated with the bursts.
This enhancement is more pronounced in the asymmetric burst
solutions.

3. Irregular bursting solution

Starting from an asymmetric bursting solution and in-
creasing Re beyond the limits in Fig. 14, the bursts become

chaotic and irregular. Figure 24(a) shows the time series of
the energies of the first and second azimuthal Fourier modes
after saturation, for the irregular burst at (St,Re) = (17,550).
In this case, both modes acquire energies of similar order of
magnitude, showing irregular bursts from time to time and
chaotic temporal behavior.

In Fig. 24(b), contours of axial vorticity are depicted for
z = −�/4 at a particular time. See Supplemental material [25]
associated with Fig. 24(b) that shows snapshots over 100
forcing periods taken at the beginning of the forcing period
(a Poincaré section movie) [25]. Looking at the movie, the
irregular nature of these bursts is evident. The presence of pure
modes can be observed sporadically, but most of the time there
is a large interaction between the different modes. This solution
resembles the solutions in the bursting scenarios; however, the
visits to the B1 state are not periodic but random, and between
consecutive visits the B1 pattern rotates randomly approx-
imately ±π/2. Concerning the spatial symmetries, when the
solution approaches a pure or a mixed mode the corresponding
spatial symmetries are observed, but otherwise the solution
is largely distorted without any symmetry. For example,
SKβ

(irregular) = 0.545 in Fig. 24(b). The Fourier transforms
of the axial velocity on the midplane for this state is not shown
but is very similar to the other chaotic solution, displayed in
Fig. 17(b), and only possesses the odd Fourier components
too.

(a) (b)

10 11 12 13 14 15
t
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102
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En

E2

E1

FIG. 24. (Color online) Irregular bursts at (St,Re) = (17,550). (a) Time series of the energy of the Fourier modes E1 and E2. (b) Axial
vorticity contours at z = −�/4; see Supplemental Material [25]. Contour-color convention as in Fig. 5.
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FIG. 25. (Color online) Kβ asymmetry parameter, SKβ
, as a function of the Reynolds number, Re, for (a) St = 15.5 and (b) St = 17.

V. DISCUSSION

The three-dimensional dynamics of fluid problems with
spatial O(2) symmetry and spatiotemporal Z2 symmetry has
aroused the interest of the fluid dynamics community in recent
years, due to its relevance to wakes and periodically forced
flows. Experiments and numerical simulations have been
conducted in these flows, looking for the three-dimensional
dynamics after breaking the O(2) symmetry [3,4,7,8,15]. In
these different settings, the analysis of the three-dimensional
dynamics has faced different setbacks. In the wake flows,
the lack of enough control parameters does not allow the
separated analysis of the different instability modes, which
can be only observed at secondary bifurcations that become
chaotic rapidly when increasing the control parameter. In other
flows [8,15], the dynamics are dominated by a variety of mixed
modes with complicated spatiotemporal structures, even very
near the onset of three-dimensional instabilities. The fluid
problem analyzed in this study, a Newtonian fluid enclosed in a
cylindrical cavity whose sidewall oscillates harmonically in the
axial direction, solves the aforementioned problems. Special
attention has been focused in the detailed analysis of the
families of bifurcated solutions in a neighborhood of the first
codimension-2 point C1 that acts as the organizing center of
the dynamics at moderate frequency forcing values (St � 17).
There exist complex dynamics with different families of mixed
modes, modulated rotating waves, and bursting solutions, but,
fortunately, in this problem the different bifurcations and
transitions between these families can be resolved, and a
detailed analysis has been presented.

The main findings are summarized in Fig. 14, and in partic-
ular in Fig. 25, showing the relationship between the different
solutions obtained along two one-dimensional parameter paths
at St = 15.5 and St = 17, below and above the codimension-
2 point C1. Close to this bicritical point, the dynamics

is dominated by two families of solutions, with dynamics
governed by a very low frequency, in addition to the forcing
frequency. They are the modulated rotating waves B1RW (blue
circumferences) and the symmetric bursting solutions (red
solid diamonds) that appear in infinite period bifurcations. The
modulated rotating waves B1RW are present only below C1, for
St < Stc. Above the bicritical point C1, a succession of three
bifurcations (Base state → B2 → B1-B2 → Bursts) occurs
rapidly, resulting in bursting solutions. These rapid cascades
of bifurcations are typical of fluid problems with O(2) × ZST

2
symmetry, and in the present problem it has been possible to
resolve the details of the cascade for the first time. Close
to C1 the bifurcated solutions preserve the spatiotemporal
symmetry H exactly for the synchronous solutions and very
approximately for the quasiperiodic solutions. However, when
increasing St and Re, additional families of mixed and bursting
solutions breaking the H symmetry appear. These asymmetric
solutions coexist and interact with the symmetric families and
when increasing Re the asymmetric solutions become chaotic.

The details of the transition to chaos in systems with
O(2) × ZST

2 symmetry have been unraveled in this study,
and hopefully the combination with the analysis of other
bicritical points in these problems will help in understanding
the transition to chaos in wakes and periodically forced
systems. The analysis of these complex bicritical points from
a theoretical dynamical system perspective has not been
addressed, and it would also shed light on the understanding
of these complicated processes.
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