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We investigated a nonlinear advection-diffusion-reaction equation for a passive scalar field. The purpose is to
understand how the compressibility can affect the front dynamics and the bulk burning rate. We study two classes
of flows: periodic shear flow and cellular flow, analyzing the system by varying the extent of compressibility and
the reaction rate. We find that the bulk burning rate vf in a shear flow increases with compressibility intensity
ε, following the relation �vf ∼ ε2. Furthermore, the faster the reaction is, the more important the difference is
with respect to the laminar case. The effect has been quantitatively measured, and it turns out to be generally
small. For the cellular flow, two extreme cases have been investigated, with the whole perturbation situated either
in the center of the vortex or in the periphery. The dependence in this case does not show a monotonic scaling
with different behavior in the two cases. The enhancing remains modest and is always less than 20%.
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I. INTRODUCTION

The dynamics of reacting species presents several issues of
great interest from a theoretical point of view [1–3]. Moreover
it is also a problem of wide application in many fields,
including front propagation in gases [4], chemical reaction in
liquids [5,6], and ecological dynamics of biological systems
(e.g., plankton in oceans) [7–11].

In the most simplest model of reaction dynamics, the state
of the system is described by a single scalar field θ (r,t) that
represents the concentration of products. The field θ vanishes
in the regions filled with fresh material (the unstable phase),
equals unity where only inert products are left (the stable
phase), and takes intermediate values wherever reactants and
products coexist, i.e., in the region where production takes
place. In their seminal contributions, Fisher, Kolmogorov,
Petrovskii, and Piskunov (FKPP) [12,13] considered the
simplest case of pure reaction and diffusion and proposed the
so-called FKPP model,

∂tθ = D�θ + f (θ ), (1.1)

where D is the molecular diffusivity and f (θ ) describes the
reaction process that obviously depends on the phenomenon
under investigation. In this work, as in the original works of
FKPP, we focus on the pulled reaction, e.g., the autocatalytic
reaction f = αθ (1 − θ ), where α is the reaction rate and its
inverse, τ = 1/α, is the reaction time.

However, most natural phenomena take place in deformable
media like fluids, and therefore transport properties cannot be
ignored. If the medium is stirred, e.g., a Eulerian velocity

field u(x) is present, Eq. (1.1) can be generalized in the
incompressible case to

∂tθ + (u · ∇)θ = D�θ + f (θ ). (1.2)

The complete mathematical description of these phenomena is
given by partial differential equations (PDE) for the coupled
evolution of the velocity field and of the concentration
of the reacting species [4]. Therefore Eq. (1.2) should be
coupled with Navier-Stokes equations (usually in a nontrivial
way). This is the general framework for treating engineering
combustion problems in gases [14–16]. In some cases (e.g.,
[17]), the coupling can be simplified using a Boussinesq term.

In this work, as a further simplification, we assume that
the reactants do not influence the velocity field, which evolves
independently. In such a limit the dynamics is still nontrivial,
and it is completely described by the advection-reaction-
diffusion (ARD) Eq. (1.2) together with the proper definition of
a given velocity field u(x). This equation has been intensively
studied in incompressible media [18–21]. In particular, the
dependence of the front speed as a function of D,α and the
velocity field u(x) [22] has been investigated.

On the contrary, in the case of compressible flows, the
ARD problem did not receive very much attention and has
only recently been discussed in a mathematical framework [23,
24]. Accounting for compressible flows is, indeed, not simple,
but it is a relevant issue in combustion [14,16], in plankton
dynamics in turbulent flows [25], and also in particle-laden
flows, where the particle phase can be highly compressible
even in incompressible flows because of inertia [26–28]. While
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the passive scalar approximation for reactive species is hardly
tenable in gas combustion phenomena, it may be considered
appropriate in aqueous or liquid reactions (notably plankton
in oceans) and for dilute particle-laden flows. In those cases, it
may give some relevant insights for front propagation and can
be used as a model for the flame tracking in some limits [29].

Our aim is to investigate the effects of the compressibility
on the bulk burning rate of the reaction process by studying
the following PDE:

ρ

[
∂θ

∂t
+ ui

∂θ

∂xi

]
= D0

∂2θ

∂x2
i

+ f (θ ). (1.3)

The scalar field θ represents the mass fraction of a single
species of a binary mixture, while ui is the ith component of a
given compressible flow, D0 = ρD is the diffusion coefficient
(supposed to be constant), f (θ ) = ω̇ is the rate of production
of the chosen species, and ρ is the nonconstant density of the
fluid.

This paper is organized as follows: Sec. II is devoted to
the presentation of the model and the principal aspects of the
numerical computations. In Sec. III we discuss the results for
the front propagation in compressible shear flows. Section IV
is devoted to the case of compressible cellular flows. Finally,
in Sec. V, we present the conclusions.

II. THE MODEL

The PDE model described by Eq. (1.3) can be derived
from the equation of conservation of species, which is relevant
for combustion dynamics [4,15]. Let us consider two species
(namely, A,B) which diffuse and react together while they are
passively transported by a compressible flow, where ρA(x,y,t)
is the mass of species A per unit volume; the conservation of
species A gives

∂ρA

∂t
+ ∂

∂xi

[ρA(ui + UA,i)] = ω̇A, (2.1)

where ui is the ith component of the advective flow field, UA,i

is the velocity of diffusion of species A, and ω̇A is the rate of
production.

Define the mass fraction as Yk = ρk/ρ, where ρ is the
density of the mixture and k = A,B. The species conservation
can be written in terms of mass fraction as follows:

∂(ρYk)

∂t
+ ∂

∂xi

[ρYk(ui + Uk,i)] = ω̇k, (2.2)

where YA + YB = 1. Moreover, if Fick’s law is considered, the
diffusion velocities can be defined as follows:

YAUA,i = −YBUB,i = −D
∂YA

∂xi

. (2.3)

In the following, we assume an autocatalytic irreversible law
A + B −→ 2A:

ω̇A = αρAρB = αρ2YAYB = αρ2YA(1 − YA), (2.4)

where the constant α controls the speed of reaction and by
definition ω̇A = −ω̇B.

Thus, the evolution of the mass fraction of species A is
completely described by the following PDE:

ρ

[
∂θ

∂t
+ ui

∂θ

∂xi

]
= D0

∂2θ

∂x2
i

+ αρ2θ (1 − θ ), (2.5)

which holds if we neglect the coupling between the conser-
vation of species equation and the conservation of energy
equation. That is the case in which the energy released
by the reaction is negligible and thus the momentum and
energy equations evolve independently. The left hand side
of Eq. (2.5) is written in nonconservative form using the
continuity equation of the mixture, and the product ρD =
D0 is assumed to be constant (which is quite a reasonable
hypothesis [14,15]).

Since we are interested in the front propagation, we consider
the following geometry:

− ∞ < x < ∞, 0 � y � L. (2.6)

For the sake of simplicity we assume periodic boundary
conditions in the y direction and θ (−∞,y,t) = 1 (burned
material in combustion terminology) and θ (∞,y,t) = 0 (fresh
material).

At t = 0 the initial condition is given by

θ (x,y,t) =
{

1 if x < 0,

0 if x � 0.
(2.7)

Of course different boundary and initial conditions may be
interesting. For instance, if one is interested in quenching
issues, appropriate initial conditions would pose θ initially
localized in a region of size 
,

θ (x,y,0) =
{

1 if −
/2 � x � 
/2,

0 if x < −
/2 or x > 
/2.
(2.8)

Equation (2.5) has been solved using an eighth-order central
finite difference scheme in space and a fourth-order Runge-
Kutta integration in time. The grid size is sufficiently small to
guarantee a good representation of the shear across the reacting
region, and the convergence of solutions has been verified.
To compute accurately the asymptotic mean bulk burning
rate, very long integration periods are required. The grid is
remapped following the reacting front, and the computational
domain is extended upstream and downstream from the
reactive zone so that the boundary effects are negligible.

III. COMPRESSIBLE SHEAR FLOW

We investigate the effects of compressibility in a two-
dimensional (2D) steady-state shear flow using the velocity
field:

ū(x,y) =
(

U0 sin
( 2πy

L

)
1 + ε sin

(
2πx
λ

) ,0

)
. (3.1)

Such a choice corresponds to a Kolmogorov flow with
amplitude U0 and wavelength L, perturbed by a steady
wave of wavelength λ and magnitude ε accounting for the
compressibility of the flow. Let us stress that the perturbation
is oriented along the direction of the propagation of the reactive
front, i.e., the x axis.

042924-2



FRONT SPEED IN REACTIVE COMPRESSIBLE STIRRED . . . PHYSICAL REVIEW E 87, 042924 (2013)

In order to satisfy the continuity equation, ∂i(ρui) = 0, it
is necessary to impose a spatial dependence on ρ,

ρ(x) = ρ0

[
1 + ε sin

(
2πx

λ

)]
.

Finally, Eq. (2.5) can be written in nondimensional form,

∂θ

∂t∗
+ u∗

i

∂θ

∂x∗
i

= 1

ρ∗Pe

∂2θ

∂x∗
i

2 + ρ∗Daθ (1 − θ ), (3.2)

if we define ρ∗ = ρ/ρ0, x∗
i = xi/L, u∗

i = ui/U0, t∗ =
(tU0)/L. The adimensional parameters Pe = (ρ0U0L)/D0 and
Da = (Lαρ0)/U0 are the Péclet and the Damköhler numbers,
which define the ratio between the diffusive and advective
time scale and the ratio between the advective and reactive
time scale, respectively.

In the following, we will drop the star notation, and
we will solve Eq. (3.2) focusing on regimes at high Péclet
numbers Pe � 1. Varying the Damköhler number in a range
of Da ∈ [1,1000], we will quantify the effects of λ and ε on
the asymptotic value of the bulk burning rate.

The instantaneous bulk burning rate is

vf (t) =
∫ 1

0

∫ +∞

0
ω̇dxdy =

∫ 1

0

∫ +∞

0
Daρ2θ (1 − θ )dxdy,

(3.3)
while the mean or asymptotic bulk burning rate is defined as
the time average of vf (t) over a sufficiently long interval:

v = 1

T

∫ T

0
vf (t)dt. (3.4)

To shed some light on the role played by λ we first run a
simulation in the absence of compressibility for two different
Damköhler numbers (slow and fast reactions) and for a fixed
Péclet number. We characterize the thicknesses of the reactive
front � and δ (see Fig. 1 for definition). From Fig. 1, it is clear
that the faster the reaction is, the thinner the flame is.

Then we carry out simulations in which the compressibility
is fixed (ε = 0.5), and we choose λ that are approximately
greater, lower, or between the two thicknesses computed in
the case of zero compressibility. In Fig. 2 we show how the
geometrical aspect of the reactive front changes by varying
λ. In the low density zones, the front thickness appears to
be broader than in high density zones due to the decrease
of the local Péclet and Damköhler numbers (Pel = ρPe,
Dal = ρDa). Compressibility perturbation wrinkles the front
in the small-wavelength limit, whereas for large wavelengths
it is only corrugated since the entire reactive-diffusive front
is embedded in a wavelength. Nevertheless, even though the
front does not appear to be stationary (even in a comoving
reference system) and it is noticeably distorted by the presence
of compressibility, the mean velocity of propagation v does
not change; see Fig. 3. The wavelength of the perturbation
controls the frequency and the magnitude of the instantaneous
value of the front speed but does not affect the mean value.
Since asymptotic propagation is not affected by λ, from now
on in all simulations we set λ = 1.

In order to quantitatively characterize the effect of com-
pressibility, we vary both ε and Da, with a fixed Péclet number.
For this purpose, it is convenient to define the percentage
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FIG. 1. Shape of the active part of the front [we use the function
4θ (1 − θ ), which is maximal for θ = 0.5] for a fixed Péclet number
(Pe = 100) and for two different reaction rates. Taking as a reference
the incompressible test case (ε = 0), we can define two different
thicknesses. The bare front thickness is δ ∼ √

D/α, and the distance
between the tip and the tail of the reacting region is �. (top) For a
slow reaction (Da = 1), we have approximately � ≈ 10 and δ ≈ 6.
(bottom) For a fast reaction (Da = 100) � ≈ 0.8 and δ ≈ 0.15.

difference of the mean asymptotic front speed between the
compressible and the incompressible cases as follow:

�v% = 100
v − v0

v0
, (3.5)
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FIG. 2. Snapshot of 4θ (1 − θ ) for a fixed Péclet number (Pe =
100) and for Damköhler number Da = 100. (a) An incompressible
simulation (ε = 0; ε = 0.5 in the other panels). For the compressible
tests the characteristic length λ is set to be approximately (b) lower
(λ = 0.1), (c) between (λ = 0.5), or (d) greater (λ = 4) than the two
thicknesses � and δ.
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FIG. 3. (Color online) Front speed and burnt mass [mb(t) = ∫ t

0 vf (t)dt] as a function of time for a fixed Pe = 100, two different Damköhler
numbers [(a) and (c): Da = 1; (b) and (d): Da = 100], and different λ.

where v0 is the asymptotic bulk burning rate, as defined in
(3.4), for the incompressible case (ε = 0). Results are shown
in Fig. 4.

In general, in the regimes investigated here, we observe
that the presence of compressibility can slightly improve the
process of reaction, and the effects grow by increasing both ε

and Da. For a fixed characteristic reaction rate [see Fig. 4(a)],

numerical simulations suggest a power (quadratic) law of the
velocity enhancement as a function of parameter ε:

�v% ∼ ε2. (3.6)

Instead, the dependence on Damköhler number is much slower.
As shown in Fig. 4(b), the parameter �v% is always positive,
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FIG. 4. (Color online) Comparison of the front speed between compressible and incompressible shear flow for a fixed Péclet number
(Pe = 100) (left) at different compressibility magnitudes ε and (right) for different Damköhler numbers.
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FIG. 5. Compressible Cellular flow : (a) the density is higher in the center of the vortex. (b) The density is higher in the outer region.

and it grows following (approximately) a logarithmic law:

�v% ∼ a ln(Da) + b, (3.7)

where a and b may depend on ε. Therefore, even in the case
of very strong compressibility (ε = 0.5) and very fast reaction
(α = 1000), the difference never exceeds a modest 6%. The
effect of compressible wave perturbations appears therefore to
be (i) wrinkling and (ii) second-order enhancement.

IV. COMPRESSIBLE CELLULAR FLOW

We discuss now the case of cellular flows, i.e., 2D steady
flows of amplitude U0 composed of a counter-rotating vortex
of dimension L/2. The compressibility is imposed in the
following way:

ρ(x,y) = ρ0C(x,y), (4.1)

ū(x,y) =
(
U0 sin

(2πy

L

)
cos

(2πy

L

)
C(x,y)

,
−U0 cos

(2πy

L

)
sin

(2πy

L

)
C(x,y)

)
.

(4.2)

We choose two different shapes for C(x,y). In the first, which
we call case (a), the density of the mixture is higher in the

center of the vortex:

C(x,y) = 1 + ε

(∣∣∣∣sin

(
2πx

L

)
sin

(
2πy

L

)∣∣∣∣ − 4

π2

)
. (4.3)

In the second, which we call case (b), the density is higher in
the periphery of the vortex:

C(x,y) = 1 − ε

(∣∣∣∣sin

(
2πx

L

)
sin

(
2πy

L

)∣∣∣∣ − 4

π2

)
. (4.4)

The two different configurations are shown in Fig. 5. The
constant factor 4

π2 has been introduced in order to have a
density perturbation which is zero on average. As in the case
of the shear flow, we study the dependence of the dynamics on
the compressibility intensity ε and Damköhler number in the
more realistic case of a fixed high Péclet number.

We will consider a wider range of Damköhler numbers,
exploring the regimes at Da 
 1, Da ≈ 1, and Da � 1.
Nevertheless, we will remain in the regime PeDa > 1, which
means that the characteristic diffusion time is always larger
than the reaction time. Unlike the shear flow, in the cellular
flow �v% does not show a monotonic dependence on either ε

or Da, as can be seen from Fig. 6.
Such a feature has been observed also for other configu-

rations of C(x,y) (simulations not shown here), confirming
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FIG. 6. (Color online) (a) and (b) Percentage difference between compressible and incompressible test cases of the mean asymptotic bulk
burning rate. 1/Pe = 0.003. In (a) the density of the fluid is higher in the center of the vortices, while in (b) the density is higher in the periphery.
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that the nonmonotonic behavior of �v% is related to the
whirling geometry of the flow rather than to the choice of the
density perturbation. In the slow reaction regime (Da 
 1)
Fig. 6 shows behavior for �v% that is almost independent
of Damköhler number in both cases (a) and (b). On the
other hand, in the middle range of the Damköhler number,
where the combined effects of advection and reaction are
more intriguing, the two flow configurations show opposite
trends for �v%; the reaction is faster when the density is
higher in the center [case (a)], whereas it is slower when the
perturbation is at the periphery [case (b)]. Such a behavior
is not surprising since the interplay between reaction and
diffusion in the presence of closed streamlines can lead to a
nontrivial behavior also in the case of incompressible flow [20],
and the presence of variations in the density of the flow can
act in a very nonintuitive way.

V. CONCLUSIONS

We have studied the propagation of fronts through an
advection-diffusion-reaction equation where the nonlinear
reaction term is given by the classical FKPP source term.
The advective flow is generated by an imposed field which
is perturbed by compressible waves. The compressibility is
controlled by the parameter ε. Two velocity fields have been
considered: a shear flow and a cellular one.

In the considered flows, the front can be strongly affected by
compressibility, and the compressibility field forces a strong
localization of density, but the quantitative differences with
respect to the incompressible model appear to be modest (of
the order of some percent). On the basis of previous studies, we
do not think that the presence of chaos (turbulent fluctuations)
should change the scenario much [21].

Some comments are in order to discuss the apparent
difference of the behavior of �v% in the cases of shear flow
and cellular flow (see Figs. 4 and 6). The streamlines in
the two cases are very different: namely, open and closed,
respectively. In the shear flow, the effect of compressibility on
the front propagation is only slightly modified with respect to

the incompressible case since the front is mainly driven by the
stream. On the other hand, closed streamlines trigger entangled
mechanisms between reaction and diffusion that, coupled with
the compressibility, generate highly nontrivial features. An
example of this complicated behavior can be found in the
nonmonotonic dependence of �v% on the Damköhler number
or in the very apparent difference between cases (a) and (b) of
the cellular flows considered here.

Finally, it is interesting to note that a similar model has been
recently used for the study of population dynamics in turbulent
flows [24]:

∂C

∂t
+ ∇ · (uC) = D0∇2C + μC(1 − C), (5.1)

where the scalar C(x,t) is the concentration of a population
[24], which is the equivalent of ρθ in Eq. (2.5). When ∇ · u �=
0, clustering of the population near compression regions
(∇ · u < 0) is observed. In those regions, the concentration
can take values greater than 1, and reaction rate in Eq. (5.1)
can be negative, so that the scalar C(x,t) is not a fractional
parameter. Within this model, the authors linked changes
in the overall carrying capacity of the ecosystem (i.e., the
density of biological mass of the system) to the compressibility
and its effect of localization. However, the present results
show that the change of the carrying capacity is not only
due to density localization, but principally to the presence
of a reaction term that allows negative rate in high density
zones. Indeed, in the present work we have a strong density
localization, but our FKPP model for a fractional parameter
does not allow a negative rate. The result is that the average
carrying capacity does not change even in the presence of
compressible flows. The analysis of the present results for
the Lagrangian displacement of passive reactive tracers and
irreversible reaction dynamics is ongoing.
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