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Delayed feedback induces motion of localized spots in reaction-diffusion systems
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We study the formation of localized structures, often called localized spots, in reaction-diffusion systems
subject to time delayed feedback control. We focus on the regime close to a second-order critical point marking
the onset of a hysteresis loop. We show that the space-time dynamics of the FitzHugh-Nagumo model in the
vicinity of that critical point could be described by the delayed Swift-Hohenberg equation. We show that the
delayed feedback induces a spontaneous motion of localized spots. We characterize this motion by computing
analytically the velocity and the threshold above which localized structures start to move in an arbitrary direction.
Numerical solutions of the governing equation are in close agreement with those obtained from the delayed
Swift-Hohenberg equation.
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I. INTRODUCTION

Dissipative structures found far from equilibrium are a well-
documented area of research since the seminal works of Turing
[1] and Prigogine and Lefever [2]. They have been observed
experimentally [3]. Dissipative structures could be either
periodic or localized in space. Many driven systems exhibit
localized structures (LSs), often called localized spots and lo-
calized patterns, which may be isolated, randomly distributed,
or self-organized in clusters forming a well-defined spatial
pattern. Generally speaking, the spatial confinement arises
from the balance between a positive-feedback mechanism
associated with chemical reactions tending to amplify spatial
inhomogeneities and a diffusion process that, conversely, tends
to restore spatial uniformity. In addition, these structures
reflect the spontaneous appearance of symmetry breaking and
self-organization phenomena through dissipation.

Localized structures are homoclinic solutions (solitary or
stationary pulses) of partial differential equations such as
reaction-diffusion models. The conditions under which LSs
and periodic patterns appear are closely related. Typically,
when the Turing instability becomes subcritical, there exists
a pinning domain where localized structures are stable. This
is a universal phenomenon and a well-documented issue (for
recent overviews on this issue see [4,5]). The LSs occur in
various fields of nonlinear science such as chemistry [6], plant
ecology [7], and optics [8,9]. They may exhibits a curvature
instability [10]. Experimental observation of LSs in driven
nonlinear optical cavities has motivated further the interest in
this field of research [9]. In particular, LSs could be used as
bits for information storage and processing [9].

Localized structures are not necessarily a stationary solu-
tion of nonlinear equations; they can exhibit regular motion
in space or oscillation in time. In particular, the origin of
the motion can be induced by vorticity [11], finite relaxation
rates [12–14], a phase gradient [15], an Ising-Bloch transition
[16–18], a walkoff, a symmetry breaking due to off-axis
feedback [19], a resonator detuning [20], or Hopf-Turing inter-
action bifurcations [21]. Self-induced motion and vibrations
of a vortex ensemble were also reported by Staliunas and
Weiss [22]. A drifting two-dimensional localized structure in
the FitzHugh-Nagumo model has been reported in an excitable

regime with long-range inhibition and global coupling [23]. In
the framework of the complex Ginzburg-Landau equation, the
Gray-Scott model, and a three-component reaction-diffusion
type of model, a time-periodic solution called scattors have
been reported in Ref. [24]. It has been shown that the inclusion
of delayed feedback in the dynamics of spatially extended
systems can lead to a drift instability of localized structures
[25]. More recently, a bifurcation analysis showed that delayed
feedback can lead to the formation of oscillons or soliton
rings [26].

In this paper we investigate the effect of delayed feedback
on the mobility two-dimensional localized structures and
localized patterns. We consider a simple reaction-diffusion
type of model: the FitzHugh-Nagumo system. The control
and engineering of far-from-equilibrium systems by delayed
feedback are important problems in nonlinear science [27]. We
use the time delayed control, which is the simplest scheme that
has been previously proposed [28]. Other studies of various
spatially extended systems with time delay have motivated
further investigations of this issue [29]. The analysis based
on delayed partial differential equations shows that when
the product of the delay and the strength of the feedback
exceeds some threshold, LSs start to move in an arbitrary
direction [25,26]. We focus our analysis on double limits of
long-wavelength symmetry-breaking instability (often called
Turing instability [1]) and close to a second-order critical point
marking the onset of a hysteresis loop. We derive a delayed
Swift-Hohenberg equation for the FitzHugh-Nagumo system
with delayed feedback. Then we show the existence of an
instability that leads to a spontaneous motion of localized
structures. We show that when the product of the delayed time
and the feedback amplitude exceeds a certain threshold, LSs
and localized patterns exhibit motion in an arbitrary direction.
We evaluate analytically and numerically the threshold and the
velocity of moving LSs.

In the next section we briefly introduce the FitzHugh-
Nagumo system with delayed feedback. The derivation of
a delayed Swift-Hohenberg equation is presented in Sec. II
as well. The spontaneous motion of localized structures and
localized patterns is presented in Sec. III. We summarize in
Sec. IV.
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II. MODEL EQUATIONS

A. FitzHugh-Nagumo model

Our analysis is based on the well-known FitzHugh-Nagumo
system, which constitutes a simplified version of the Hodgkin-
Huxley model that has been derived to describe electric
excitations in nervous membranes [30]. The excitation is
mediated by an electrochemical reaction involving sodium and
potassium ion flow. This model reads

∂tu = u − u3 − v + du∇2u,
(1)

∂tv = ε(γ u − v − a) + ξ [v(t − τ ) − v(t)] + dv∇2v,

where ε = Tu/Tv is the ratio of characteristic chemical
relaxation times of the activator u and inhibitor v. The Laplace
operator ∇2 = ∂xx + ∂yy acts in the r = (x,y) plane and t is
time. The parameters a and γ control the relative position and
the number of nullcline intersections. The diffusion coeffi-
cients are du and dv . The delayed feedback is characterized by
the time delay τ and the feedback strength ξ . It is convenient to
subtract the inhibitor v(r,t) from its delayed value v(r,t − τ ),
so that when we set τ = 0, we recover the homogeneous
steady states of the system us and vs and solutions of the
equations a = (−1 + γ + u2

s )us and vs = γ us − a. These
spatially uniform states are monostable when γ > 1. They
exhibit a bistable behavior when γ < 1. In the following
we consider a regime where the homogeneous steady states
are stable with respect to the steady bifurcation and focus
on the regime of pattern-forming instabilities, namely, when
d = dv/du > 1.

B. Real order parameter description

In what follows we explore the space-time dynamics of the
FitzHugh-Nagumo system with delayed feedback (1) in the
neighborhood of the critical point associated with bistability
and close to the long-wavelength pattern-forming regime. The
coordinates of the critical point are determined by the two
conditions ∂a/∂us = ∂2a/∂u2

s = 0. This yields the critical
values ac = 0, γc = 1, and uc = vc = 0. Let us now examine
the linear space dynamics of the model (1) in the vicinity
of the critical point. The linear stability analysis with respect to
the finite-wavelength perturbation of the form exp(iq · r + λt)
yields the transcendental characteristic equation

λ2 + {
(d + 1)q2 + ε − 1 + 3u2

s + ξ [1 − exp(−λτ )]
}
λ

+ (
q2 − 1 + 3u2

s

){dq2 + ε + ξ [1 − exp(−λτ )]} + εγ

= 0. (2)

A Turing instability occurs if λ = 0 with a finite q and ∂qλ = 0.
In a long-pattern-forming regime, i.e., q → 0 and close to
the critical point us → 0, the conditions λ = 0 and ∂qλ = 0
impose the constraint ε = εc = d.

We now explore the space-time dynamics in the vicinity of
the critical point (uc,vc,ac,γc,εc) = (0,0,0,1,d). To this end,
we introduce a small parameter η that measures the distance
from criticality as

(a,γ,ε) = (0,1,d) + (a1,γ1,ε1)η + (a2,γ2,ε2)η2 + · · · . (3)

In addition, we introduce the slow space and time variables
(x ′,y ′) = η1/2(x,y) and t ′ = η2t . For the delay parameters we

consider the scaling

ξ = η2K, τ ′ = τ

η2
. (4)

We seek corrections to the steady states at criticality of the
form

(u,v) = (u1,v1)η + (u2,v2)η2 + · · · . (5)

Our aim is to determine a slow time and slow space
amplitude equation that depends on time and space through the
slow variables. From the FitzHugh-Nagumo equations (1) we
obtain a sequence of linear equations for the unknown variables
(u1,v1) and (u2,v2). We then apply solvability conditions at
each order. Substituting (3) and (5) in Eqs. (1), we find that at
first order in η, u1 = v1 and a1 = γ1 = 0. At second order, we
have u2 = v2 − ∇2v1 and a2 = 0. At third order, the solvability
condition reads

d − 1

d
∂t ′v1 = a3 − γ2v1 − v3

1 + ε1

d
∇2v1 − ∇4v1

+K[v1(t ′ − τ ′) − v1(t ′)]. (6)

Note that this equation is valid only if d > 1. In terms of the
original variables and setting v1 = b/η, Eq. (6) reads

∂tb(r,t) = A − 	b(r,t) − b(r,t)3 + 2D∇2b(r,t)

−∇4b(r,t) + σ [b(r,t − τ ) − b(r,t)], (7)

where A = a − ac, 	 = (γ − γc)/3, D = (ε − εc)/2d, σ =
η2K , t ′ = (d − 1)η2t/d, and (x ′,y ′) = η1/2(x,y). In the ab-
sence of delay σ = 0, Eq. (7) is the generalized Swift-
Hohenberg equation [31]. The distributed real variable
b(x,y,t) is proportional to the deviation from the inhibitor
value at criticality. In what follows we consider a regime where
the homogeneous steady states are stable with respect to the
steady bifurcation and focus on the regime of pattern-forming
instabilities, namely, when D < 0.

C. Linear stability analysis

The homogeneous steady state solutions of Eq. (7) are
A = bs(b2

s + 	). The bistability between uniform solutions
occurs when 	 < 0. The linear stability analysis of the
homogeneous steady states with respect to perturbations of the
form exp(iq · r + λt) leads to the transcendental characteristic
equation

λ = −	 − 3b2
s − 2Dq2 − q4 + σ [exp(−λτ ) − 1]. (8)

The homogeneous steady states bs undergo a Turing insta-
bility leading to the spontaneous formation of a stationary
periodic pattern at b±T = ±√

D2 − 	/3. These instabilities
correspond to the occurrence of a zero eigenvalue λ = 0 at an
intrinsic finite wave number q = qc = √−D. It is the same
at both bifurcation points b±T . Thus spontaneous pattern-
forming instability requires D > 0 and D2 > 	 in order to
have b±T and qc both real. Traveling wave instability occurs if
a pair of complex conjugate eigenvalues has a vanishing real
part and a nonzero imaginary part, i.e., λ = ±iω. By replacing
this expression in the dispersion reaction equation (8), we get

b±T W = ±
√

D2 − 	 + σ [cos(ωτ ) − 1]/3,
(9)

σ = − ω

sin(ωτ )
.
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FIG. 1. Plot of the thresholds A±T W associated with traveling
wave instabilities as a function of the delayed feedback strength σ in
the monostable case 	 > 0. The parameters are 	 = 1, D = −1, and
τ = 1.

Note that the real part of the eigenvalue λ vanishes at q = qc =√−	, which is the fastest growing wave number at the Turing
instability even in the absence of the delayed feedback. The
corresponding thresholds associated with the traveling wave
instability are A± = (b2

±T W + 	)b±T W . By taking into account
Eq. (9), we get

A±T W = ±D2 + 2	 + F (ω)

3
√

3

√
D2 − 	 + F (ω),

(10)
σ = − ω

sin(ωτ )
,

with F (ω) = ω tan (ωτ/2). We fix the parameters at τ = 1
and D = −1 and let the feedback strength σ be the control pa-
rameter. The linear stability analysis is summarized in Figs. 1
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FIG. 2. Plot of the thresholds A±T W associated with traveling
wave instabilities as a function of the delayed feedback strength σ in
the bistable case 	 < 0. The parameters are 	 = −1, D = −1, and
τ = 1.

(a) (b) (c)

FIG. 3. Moving extended structures in time t under the effect
of the delay: (a) hexagons H0, (b) stripes, and (c) hexagons Hπ .
Maxima are plain white and mesh number integration is 60 × 60. The
adimensional size of the system is 40 × 40. The parameters are 	 =
−1, D = −1, τ = 1, σ = −1.02, and (a) A = 0.5, (b) A = −0.25,
and (c) A = 0.5.

and 2, where we plot the thresholds associated with traveling
wave instability as a feedback amplitude. These figures are
the parametric plot of Eqs. (10). The solid lines correspond to
the traveling wave thresholds instabilities. When σ < 0, the
instability domain associated with traveling wave instabilities
increases with the increase of the feedback amplitude. For
small σ , several pairs of traveling wave instabilities occur
inside the instability domain. Each pair of traveling wave
instabilities is connected to a different temporal frequency with
finite wave number q = qc = √−D. We have revisited the
linear stability with respect to spatiotemporal perturbations in
the presence of the delay. The study of the linearized problem
shows that homogeneous steady state of Eq. (1) exhibits a pair
of traveling wave instabilities.

We perform numerical simulations of Eq. (7) by us-
ing a finite-difference method with forward temporal Euler
integration. The boundary conditions are periodic in both
spatial directions. In the absence of the delayed feedback
it is well known that the SH equation admits a sequence
of stationary periodic hexagon- (H0) stripe-hexagon (Hπ )
patterns. However, when varying the strength of the delayed
feedback, these periodic structures start to move in an arbitrary
direction with a constant speed. This behavior is shown in
Fig. 3.

III. MOVING LOCALIZED STRUCTURES

The generalized Swift-Hohenberg equation (SHE) (7)
without delayed feedback is one of the most studied models
describing nonlinear dynamics in spatially extended systems.
The SHE is a well-known paradigm in the study of spatial
periodic or localized patterns. In this respect, it has been
widely considered in hydrodynamics [31] and in other fields
of natural science such as chemistry [32], plant ecology [33],
and nonlinear optics [34]. An important property of the SHE
is that it has a gradient structure, i.e., admits a potential
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FIG. 4. Moving localized structures under the effect of delay in
(x,y) space. Snapshots at different times showing the motion of LSs
with a constant velocity: (a) and (b) bright and (c) and (d) dark
localized structures obtained for the parameters 	 = −1, D = −1,
τ = 1, σ = −1.05, and (a)–(c) A = −0.5 and (d)–(f) A = 0.5.
Maxima are plain white and mesh number integration is 60 × 60.
The size of the system is 25 × 25.

or a Lyapunov functional. Any perturbation evolves towards
stationary homogeneous or inhomogeneous solutions. The
existence of a Lyapunov functional pushes the time evolution
towards the state for which the functional has the smallest
possible value compatible with the boundary conditions.
Stable stationary localized structures are homoclinic solutions
of Eq. (7) with ∂b/∂t = 0; they exist in the subcritical domain
where a uniform solution and a branch of spatially periodic
solutions are both linearly stable. There exist two types of
stable LSs: dark and bright stationary pulses in two spatial
dimensions. Their domain of stability for fixed values of the
parameters 	 = −1 and D = −1 are for bright LSs −0.52 <

A < −0.11 and for dark LSs 0.11 < A < 0.52. However, in
the presence of a delay term b(x,y,t − τ ), the delayed SHE
(7) loses the gradient structure and involves a nonvariational
effect allowing LSs exhibiting uniform motion in an arbitrary
direction. A direct manifestation of this nonvariational effect
is the spontaneous motion of both bright and dark LSs as
illustrated in the Fig. 4. The numerical simulations of Eq. (7)
are performed on square-shaped domain with periodic bound-
ary conditions. We use an initial condition consisting of a
homogeneous steady state perturbed at ten grid points with
an amplitude 
b = 2.5. This perturbation evolves rapidly
towards the formation of moving single bright LSs [see
Figs. 4(a)–4(c)]. For the dark localized spot, we use the same
initial condition but with 
b = −0.5. By fixing the values
of parameters 	 = −1 and D = −1, the stability domain for
the bright LS occurs in the range −0.60 < A < −0.23 and the
dark LS is stable in the range 0.60 < A < 0.23. We clearly see
a shift in the stability domain of the moving bright and dark
LSs with respect to the one associated with stationary LSs.
When LSs are sufficiently separated from each other, localized
spots are independent and randomly distributed in space.
However, when the distance between peaks decreases they
start to interact via their oscillating, exponentially decaying,
tails. This interaction leads then to the formation of clusters.

(a) (b) (c) (d)

FIG. 5. Moving multipeak localized structures under the effect
of the delay. Snapshots at different times showing the motion of (a)
one peak, (b) two peaks, (c) three and four peaks, and (d) a cluster.
Maxima are plain white and mesh number integration is 60 × 60. The
size of the system is 40 × 40. The parameters are 	 = −1, D = −1,
A = 0.5, τ = 1, and σ = −1.02.

When localized spots are moving, they exhibit a deformation
along the direction of the motion. Examples of moving clusters
formed by two more localized spots are shown in Fig. 5.
These moving multispot solutions are obtained for the same
parameters as in Figs. 4(a)–4(c), except that they differ only
by the initial condition.

We calculate the threshold above which LSs exhibit motion
with a constant velocity and derive an expression for the
velocity. To do that, we assume that Eq. (7) without the
delayed feedback, i.e., σ = 0, has a stable stationary radially
symmetric localized structure b = b0(|r|). The stability of this
solution means that all the solutions � of the following eigen-
value problem (	 + 3b2

0 + D∇2b0 − ∇4)φ = �φ are real and
negative except for a pair of zero eigenvalues corresponding
to the translational invariance of Eq. (7), �1,2 = 0. Let us
substitute a slightly perturbed single-spot solution b(r,t) =
b0(|r|) + φeμt into Eq. (7). Then linearizing it with respect to
a small perturbation φ, we obtain

μ + (1 − eμτ )σ = �. (11)

In particular, for the twofold-degenerate eigenvalues �1,2 =
0, assuming that |μ| � 1 and expanding Eq. (11) up to the
second-order terms in μ, we get two real solutions

μ1,2 = 2(στ + 1)

στ 2
, μ3,4 = 0, (12)

where the zero solutions μ3,4 are associated with the trans-
lational symmetry of the model equations and μ1,2 change
their sign at the drift instability point στ = −1. At this point,
Eq. (11) has fourfold-degenerate solutions μ1,2,3,4 = 0. The
stationary spot solution loses stability and exhibits a uniform
motion that bifurcates from the stationary one. According to
Eq. (12), the stationary spot is stable for −1/τ < σ < 0 and
becomes unstable for στ < −1. The velocity of the moving
single spot can be estimated by performing an expansion in
terms of a small parameter ζ that measures the distance from

042918-4



DELAYED FEEDBACK INDUCES MOTION OF LOCALIZED . . . PHYSICAL REVIEW E 87, 042918 (2013)

the drift instability threshold ητ = −1 − ζ 2. Let us seek a
solution of Eq. (7) in the form of a uniformly moving spot
b(r,t) = b0(R) + ζ 3δb(R) + · · · , R = r − vt, where b0 is the
stationary spot solution evaluated at the drift instability point,
v = ζV is the LS velocity, and δb is the correction to the
LS shape due to its motion. We now plug this expression
into Eq. (7) and use the expansion b0(R − ζV τ ) = b0(R) −
ζV τb1(R) + (ζV τ )2b2(R)/2 − (ζV τ )3b3(R)/6 + · · · , where
V = |V| and bp = (V · ∇bp−1)/V (p = 1,2,3,4). By collect-
ing the third-order terms in ζ , we obtain the inhomogeneous
equation

(
	 + 3b2

0 + D∇2b0 − ∇4)δb = −V b1 + σ

6
(V τ )3b3. (13)

To satisfy the solvability condition, the right-hand side of
this equation should to be orthogonal to the translational
neutral modes φx,y = ∂xb0,∂yb0. By multiplying Eq. (13)
with the linear combination of these modes V · ∇b0/V ≡ b1

and integrating over two-dimensional space, we obtain the
equation for the velocity

V (G1 − σV 2τ 3G2) = 0, (14)

with G1 = ∫ +∞
−∞ b2

1dx dy and G2 = ∫ +∞
−∞ b1b3dx dy/6. The

nontrivial solution of Eq. (14) is given by

v = ζV = G

τ

√
−(1 + στ ), (15)

with G = G1/G2. This expression is valid not only for a single
spot but also for any localized pattern. The spatial form of the
pattern affects only the factor G in Eq. (15), which can be
estimated numerically. The dependence of the spot velocity on
the strength of the delay calculated by Eq. (15) is plotted for a
fixed value of the feedback strength in Fig. 6.
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FIG. 6. Velocity of single-peak LSs as a function of the feedback
strength. The parameters are γ = −1, D = −1, G = 3.26, and τ = 1.

IV. CONCLUSION

We have studied the FitzHugh-Nagumo system with de-
layed feedback in two spatial dimensions. Our analysis focused
on the neighborhood of the second-order critical point where
a long-wavelength pattern-forming process takes place. We
showed that in this regime the space-time dynamics of the
FitzHugh-Nagumo model with delayed feedback is described
by a generalized Swift-Hohenberg equation with time delay.
We showed that there exists a threshold above which both dark
and bright spots exhibit spontaneous motion in an arbitrary
direction with a constant velocity. We provided an estimation
of the velocity for single localized spots.
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[27] E. Schöll and H. G. Schuster, Handbook of Chaos Control
(Wiley, New York, 2008).

[28] N. N. Rosanov, Sov. J. Quantum Electron. 4, 1191 (1975);
R. Lang and K. Kobayashi, IEEE J. Quantum Electron. 16, 347
(1980); K. Pyragas and A. Tamasevicus, Phys. Lett. A 180, 99
(1993).

[29] Th. Pierre, G. Bonhomme, and A. Atipo, Phys. Rev. Lett. 76,
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