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Weak generalized synchrony in a drive-response system occurs when the response dynamics is a unique but
nondifferentiable function of the drive, in a manner that is similar to the formation of strange nonchaotic attractors
in quasiperiodically driven dynamical systems. We consider a chaotically driven monotone map and examine the
geometry of the limit set formed in the regime of weak generalized synchronization. The fractal dimension of the
set of zeros is studied both analytically and numerically. We further examine the stable and unstable sets formed
and measure the regularity of the coupling function. The stability index as well as the dimension spectrum of the
equilibrium measure can be computed analytically.
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I. INTRODUCTION

Although the subject of synchronization traces its origins
to the observations of Huygens [1] on coupled nonlinear
oscillators—namely pendulums suspended on a beam—the
recent surge of interest in the subject largely owes itself to a
number of developments in nonlinear science. Discoveries of
chaotic synchronization [2–4] and of collective behavior [5],
for instance, have enlarged the setting in which synchrony is
discussed, bringing highly nonlinear, aperiodic, and strongly
coupled systems into the ambit. This has helped to identify
synchrony as an instance of an emergent phenomenon with
parallels to bifurcations and phase transitions.

There are, typically, three very general scenarios within
which synchrony (in its several variants) is currently discussed.
Driven systems, or the so-called master-slave configurations
[3] wherein both the drive and response are identical nonlinear
systems can, under conditions that are well understood [6]
display perfect synchrony. Systems that are mutually coupled
[7] can also display perfect synchrony, depending on the
coupling strength as well as on the form of the coupling.
Another common scenario when two systems can show
synchrony is when they are both coupled to a third.

Within these different paradigms a number of types of
synchrony have also been discussed. When all the variables
of the two systems coincide, they are said to be in complete
or exact synchrony. If they coincide at different times, they
are in lag synchrony, and if the phase difference of their
oscillations remains bounded (regardless of the amplitude
variations) then the systems are said to be in phase synchrony.
In all these cases, the synchronizing systems are considered
to be similar to one another, namely identical or nearly
identical.

The notion of a generalized synchrony was first introduced
[8] to consider the dynamics when one system is driven by
another dissimilar one, and to address the question of whether
there was some sense in which the two systems could be said
to be synchronized or correlated. In the simplest case, given a
drive with dynamics

u̇ = F(u) (1)

and a response system

ẋ = G(x,u), (2)

the state of generalized synchrony is the condition that the
response is uniquely a function of the drive, namely

x = �[u] (3)

where F and G are taken to be smooth and differentiable.
The notion of generalized synchronization does of course
extend beyond the master-slave scenario described above; with
bidirectional coupling between the u and x subsystems, the
condition (3) needs to be expanded appropriately [9]. Further,
depending on whether the functional � is differentiable or not,
the generalized synchronization is further classified as strong
or weak [10,11].

An example of generalized synchrony is provided in
quasiperiodically driven nonlinear dynamical systems [12,13].
In this situation, the drive dynamics Eq. (1) is such that the
motion is quasiperiodic; for suitable coupling, it is known that
this can drive the response dynamics to an attractor on which
all Lyapunov exponents are nonpositive. The unique functional
dependence of the response variables on the drive, namely (3)
and the associated issues of the invertibility as well as that
of the differentiability of the function � have been studied in
detail. When the equations of motion of the response are ap-
propriately nonlinear, the nonpositive Lyapunov exponents can
nevertheless give rise to nontrivial quasiperiodic response dy-
namics if the (implicit) function � is nondifferentiable, namely
when there are strange nonchaotic attractors (SNAs). Further-
more, SNAs are known to be created via a number of distinct
bifurcation routes, many of which have parallels to bifurcation
phenomena in autonomous nonlinear dynamical systems.

When the drive dynamics is chaotic, there are analogies with
the case of a quasiperiodic drive [14]. The nondifferentiability
of the function � can also be observed to occur through
bifurcations that appear to be very similar to those in the
case of SNAs, and this leads to the interesting and open
question of the nature of generalized synchrony in chaotically
driven nonlinear systems. Specifically, the properties of �

are of interest in the case when all the conditional Lyapunov
exponents of the response system are nonpositive.
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In the present work we focus on a specific (but representa-
tive) example, similar to what has been studied in detail in the
context of SNAs. For instance the dynamical system

xn+1 = f (xn,un) = 2r tanh xn cos 2πun, (4)

where u has the dynamics

un+1 = un + 2πω (mod 2π ) (5)

with ω irrational [typically taken in numerical studies to be
the inverse golden mean ratio, (

√
5 − 1)/2)] has been studied

extensively. In this system, there is a transition to SNA: for
r � 1 the attractor is the line x = 0 and there is a blowout
bifurcation at r = 1, above which the attractor is strange, with
points on the line, as well as off the line. Here the existence
of an attractor that is both nonchaotic and strange can be
rigorously established [12,15,16]. As was subsequently shown
by Sturman and Stark [17], any strange compact invariant set
for a quasiperiodically forced system supports an invariant
measure with a non-negative maximal Lyapunov exponent in
the fiber (namely transverse) direction, i.e., it must contain
some nonattracting orbit. SNAs have been numerically studied
in a number of other systems, and are known to also be created
through other, different, bifurcations [18–21].

While the aperiodicity of the drive u is essential for
the strangeness, the nonchaoticity, namely the nonpositive
transverse Lyapunov exponent does not require a quasiperiodic
drive. In particular, a chaotic drive can also lead to a negative
transverse Lyapunov exponent in essentially the same manner
as in quasiperiodically driven systems [14]. If one takes u to
be the output of a Baker’s map, namely

un+1 =
{

aun if vn < a

a + (1 − a)un if vn � a
(6)

vn+1 =
{

vn/a if vn � a

(vn − a)/(1 − a) if vn > a,

with a between 0 and 1, typical orbits are chaotic and uniformly
distributed on the interval. Numerical computations [14] verify
that the resulting subsystem Lyapunov exponent is negative,
and the functional dependence of x on u is nonsmooth, namely
it is nondifferentiable above r = 1; a typical orbit is shown in
Fig. 1 in the regime of this “weak” GS. The similarity of the
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FIG. 1. (a) Limit set for the system defined by Eq. (4) at r = 1.5
when un is (a) a quasiperiodic drive [Eq. (5)] and (b) a chaotic drive
taken from the Baker’s map [Eq. (6)]. These calculations have been
done at 500-digit precision.

two scenarios suggests that there could be a deeper connection
between the systems.

Thus the main motivation of the present work is the
question: to what extent can the results obtained in the
case of a quasiperiodic drive be generalized to the class
of chaotically driven systems? In the following section we
therefore introduce a class of chaotically driven maps and
study the properties of its zeros. The fractal dimension of
the set of zeros is estimated analytically and is shown to be in
good agreement with numerically computed values. In Sec. IV,
we study a measure of the regularity of the attractor, further
examining its stable and unstable sets. Finally in Sec. V, we
summarize the main results of this work.

II. CHAOTICALLY DRIVEN MONOTONE MAPS

We study the transition to generalized synchronization in
a drive-response system with the generalized Baker’s map
F (u,v) above as drive and a response

Gr (u,x) = rg(u)h(x), (7)

where u is the stable coordinate of the Baker’s map. The
multiplier g(u) is a strictly positive, smooth function of
the drive, and h : [0,∞) → [0,∞) is a bounded, increasing,
strictly concave function with h(0) = 0 and h′(0) = 1. We take
h(x) = tanh(x), and

g(u) = 1 + ε + cos(2πu). (8)

Knowing only u0 one can recover the full past of the u process
applying the map τ : [0,1] → [0,1],

τ (u) =
{

u/a if u < a

(u − a)/(1 − a) if u � a
(9)

repeatedly. Indeed, u−n = τn(u0) for all n � 0.
We find the following scenario when the parameter r is

increased from 0 to high positive values: For each value of the
parameter there is a coupling function �r (u) that synchronizes
x with the drive so that x = �r (u) in the stationary regime.

When r is smaller than a first critical parameter r0, then
�r (u) = 0 for every u, so there is no nontrivial synchronization
at all. Above this value, when r is between r0 and a second
critical parameter rw, the identity �r (u) = 0 is violated on a set
of u of positive Hausdorff dimension but of Lebesgue measure
zero, which means that nontrivial synchronization may occur
but is hardly visible in simulations. Further increasing r above
rw results in a highly irregular coupling function �r (u) that
has a dense set of zeros but is positive for almost all u, so one
observes weak generalized synchronization [10]. This second
critical transition is illustrated in Figs. 2(b)–2(d). Finally,
increasing r above a third critical parameter rs results in strong
generalized synchronization in the sense that �r (u) is now a
strictly positive, smooth and nonconstant function of u. In
mathematical terms the function �r (u) is defined below in
Eq. (10).

We focus on the fine structure of the coupling function
�r (u) in the weak synchronization regime. This function has
two particularly noteworthy properties, firstly that the set Nr of
its zeros is dense in the interval [0,1]. Even more, it is a dense
Gδ set, namely it is the intersection of a countable decreasing
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FIG. 2. Limit set for the system xn+1 = fr,un
(xn) =

rg(un) tanh(xn) with g(u) = 1 + ε + cos(2πu)(ε = 0.001) at
different parameter values r , u is the chaotic drive taken from
the Baker’s map [Eq. (6)]. The value of the critical parameter is
rw = 1.91254. All calculations have been carried out at 500-digit
precision.

sequence of open dense sets. It should be noted that none of
these zeros is created by a zero value of the multiplier function
g(u). On the other hand, the set Nr has zero Lebesgue measure
so that the coupling function �r (u) is positive for Lebesgue
almost all u.

Therefore the fractal and self-similar structure of the graph
of �r (u) in a small neighborhood of the baseline x = 0 in
the full phase space is of particular interest. In this note we
propose to study the r dependence of this structure in two
related ways. We first evaluate the dimension of the set Nr of
zeros numerically using a formula derived in Ref. [22] from
thermodynamic formalism [23,24]. Based on the statistics of
long orbits we estimate the stability index of �r (u) along
the baseline x = 0 and in particular the values of the index
that prevail on Nr . This index was introduced in Ref. [25]
to measure the stability of an individual point on an irregular
boundary of a basin of attraction by evaluating the fraction that
the basin occupies in small neighborhoods of the given point.
Here we evaluate instead the fraction that the system’s global
attractor, which is just the area below the graph of �r (u),
occupies in small neighborhoods of points of the baseline.
Although the index measures rather the regularity of �r (u)
than its stability, we adhere to the name given in Ref. [25]. Our
numerical findings match the predictions made in Ref. [26]
quite well.

III. DIMENSION OF SET OF ZEROES

A. Background on the thermodynamic formalism

The set Nr = {u : �r (u) = 0} of zeros of �r is easily seen
to be invariant under the driving dynamics and hence also
under the map τ . Therefore it has measure 0 or 1 for each
ergodic invariant measure of τ . In particular, as the Lebesgue
measure is ergodic and invariant under τ , it is a Lebesgue null
set whenever r is between rw and rs .

The values �r (u) can be defined by a pullback construc-
tion: For each sufficiently large starting value z > 0, one

has

�r (u) = lim
n→∞ f n

r,u(z), where
(10)

f n
(r,u)(z) := fr,u−1{fr,u−2 [. . . fr,u−n

(z) . . .]}
and u−i = τ i(u). Explicitly, f 2

r,u(z) = fr,u−1 [fr,u−2 (z)],
f 3

r,u(z) = fr,u−1{fr,u−2 [fr.u−3 (z)]} and so on. This is a variant
of the usual pullback construction, see, e.g., Ref. [15]. As
these pullback orbits spend most of the time close to zero
when their limit �r (u) is equal to 0, it is plausible that
Nr coincides essentially with the set of all u for which the
pullback Lyapunov exponent in fiber direction at (u,0) defined
by

�(r,u) = lim
n→∞

1

n
ln

(
f n

r,u

)′
(0) = ln r + lim

n→∞
1

n

n∑
i=1

ln g(u−i)

(11)

is not positive. Indeed, one can show [22] that there is a unique
invariant probability measure μr supported on Nr for which∫

�(r,u)dμr (u) = 0 and which is the unique measure of max-
imal Hausdorff dimension among all invariant probabilities
supported on Nr . The Hausdorff dimension dH (μr ) of this
measure coincides with that of the set Nr , and in the rest of this
section we will concentrate on the numerical determination of
dH (μr ).

The measure μr can be explicitly constructed as the unique
equilibrium measure μη,β for the potential −η ln τ ′ + β ln(rg)
where η = η(r) and β = β(r) are determined such that its
average Lyapunov exponent in fiber direction

�(r,μη,β ) :=
∫

�(r,u)dμη,β (u) = ln r +
∫

ln g(u) dμη,β (u)

(12)

is zero and its free energy is zero as well. Hence the two
parameters η and β are the solution to two equations∫

ln g(u) dμη,β (u) = − ln r (13)

and

Ptop[−η ln τ ′ + β ln(rg)] = 0, (14)

where Ptop(ψ) denotes the topological pressure (also called
free energy) of a potential ψ . By the variational principle,

Ptop[−η ln τ ′ + β ln(rg)] = max
μ

{hKS(μ) − η�(μ) + β�(r,μ)}
(15)

where the maximum extends over all τ -invariant
probabilities μ,

�(μ) =
∫

ln τ ′(u) dμ(u) (16)

is the Lyapunov exponent of τ under μ, and hKS(μ) denotes
the Kolmogorov-Sinai entropy of (τ,μ) [27]. The equilibrium
measure μη,β is the unique invariant probability measure for
which the maximum in Ref. (15) is attained.

As �(r,μη,β) = 0, Eqs. (14) and (15) imply that
hKS(μη,β) − η�(μη,β ) = 0, so that finally the identity “entropy
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FIG. 3. (Color online) (a) ln r and η as functions of β. (b) Implicit
plot of η(β) = dH (Nr(β)) versus ln r(β). The maximum value η(β) =
1 is reached for β = 0 at ln r(β) = ln rw = 0.648428, compare this
to the theoretical value ln[2/(1 + ε + √

2ε + ε2)] = 0.648430 for
ε = 0.001.

equals dimension times Lyapunov exponent” yields

dH (Nr ) = dH (μr ) = hKS(μη(r),β(r))

�(μη(r),β(r))
= η(r). (17)

This identity, in its simplest form, goes back to work of
Besicovich, Eggleston, and Billingsley [28], but see also
Ref. [29] for a more recent account. For a particular system
the function η(r) is depicted in Fig. 3. It was mathematically
investigated in Ref. [22] where it was proved that it is real
analytic and unimodal on the interval (r0,rs) with a unique
maximum at rw. There is no mathematical proof that its
limiting values η(r0) and η(rs) are always identically zero,
but see Sec. III C for a discussion of the system in Fig. 3.

B. Determining dH (Nr )

Denote by u(1),u(2), . . . ,u(2N ) the collection of the 2N fix
points of the map τN . These are all periodic points of τ whose
minimal period divides N . Let φN (u) = ∑N−1

i=0 ln τ ′(τ iu) and
ψN (u) = ∑N−1

i=0 ln g(τ iu). With these conventions we define

μN
η,β = 1

ZN (η,β)

2N∑
j=1

e−ηφN (u(j ))+βψN (u(j ))δu(j ) , (18)

where ZN (η,β) = ∑2N

j=1 e−ηφN (u(j ))+βψN (u(j )) is the partition
function. As equilibrium measures μη,β are very well approxi-
mated by convex combinations of Dirac measures on periodic
points [30], Eq. (13) can be replaced, for numerical purposes,
by

1

ZN (η,β)

2N∑
j=1

e−ηφN (u(j ))+βψN (u(j )) ln g(u(j )) = −ln r (19)

and as N−1 ln ZN (η,β) + β ln r converges to the pressure from
(14) in the limit N → ∞, equation (14) can be replaced by

N−1 ln ZN (η,β) + β ln r = 0. (20)

For both equations, N has to be sufficiently large; note that the
number of point masses in μN

η,β is 2N .
Combining (19) and (20) leads to the following equation

that does not involve the parameter r and can be solved

numerically for η when β is given,

1

ZN (η,β)

2N∑
j=1

e−ηφN (u(j ))+βψN (u(j )) ln g(u(j )) = ln ZN (η,β)

Nβ
.

(21)

Knowing η(β), equation (20) yields at once the value of
the corresponding parameter r(β). As each point u(j ) is
represented by exactly one of the 2N symbolic 0-1 sequences
of length N , the values of the u(j ) can be determined efficiently
and to high precision by iterating backwards the inverses of
the corresponding branches of τ .

For the system described in Eqs. (8) and (9) with parameters
a = 0.45 and ε = 0.001, the η(r) curve is displayed in Fig. 3.
Observe that the maximal dimension dH (Nr ) = η(r) is
1 and that it is attained when ln r = 0.648428. This is
the parameter rw where the graph of �r (u) starts to
detach from the baseline. Its numerically determined
value is in excellent agreement with the precise value
ln rw = − ∫ 1

0 ln g(u) du = − ∫ 1
0 ln[1 + ε + cos(2πu)] du =

ln[2/(1 + ε + √
2ε + ε2)] = 0.6484295 [31]. The increasing

branch of the curve in Fig. 3 is related to the size of
the set Nc

r = {u : �(u) > 0} for r < rw, in which case
dH (Nc

r ) = η(r) [22].
It follows from Eqs. (13)–(15) that the limiting values of

r(β) for β → ±∞ are given by ln r(+∞) = −maxμ

∫
ln g dμ

and ln r(−∞) = −minμ

∫
ln g dμ. It is not hard to see that

r(+∞) = r0 and r(−∞) = rs for the critical parameters r0 and
rs introduced in Sec. II. For the above numerical example one
calculates along the lines of Sec. III C that ln r0 = −0.6936471
and ln rs = 1.865523.

C. Apparent discontinuities at the ends of the η(r) curve

The lower left points of the graph of dH (Nr ) in Fig. 3(b)
have coordinates [r(β),η(β)] for large β > 0, and also a further
increase of β leads to a saturation at r(β) = rs and η(β) =
N−1. At first sight one might think that the curve drops down
to zero at this point. However these apparent discontinuities are
due to the approximation of Eqs. (13) and (14) by (19) and (20):
The function ψ(u) = ln[1 + ε + cos(2πu)] attains its unique
maximum ln(2 + ε) at the fixed points u = 0 and u = 1 of τ .
Therefore, for each N the maximum of all values ψN (u(j ))/N
is attained at the fixed points u(1) = 0 and u(2N ) = 1. Indeed,
for large β > 0 the two terms ψN (u(1)) and ψN (u(2N )) dominate
the sum defining ZN (η,β) completely, so that Eq. (21) reduces
to

ln(2 + ε) ≈ − 1

Nβ
ln[a−Nη(2 + ε)Nβ + (1 − a)−Nη(2 + ε)Nβ]

= ln(2 + ε) − 1

Nβ
ln[a−Nη + (1 − a)−Nη],

and this has the only solution η = N−1.
The error in this approximation is of order o(N ) as has

been verified numerically for different values of N from
N = 15–24, as described in Table I. A similar analysis can
be carried out for the lower right points of the graph of
dH (Nr ) in Fig. 3(b). For large negative β the sum is now
dominated by the contributions from the three-periodic orbit
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TABLE I. The η values at the left and right end of the graph in Fig. 3(b).

Left end of curve Right end of curve

Theoretical value Numerical value Theoretical value Numerical value
N of η = N−1 for β → ∞ of η(β) for β = 2 of η = N−1 3 ln 3

− ln(a2(1−a))
for β → −∞ of η(β) for β = −2

15 0.0666 0.0666 0.1001 0.1002
18 0.0555 0.0555 0.0835 0.0835
21 0.0476 0.0476 0.0715 0.0717
24 0.0416 0.0416 0.0626 0.0628

with symbolic sequence (001)∞. When N is a multiple of 3, a
similar calculation as before leads to

η = N−1 3 ln 3

−ln[a2(1 − a)]
(22)

Comparison of the theoretical values and the values ob-
tained numerically are given in Table I confirming excellent
agreement.

IV. MULTIFRACTAL PROPERTIES
OF THE STABILITY INDEX

A. The stability index

Podvigina and Ashwin [25] introduced a stability index to
quantify the local geometry of basins of attraction close to
points on the basin boundary. Here we use the same index
to measure the local regularity of the coupling function x =
�r (u) close to the baseline x = 0. As the region between
the baseline and the graph of �r (u) is the global attractor of

the system, our situation is not too different from the one in
Ref. [25].

For each u let

σ (u) := σ+(u) − σ−(u) (23)

where

σ−(u) := lim
ε→0

ln �ε(u)

ln ε
and σ+(u) := lim

ε→0

ln[1 − �ε(u)]

ln ε

(24)

and

�ε(u) := 1

2ε2

∫ u+ε

u−ε

min{�r (t),ε} dt, (25)

When the r dependence of σ (u) is to be emphasized, it is
denoted σ (r,u).

To motivate this index consider the simplest model
situation where �r (u) = |u|p, p > 0, for −ε � u � ε.
Then

�ε(0) =
⎧⎨
⎩

1
2ε2

(
2ε

(
ε − ε

1
p

) + ∫ ε1/p

−ε1/p |u|p du
) = 1 − p

p+1ε(1−p)/p if p � 1
1

2ε2

∫ ε

−ε
up du = 1

p+1εp−1 if p � 1,
(26)

so that σ (0) = (1 − p)/p if p � 1 and σ (0) = 1 − p if p � 1.
Hence strongly negative values of the index correspond to large
p for which the region between the baseline and the graph of
� is very thin in small neighbourhoods of 0, while strongly
positive values of the index correspond to p very close to
zero for which this region nearly fills small neighborhoods
of 0.

The index σ (r,u) is invariant under the dynamics, i.e.,
σ (r,τ (u)) = σ (r,u) [25], so it is almost surely constant for
each of the equilibrium measures μη,β introduced in Sec. III A.
Consider now a second parameter r ′ = re−γ . The set of points
u for which �(r,u) = γ = −ln r ′

r
coincides with the set of

points for which �(r ′,u) = 0, which in turn is well represented

by the equilibrium measure μr ′ = μη(r ′),β(r ′) as argued in
Sec. III A. As in Sec. III B we use β as the independent
parameter and study μr ′(β) = μη(β),β and

σ(±)(r,β) :=
∫

σ(±)(r,u) dμr ′(β)(u) (27)

as a function of β. So σ (r,β) is the stability index of �r (u)
at typical points u for which the Lyapunov exponent in fiber
direction is �(r,u) = − ln r ′(β)

r
.

B. Theoretical prediction for the stability index

Let

�(β) :=
∫

ln τ ′ dμr ′(β) = �(μr ′(β)) and (28)

�(β) :=
∫

ln g dμr ′(β) = �(r,μr ′(β)) − ln(r) . (29)
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It was proved in Ref. [26] that

σ (r,β) =
{

σ+(r,β) = ln r+�(β)+�(β)
�(β) s∗(r) if ln r + �(β) + �(β) � 0

−σ−(r,β) = ln r+�(β)+�(β)
�(β) if ln r + �(β) + �(β) � 0 .

(30)

(Note that in Ref. [26] the multiplicative parameter r is
included in the function g.) Here s∗(r) is a thermodynamic
quantity, namely the unique positive zero of the function
Fr (s) = Ptop[−ln τ ′ − s ln(rg)]. [Observe that Fr is convex,
that Fr (0) = 0 and F ′

r (0) = − ∫
ln[rg(u)] du < 0 as r > rw,

and that lims→∞ Fr (s) = ∞ as r < rs .]
Replacing Fr (s) and the equilibrium measure μr ′(β) by their

periodic orbit approximations N−1 ln ZN (−1, −s) and μN
η(β),β

from (18) and (20), respectively, one can compute �(β) and
�(β) to high precision and determine σ (r,β) as a function
of β. For the particular system defined in (8) and (9) and
with parameters a = 0.45, ε = 0.001, and r = 2, this curve is
displayed in Fig. 4. The approximation is based on all 221 fixed
points of the map τN , N = 21, The critical value for β where
ln r + �(β) + �(β) = 0 is denoted by βr ; to approximate it
numerically is straightforward.

C. Computation of the stability index σ (r,β)

In this section we describe a numerical procedure to
estimate σ (r,β) from its definition, and we compare the results
to the theoretical predictions reported in Sec. IV B.

As the numerical computation of σ−(r,u) = limε→0
ln �ε (u)

ln ε

from (24) for individual points u is rather unfeasible, we
replace a direct estimate of σ−(r,β) = ∫

σ−(r,u) dμr ′(β)(u) by
an estimate of limε→0

1
ln ε

ln
∫

�ε(u) dμr ′(β)(u). This involves,
on the one hand, an interchange of the limit and the integral,
which we take for granted, because numerical computations
are based on finite positive ε anyway. On the other hand,
it involves an interchange of the integral and the logarithm,
which has the potential to distort our estimates. This difficulty
is resolved by truncating the �ε(u) values at the 80% level,
a procedure that was justified and shown to work properly in
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FIG. 4. (Color online) (a) The stability index σ (r,β) as a function
of β (blue line) and its direct numerical approximation s̃(r,β)
(red circles). (b) The (approximate) dimension spectrum of the
stability index. The maximal dimension 1 is attained at σ = 0.082,
the theoretical value of the index for Lebesgue-typical points. All
calculations are performed for the system given by (8) and (9) with
parameters a = 0.45, ε = 0.001, r = 2 and order of approximation
N = 21. The factor s∗ from (30) is numerically determined as
s∗ = 0.077.

the related situation of estimating the information dimension
of a distribution [32]. For computational purposes we also
replace the �ε(u) by values �′

ε(u), which are defined just
like the �ε(u) in (25) but replacing the integration interval
(u − ε,u + ε) centered at u by that interval of a 2ε grid, which
contains the point u.

In this way we approximate the integrals
∫

�′
ε(u) dμr ′(β)(u)

for a scale of ε values and determine the slope s−(r,β) of
the graph of ln

∫
�′

ε(u) dμr ′(β)(u) as a function of ln ε by the
method of least squares. This is our numerical approximation
to σ−(r,β). In an analogous way a numerical approximation
s+(r,β) of σ+(r,β) is determined.

In order to calculate
∫

�′
ε(u) dμr ′(β)(u) numerically, we

replace again the measure μr ′(β) = μη(β),β by its periodic
point approximation μN

η(β),β from (20). The quantities �′
ε(u) =

1
2ε2

∫
Ik

min{�r (t),ε} dt are approximated by numbers Sε(u) as
follows. Denote by I1, . . . ,IM the intervals of a 2ε grid of [0,1].
Suppose u ∈ Ik . To calculate the Sε(u), we choose a random
point v ∈ [0,1] and a large integer L and sum up all values
�r (τ jv) (j = 1, . . . ,L) for which τ jv ∈ Ik and �r (τ jv) � ε,
and add ε for each τ jv ∈ Ik for which �r (τ jv) > ε. Once
this sum is calculated, it is normalized. (Observe that the
orbit (τ jv)j∈N of a typical point v ∈ [0,1] is equidistributed in
[0,1].)

Putting everything together we obtain the following ap-
proximation to σ (r,β):

s̃(r,β) :=
{

−s−(r,β) if β < βr

s+(r,β) if β > βr.
(31)

It is plotted in Fig. 4(a) together with the predicted values
from Sec. IV B, and as can be seen, the agreement is quite
satisfactory.

Although we do not undertake a full multifractal analysis of
the stability index in this paper, we present in Fig. 4(b) a plot
of the dimension η(σ ) of that equilibrium measure μr ′(β) that
realizes the stability index σ = σ (r,β) with r = 2, see (27). If
the slope of τ were equal to a−1 = 2, this would precisely be
the dimension of all points with index σ ; here this dimension
will deviate slightly from the one in Fig. 4(b).

V. SUMMARY

The manner in which correlations between disparate in-
teracting systems develop is of interest, and the phenomenon
of generalized synchronization, which is ubiquitous in nature
offers a comprehensive framework for understanding the
emergence of such correlations. The formation of dynamical
attractors that are in some sense stable arises from the existence
of a functional relationship between the variables of the two
subsystems.

Here we have exploited the parallels between the transition
to WGS when a nonlinear system is driven by a chaotic force,
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and the creation of SNA when the drive is quasiperiodic. The
theory for chaotically forced systems is poorly developed in
comparison to the theory associated with quasiperiodically
forced systems. In the present paper we have considered
a simple example of the former situation, namely that of
a monotone map driven by a chaotic iterative dynamical
system. We show that it is possible to calculate the Hausdorff
dimension of the set of zeros of the invariant graph and are
also able to estimate the stability index that prevails over the
set close to the base. The theoretical and numerical estimates
of the stability index show quite satisfactory agreement.
Transitions in the dimension spectrum in a related system,
namely the filtered Baker map driving a one-dimensional

dynamical system have been studied earlier [33], also using the
thermodynamic formalism. In related [22,26] and future work
we aim to study these connections in greater detail, and extend
this analysis to higher dimensions as well as to continuous
dynamical systems.
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