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Topology-free design for amplitude death in time-delayed oscillators coupled
by a delayed connection
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This paper deals with amplitude death in time-delayed oscillators coupled by a delayed connection with
topology uncertainty. A systematic procedure without trial-and-error testing for designing connection parameters
is proposed from a robust control theory viewpoint. This procedure has the following two advantages: the
designed connection parameters are valid for any network topology and the procedure is valid even for long-delay
oscillators. These analytical results are verified by some numerical simulations.

DOI: 10.1103/PhysRevE.87.042908 PACS number(s): 05.45.Xt, 05.45.Gg, 02.30.Yy, 89.75.−k

I. INTRODUCTION

There has been some interest in coupled nonlinear oscilla-
tors from the viewpoints of both academia [1,2] and engineer-
ing applications [3–6]. A diffusive-connection-induced stabi-
lization of unstable steady states in coupled oscillators, which
is often referred to as amplitude death, has been investigated
for over two decades [7,8]. Although this phenomenon never
occurs in coupled identical oscillators [7,9], a time-delayed
connection can induce it [10]. Such time-delay-induced death
has received considerable attention from analytical [11–23]
and experimental [24,25] points of view.

It is generally known that time delays in engineering
nonlinear systems induce self-excited oscillations [26], such
as in metal cutting processes [27,28] and contact rotating
systems [29]. These oscillations have been considered to be
harmful in engineering applications. In the case where the
self-excited oscillations occur in a number of identical time-
delayed nonlinear systems, amplitude death has a great deal of
potential to be a candidate phenomenon for suppressing such
oscillations [30]. Most previous studies on amplitude death,
however, dealt with the stabilization of oscillators without
time delay. Recently, amplitude death in a pair of time-delayed
oscillators coupled by a delayed connection was analytically
investigated, and the analytical results were experimentally
confirmed by electronic circuits [32]. Furthermore, Höfener,
Sethia, and Gross investigated the stability of large networks
consisting of time-delayed oscillators coupled by a delayed
connection [33].

For practical situations where death is desirable for engi-
neering applications, it is required to design the connection
parameters (i.e., coupling strength and connection delay) by
a simple procedure without trial-and-error testing. Previous
studies [32,33], however, have focused only on the stability
analysis and then did not provide such a procedure. The
present paper proposes a systematic procedure for designing
the connection parameters. This procedure has the following
two advantages: the designed connection parameters are valid
for any network topology and the procedure is valid for any
long oscillator delay. This procedure is based on the following
facts: the stability of time-delayed oscillators coupled by a
delayed connection with topology uncertainty can be reduced
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to that of a time-delay linear system with parameter uncertainty
and an uncertain linear system can be analyzed by using robust
control theory [34,35]. These analytical results are verified by
some numerical simulations.

II. DELAY-COUPLED TIME-DELAYED OSCILLATORS

Consider a network system consisting of scalar nonlinear
time-delayed oscillators,

ẋn = −αxn + f (xn,τ ) + un, (1)

where xn ∈ R and un ∈ R are the state variable and the
coupling signal of oscillator n, respectively. f : R → R
denotes a nonlinear function, and xn,τ := xn(t − τ ) is the
delayed variable with oscillator delay τ � 0. Here α > 0 is
a parameter. As illustrated in Fig. 1, each oscillator is coupled
by a delayed connection,

un = k

{
xn − 1

dn

(
N∑

m=1

cnmxm,T

)}
, (2)

where k ∈ R is the coupling strength. This is a kind of
diffusive connection. N � 2 and T � 0 are the total number of
oscillators and the connection delay, respectively. The network
topology is governed by cnm: If oscillator n is connected to
oscillator m, then cnm = cmn = 1, otherwise cnm = cmn = 0.
The self-delayed signals xn,T := xn(t − T ) are not allowed to
be injected, that is cnn = 0. The number of oscillators that are
connected to oscillator n, denoted as the degree of oscillator n,
is written as dn = ∑N

m=1 cnm. Suppose that there is no isolated
oscillator, that is, dn > 0. Each oscillator (1) without coupling
(i.e., k = 0) has the fixed point

x∗ : 0 = −αx∗ + f (x∗). (3)

A steady state of oscillators (1) coupled by a delayed
connection (2) is described by

[x1 · · · xN ]T = [x∗ · · · x∗]T . (4)

The fixed point x∗ is assumed to be unstable throughout
this paper. Note that a delayed connection (2) can change the
stability of x∗ but cannot move its location. It is generally
known that a diffusive-connection-induced stabilization of
steady state (4) is often referred to as amplitude death. Note
that this network system (N � 2) is an extension of the
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FIG. 1. Illustration of a network system consisting of delayed
oscillators (1) coupled by delay connection (2) with topology uncer-
tainty and a time-delay linear system with parameter uncertainty. The
stability of steady state (4) in the network is equivalent to that of the
linear system.

delay-coupled time-delayed oscillators (N = 2) proposed in
our previous paper [32].

III. STABILITY ANALYSIS

In order to analyze the linear stability of the steady state,
we have to consider the dynamics of the linearized oscillators
and connection,

δ̇xn = −αδxn + βδxn,τ + δun, (5)

δun = k

{
δxn − 1

dn

(
N∑

m=1

cnmδxm,T

)}
, (6)

where δxn ∈ R denotes the variation of oscillator n around
the fixed point x∗, that is, δxn := xn − x∗. Here β :=
{df (x)/dx}x=x∗ is the derivative of f (x) at x = x∗. The
linearized dynamics around the steady state is governed by

˙δx = (k − α)δx + βδxτ − kCδxT , (7)

where δx := [δx1 · · · δxN ]T . The delayed variations are
denoted by δxτ := δx(t − τ ) and δxT := δx(t − T ). The
elements of C are given by {C}nm = cnm/dn for n �= m and
{C}nn = 0.

The characteristic equation of linear system (7) is described
by

det[(s − k + α)IN − β INe−sτ + kCe−sT ] = 0, (8)

where s is a complex number. This linear system is stable if
and only if all the roots s of Eq. (8) are in the open left-half
complex plane. Hence, we shall focus on the location of roots
s in the complex plane.

Remark that H := IN − C is similar to a real sym-
metric matrix H̃ := IN − D−1/2 AD−1/2, where D :=
diag{d1, . . . ,dn} and A := DC [36]. Thus, H and H̃ have
the same real eigenvalues ρq (q = 1, . . . ,N). It is generally
known that a real symmetric matrix is similar to the diagonal
matrix whose diagonal elements are its real eigenvalues. As a
consequence, H is similar to the diagonal matrix and then can

be diagonalized as

P−1 H P = diag(ρ1, . . . ,ρN ),

where P is a diagonal transformation matrix. It should be noted
that the eigenvalues of H̃ , which are equivalent to those of H ,
are within the range ρq ∈ [0,2] for any network topology (see
Lemma 1.7 in Ref. [37] and Ref. [12] for details):

0 = ρ1 � ρ2 � · · · � ρN � 2. (9)

This fact allows us to simplify the characteristic equation (8):

g(s) = det[P−1{(s − k + α − βe−sτ )IN + kCe−sT }P]

= det[(s − k + α − βe−sτ + ke−sT )IN

− ke−sT P−1 H P]

= det[(s − k + α − βe−sτ + ke−sT )IN

− ke−sT diag(ρ1, . . . ,ρN )]

= 0. (10)

As g(s) is a determinant of the diagonal matrix, it can be
expressed as a product of the characteristic equations of scalar
systems,

g(s) :=
N∏

q=1

ḡ(s,ρq) = 0, (11)

where the quasipolynomial ḡ(s,ρ) is given by

ḡ(s,ρ) := s + α − k{1 − (1 − ρ)e−sT } − βe−sτ . (12)

It is obvious that the steady state is stable for any network
topology if all the roots s of ḡ(s,ρ) = 0 are in the open left-half
complex plane for all ρ ∈ [0,2]. It must be emphasized that
ḡ(s,ρ) denoted by Eq. (12) is equivalent to the characteristic
quasipolynomial of a time-delay linear system with parameter
uncertainty (see Fig. 1),

˙̄x = −αx̄ + βx̄τ + ū,
(13)

ū = k {x̄ − (1 − ρ)x̄T } ,

where x̄ ∈ R is the state variable and ρ ∈ [0,2] can be treated
as an uncertain parameter. We see that the stability of the steady
state in the network with oscillators (1) and connection (2) with
topology uncertainty is equivalent to that of the linear system
(13) with parameter uncertainty. The next section proposes a
procedure to design the delayed connection parameters, k and
T , such that all of the roots of ḡ(s,ρ) = 0 are in the open
left-half complex plane for all ρ ∈ [0,2].

IV. DESIGN OF DELAYED CONNECTION

In the previous study [32], it was shown that, if α < β holds,
amplitude death never occurs at the steady state in a pair of
oscillators (i.e., N = 2) [38]. Now we extend this property to
a network system with oscillators (1) and connection (2).

Lemma 1. Amplitude death never occurs at steady state (4)
in a network system consisting of oscillators (1) coupled by
connection (2) if α < β holds.

Proof. Consider the stability of ḡ(s,0). This quasipoly-
nomial at s = 0 is ḡ(0,0) = α − β and, for real positive s,
ḡ(s,0) → +∞ as s → +∞. This implies that, if α < β (i.e.,
ḡ(0,0) < 0) holds, ḡ(s,0) = 0 has at least one real positive
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root. Since ρ1 = 0 is always held due to Eq. (9), characteristic
equation g(s) = 0 includes ḡ(s,0) = 0. Thus, the stability of
ḡ(s,0) is a necessary condition for that of g(s) = 0. As a
result, condition α < β is a sufficient condition for g(s) to be
unstable. �

The fixed point x∗ of oscillators (1) without coupling (i.e.,
k = 0) is stable for any τ � 0 if |β| < α holds (see Sec. 5.2 in
Ref. [39]). From this condition and lemma 1, the present paper
has to consider oscillators (1) satisfying

β < −α < 0. (14)

This assumption indicates that x∗ is unstable and amplitude
death may occur at the steady state.

Our main goal is to provide a systematic procedure for
designing the coupling strength k and the connection delay
T such that the steady state in a network system is stable
for any topology C and for any oscillator delay τ � 0. The
eigenvalue ρ ∈ [0,2], which is the uncertain parameter of
ḡ(s,ρ), depends on the network topology C; therefore, if the
family of quasipolynomials,

� := {ḡ(s,ρ) | ρ ∈ [0,2]} , (15)

is stable, the stability of the steady state is guaranteed
regardless of the network topology. Since all the coefficients
of ḡ(s,ρ) are affine functions of ρ [see Eq. (12)], the family
� can be rewritten as a convex combination of the two
quasipolynomials, ḡ(s,0) and ḡ(s,2), in the coefficient space,

� := {(1 − μ)ḡ(s,0) + μḡ(s,2) | μ ∈ [0,1]} , (16)

where the one-parameter is given by μ := ρ/2. As a result,
ḡ(s,ρ) for ρ ∈ [0,2] denoted by Eq. (15), that is equivalent
to the one-parameter family ḡ(s,2μ) for μ ∈ [0,1] denoted by
Eq. (16), forms a segment with vertices ḡ(s,0) and ḡ(s,2) in the
coefficient space as illustrated in Fig. 2(a). One may conclude
that we have to check the stability of the entire segment to
guarantee the stability of �. This is not true; we can check it
by only examining the segment vertices ḡ(s,0) and ḡ(s,2). In
robust control theory [34,35], it is known that � is stable if the
following two conditions are satisfied:

Condition 1: ḡ(s,0) and ḡ(s,2) are stable;
Condition 2: φ(ω) := arg [ḡ(jω,0)]− arg [ḡ(jω,2)]�= ± π

for any ω ∈ [0, + ∞), where j 2 = −1.
Condition 1 provides a stability of the segment vertices

ḡ(s,0) and ḡ(s,2): All the roots of ḡ(s,0) = 0 and ḡ(s,2) = 0
are in the open left-half complex plane. These roots never
cross the imaginary axis for any μ ∈ (0,1), since condition
2 implies that (1 − μ)ḡ(jω,0) + μḡ(jω,2) �= 0, as illustrated
in Fig. 2(b), holds for any ω ∈ [0, + ∞). This is a rough ex-
planation of these conditions: see Ref. [34] and Theorem 4.1.3
in Ref. [35] for its rigorous proof. The following lemmas and
corollary provide k and T such that the above two conditions
hold.

Lemma 2. ḡ(s,0) and ḡ(s,2) are stable (i.e., condition 1
holds) if the connection delay T > 0 is set to

T = 1
2τ, (17)

and the coupling strength k < 0 is chosen from

k ∈ (4β − 2
√

2β(β − α),4β + 2
√

2β(β − α)). (18)

(a) (b)

FIG. 2. Sketches of segment � and vectors ḡ(jω,0) and ḡ(jω,2):
(a) � with vertices ḡ(s,0) and ḡ(s,2) in the coefficient space and (b)
vectors ḡ(jω,0) and ḡ(jω,2) on the complex plane.

Proof. This proof is divided into two steps: step (i) T =
τ = 0 and step (ii) T = τ/2 � 0. Step (i) shall prove that all
the roots of ḡ(s,0) = 0 and ḡ(s,2) = 0 for T = τ = 0 are in
the open left-half complex plane, and step (ii) shall show that
these roots with T = τ/2 � 0 never cross the imaginary axis
for any τ ∈ [0, + ∞).

For step (i), T = τ = 0 is substituted into ḡ(s,0) and ḡ(s,2):

ḡ(s,0) = s + α − β, ḡ(s,2) = s + α − 2k − β.

From assumption (14), we notice that all the roots of ḡ(s,0) =
0 and ḡ(s,2) = 0 with T = τ = 0 are in the open left-half
complex plane for any k < 0.

For step (ii), we consider ḡ(jω,0) = Re[ḡ(jω,0)] +
j Im[ḡ(jω,0)] and ḡ(jω,2) = Re[ḡ(jω,2)] + j Im[ḡ(jω,2)].
We see that ḡ(jω,0) = 0 is not satisfied for any ω ∈ R [i.e.,
none of the roots of ḡ(s,0) = 0 ever cross the imaginary axis]
if at least one of Re[ḡ(jω,0)] = 0 and Im[ḡ(jω,0)] = 0 does
not hold for any ω ∈ R. The same holds true for ḡ(jω,2) = 0.
Let us show that Re[ḡ(jω,0)] = 0 and Re[ḡ(jω,2)] = 0 with
T = τ/2 � 0 do not hold for any ω ∈ R. Here Re[ḡ(jω,0)]

FIG. 3. Flow chart of our systematic procedure for designing k

and T . This procedure is based on a sufficient condition for the steady
state to be stable.
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FIG. 4. Roots of ḡ(s,ρ) = 0 (ρ = 0,2) (τ = 5,T = 2.5,k = −2).

and Re[ḡ(jω,2)] are given by

Re[ḡ(jω,0)] = α − k + β + h0(ωτ ),

Re[ḡ(jω,2)] = α − k + β + h2(ωτ ),

where

h0(ωτ ) := k cos
ωτ

2
− 2β cos2 ωτ

2
,

h2(ωτ ) := −k cos
ωτ

2
− 2β cos2 ωτ

2
.

From a simple algebraic computation, we notice that these
functions satisfy h0,2(ωτ ) � k2/(8β). As a result, we obtain
Re[ḡ(jω,0)] � h(k) > 0 and Re[ḡ(jω,2)] � h(k) > 0 [see
Fig. 2(b)], where

h(k) := α − k + β + k2

8β
. (19)

These inequalities imply that Re[ḡ(jω,0)] = 0 and
Re[ḡ(jω,2)] = 0 with T = τ/2 � 0 do not hold for any
ω ∈ R. Condition (18) presents the range k satisfying
h(k) > 0. �

This lemma is equivalent to a design procedure for a pair of
oscillators (i.e., N = 2) [40], since g(s) = ḡ(s,ρ1)ḡ(s,ρ2) =
ḡ(s,0)ḡ(s,2).

Corollary 1. φ(ω) �= ±π for any ω ∈ [0, + ∞) holds (i.e.,
condition 2 holds), if the connection delay T > 0 and the
coupling strength k < 0 are designed in lemma 2.

Proof. φ(ω) �= ±π suggests that the two vectors ḡ(jω,0)
and ḡ(jω,2) on the complex plane [see Fig. 2(b)] never have
the opposite direction for any ω ∈ [0, + ∞). This is obviously
true if the real parts of the two vectors are positive,

Re[ḡ(jω,0)] > 0, Re[ḡ(jω,2)] > 0, ∀ω ∈ [0, + ∞).

(20)

Inequalities (20) have been already proved in lemma 2. �
Note that Eq. (17) and range (18) are independent of each

other. This independence implies that the designed k is valid
for any τ > 0. As a consequence, lemmas 1 and 2 and corollary
1 obtained above lead to the following main result.

Theorem 1. Assume that oscillators (1) satisfy inequality
(14). Steady state (4) in oscillators (1) coupled by connection
(2) is stable for any network topology C and for any oscillator
delay τ > 0, if the connection delay T > 0 is set to Eq. (17)
and the coupling strength k < 0 is chosen from range (18).

Proof. Since it is obvious from lemmas 1 and 2 and corollary
2, the proof is omitted. �

This theorem provides a systematic procedure to design the
coupling strength k and the connection delay T (see Fig. 3):
first, oscillator parameters, α, β, and τ , are known; second, if
assumption (14) is not satisfied, then we have to abandon this
procedure for designing them; third, T is set to Eq. (17) and k <

0 is chosen from range (18). It must be emphasized that k and T

designed in accordance with our flow chart illustrated in Fig. 3
are valid for any network topology C and for any τ � 0. Note
that it is possible to reach the goal by other design procedures,
since this theorem is based on a sufficient condition for the
steady state to be stable.

V. NUMERICAL EXAMPLES

This section numerically confirms the analytical results
provided in the preceding sections. Consider oscillators (1)
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ḡ(jω, 0)

ω = 0.0

ω = +∞

(a)

0 2 4 6 8
−5

0

5

10

Real

Im
ag

e

h(k)

ω = 0.0
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FIG. 5. Vector loci of ḡ(jω,0) and ḡ(jω,2) (τ = 5,T = 2.5,k = −2): (a) ḡ(jω,0) and (b) ḡ(jω,2).

042908-4



TOPOLOGY-FREE DESIGN FOR AMPLITUDE DEATH IN . . . PHYSICAL REVIEW E 87, 042908 (2013)

0 2 4 6 8 10
0

2

4

6

8

10

τ

T

Γ

(A)

(a)

400 600 800 1000
1

2

3

x
1

Coupling

400 600 800 1000
−1

0

1

t

u
1

(b)

FIG. 6. (Color online) Marginal stability curves and time-series data of the complete network (N = 200,k = −2). (a) Marginal stability
curves: bold (thin) lines indicate the curves with negative (positive) direction denoted in Eq. (A3). Dashed line indicates T = τ/2 where the
sufficient condition for the steady state to be stable always holds. (b) Time-series data of state variable x1 and coupling signal u1 at point (A)
(τ = 10,T = 5) in (a).

with the parameter α = 1 and the nonlinear function,

f (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−2.0 if x � −4.25

0.80x + 1.40 if − 4.25 < x � 1.85

−1.80x + 6.21 if 1.85 < x � 3.95

−0.9 if x > 3.95

. (21)

Each oscillator can be implemented by real electronic cir-
cuits [41]. We follow the design procedure illustrated in
Fig. 3: first, α = 1, β = −1.8, and τ = 5 are known; second,
they satisfy assumption (14) and then go to the next step;
third, T = τ/2 = 2.5 and k = −2 ∈ (−13.5498, − 0.8502)
are obtained.

Let us confirm that the designed parameters satisfy con-
dition 1 and condition 2 on numerical simulations. Figure 4
shows the roots of ḡ(s,0) = 0 and ḡ(s,2) = 0 with the designed
parameters. There is no root in the right-half of the complex
plane. Thus, we see that ḡ(s,0) and ḡ(s,2) are stable; that is,
condition 1 is satisfied. Figures 5(a) and 5(b) illustrate vector

loci of ḡ(jω,0) and ḡ(jω,2), respectively, with the designed
parameters. It can be seen that each locus is always located
on the right side of h(−2) 	 0.92 > 0 denoted by Eq. (19).
This result verifies that the two vectors ḡ(jω,0) and ḡ(jω,2)
never have the opposite direction; that is, condition 2 is
satisfied.

Now, we numerically check that the designed parameters
are valid for various networks. Note that the parameters were
designed on the basis of the sufficient condition, and they
must be a subset of the stability region in (τ,T ) space. This
region consists of the parameter sets (τ,T ) where the steady
state is stable. The marginal stability curves are obtained by
solving ḡ(jω,ρ) = 0 for T and τ . The direction the roots of
ḡ(jω,ρ) = 0 cross the imaginary axis depends on the sign
of Re[ds/dT ]s=jω on the curves. The numerical procedure
for estimating the curves and the direction is explained in
Appendix. Remark that if the network topology is known in
advance, the stability region can be estimated by the numerical
procedure. However, the present paper deals with the situation
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FIG. 7. (Color online) Marginal stability curves of the network system on (a) ring topology (N = 100,k = −4) and (b) small-world
topology (N = 50,NC = 20,k = −10). Dashed line T = τ/2 indicates the sufficient condition for the steady state to be stable.
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FIG. 8. Root loci of ḡ(s,ρ) = 0 (ρ = 0,2) for k = −2: (a) first rightmost root loci, (b) second rightmost root loci.

where the topology is unknown and the region cannot be
obtained. In order to check that the designed parameters are
valid for various networks, the three typical networks, such as
complete networks, ring networks, and small-world networks,
are employed.

Consider a complete network (i.e., all-to-all connections)
consisting of 200 oscillators (N = 200). The eigenvalues of
H are ρ1 = 0 and ρ2-200 = 200/199. Figure 6(a) illustrates
the stability region and the marginal stability curves. The bold
(thin) lines indicate the curves with negative (positive) signs of
Re[ds/dT ]s=jω. When T increases and crosses the bold (thin)
line upward at a fixed value of τ , we subtract (add) 2 from (to)
the number of unstable roots. Since ḡ(s,ρ) = 0 at the origin
(i.e., τ = T = 0) does not have unstable roots, there exist no
unstable roots in the region represented by �. Furthermore,
it must be emphasized that � has a long strip including T =
τ/2 noted by the dashed line (i.e., this line is a subset of the
region �). This line never crosses the marginal curves. There
is another long strip including T = τ ; however, this strip does
not exist generally for other networks, as we shall show later.
Figure 6(b) shows the time-series data of the first oscillator at
point (A) in Fig. 6(a). The state variable x1 without coupling
behaves chaotically until t = 500. At t = 500 the oscillators
are coupled, and then x1 and the coupling signal u1 converge
on x∗ and zero, respectively. It can be seen that, according
to our systematic design procedure, the stabilization remains
even if the delay times τ and T are extended as long as one
wants.

Here we consider networks on a ring topology and a small-
world topology with NC shortcuts [42]. Figures 7(a) and 7(b)
illustrate the marginal stability curves for the ring topol-
ogy (N = 100,k = −4) and the small-word topology (N =
50,NC = 20,k = −10), respectively. The eigenvalues of H
for the ring topology are ρ1 = 0, ρ2-99 ∈ [0.0020,1.9980],
and ρ100 = 2. For the small-world topology, we have ρ1 = 0,
ρ2-50 ∈ [0.0807,1.9522]. The stability regions � in Figs. 7(a)
and 7(b) contain the long strip including T = τ/2 where the
steady state is stable (i.e., this line is a subset of the region
�). It has to be noted that even though there exist some other
long stability strips of (T ,τ ) in Fig. 6(a) and Fig. 7, they do
not always appear for other topologies. Therefore, these strips
cannot be used for our topology-free design.

Let us clarify the root distribution of ḡ(s,ρ) = 0 on
the line T = τ/2. Substituting s = sR + jsI into ḡ(s,ρ) = 0
with T = τ/2, we obtain its real and imaginary parts as
follows:

Re [ḡ(s,ρ)] = sR + α − k + k(1 − ρ)e−sRτ/2 cos sI τ/2

−βe−sRτ cos sI τ = 0,

Im [ḡ(s,ρ)] = sI − k(1 − ρ)e−sRτ/2 sin sI τ/2

+βe−sRτ sin sI τ = 0. (22)

The roots of ḡ(s,ρ) = 0 are obtained by solving Eq. (22).
Figures 8(a) and 8(b) illustrate the loci of the first and the
second right-most roots for k = −2, respectively [44]. The
bold curves with circles © (squares �) indicate the root loci
with ρ = 0 (ρ = 2) as τ varies from zero to infinity. The thin
curves with © and � ends are the loci at τ = 1 and τ = 3 as
ρ varies from zero to 2. For any ρ ∈ [0,2], the root loci exist
between the bold curves with ρ = 0 and ρ = 2. It can be seen
from the insets of Figs. 8(a) and 8(b) that the roots approach
asymptotically to the imaginary axis sR = 0 with an increase
in τ but never cross the axis. These facts support that there do
not exist unstable roots on the line T = τ/2.

VI. CONCLUSION

This paper showed that the stability of a steady state in a
network with topology uncertainty is equivalent to the stability
of a delayed linear system with parameter uncertainty. A
simple sufficient condition for the steady state to be stable
is derived on the basis of the robust stability analysis of
the linear system. This condition provides us a systematic
procedure for designing connection parameters. The procedure
has two advantages: the designed parameters can be used for
any network topology and the procedure is valid for long-delay
oscillators. Our analytical results were numerically verified on
complete, ring, and small-world networks.
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APPENDIX: MARGINAL STABILITY CURVES

The marginal curves of a stability region are obtained by

ḡ(jω,ρ) = jω + α − k{1 − (1 − ρ)e−jωT } − βe−jωτ = 0.

(A1)
Its real and imaginary parts are described by

Re [ḡ(jω,ρ)] = α − k + k(1 − ρ) cos ωT − β cos ωτ = 0,

Im [ḡ(jω,ρ)] = ω − k(1 − ρ) sin ωT + β sin ωτ = 0.

(A2)

The marginal stability curves are sketched by using roots T

and τ of the above equations. The direction the roots cross the
imaginary axis is given by the sign of the real part of ds/dτ at

s = jω,

Re

[
ds

dT

]
s=jω

= Re

[
jωk(1 − ρ)e−jωT

1 − kT (1 − ρ)e−jωT + βτe−jωτ

]
,

(A3)

where T , τ , and ω satisfy Eq. (A2). With increasing T ,
a positive (negative) value of Eq. (A3) corresponds to a
root crossing the axis from left to right (right to left). The
marginal stability curves are estimated by using the following
numerical procedure: set a value for τ ; solve ḡ(jω,ρ) = 0
for T and ω numerically; check the sign of Eq. (A3);
plot (τ,T ); change the value of τ ; and return to the first
step.
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