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space: Coupled sine circle maps
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The phenomenon of crisis in systems evolving in high-dimensional phase space can show unexpected and
interesting features. We study this phenomenon in the context of a system of coupled sine circle maps. We
establish that the origins of this crisis lie in a tangent bifurcation in high dimensions, and identify the routes
that lead to the crisis. Interestingly, multiple routes to crisis are seen depending on the initial conditions of the
system, due to the high dimensionality of the space in which the system evolves. The statistical behavior seen
in the phase diagram of the system is also seen to change due to the dynamical phenomenon of crisis, which
leads to transitions from nonspreading to spreading behavior across an infection line in the phase diagram.
Unstable dimension variability is seen in the neighborhood of the infection line. We characterize this crisis and
unstable dimension variability using dynamical characterizers, such as finite-time Lyapunov exponents and their
distributions. The phase diagram also contains regimes of spatiotemporal intermittency and spatial intermittency,
where the statistical quantities scale as power laws. We discuss the signatures of these regimes in the dynamic
characterizers, and correlate them with the statistical characterizers and bifurcation behavior. We find that it is
necessary to look at both types of correlators together to build up an accurate picture of the behavior of the system.
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I. INTRODUCTION

The phenomenon of crisis is commonly observed in
dissipative systems with chaotic dynamics, and is manifested
by a sudden discontinuous change in a chaotic attractor as a
system parameter is varied [1,2]. The discontinuous changes
are typically of three types: as a system parameter passes
through a critical value, either a chaotic attractor is destroyed,
or the size of the chaotic attractor in phase space suddenly
increases, or two or more chaotic attractors merge to form
one chaotic attractor. The inverse of these processes can also
occur, if the parameter change takes place in the reverse
direction. The three major types of crises associated with
these changes are called the boundary crises (associated with
attractor creation or destruction), the interior crises, associated
with sudden changes in shape and size, and the symmetry
restoring or breaking crises, in which attractors merge or
split. The phenomenon is often associated with intermittency
of a type called crisis induced intermittency, and also with
unstable dimension variability [3,4], which occurs when a
chaotic attractor contains embedded periodic orbits with
different numbers of expanding directions leading to Lyapunov
exponents which fluctuate around zero. The phenomenon of
crisis, its effects, and its connection with bifurcations are well
studied in the context of low-dimensional dynamical systems
[1–4]. However, there are very few studies of crisis and its
consequences in the context of systems with high-dimensional
phase space. In the case of spatially extended systems, the
crisis, a dynamical phenomenon, can have consequences for
the statistical as well as the dynamical behavior of the system.
The bifurcation behavior of the system, as well as phenomena
such as unstable dimension variability, can have important
implications for the behavior of the extended system. On the
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other hand, the existence of Milnor attractors and multiple
basins of attraction in the extended system can lend unexpected
features to the consequences of the crisis. Model studies are
important for understanding these aspects. This paper attempts
to study some of the features of the crisis in the context of a
simple model system, a lattice of coupled sine circle maps.

The coupled sine circle map lattice is known to model the
mode-locking behavior seen in coupled oscillators, Josephson
junction arrays, etc. The phase diagram of this system is known
to exhibit a rich diversity of dynamic behavior. In particular,
this system shows transitions from nonspreading to spreading
transitions, across an infection line, with the transition from
spatial intermittency to spatiotemporal intermittency being
seen as a special case. Earlier studies indicate that the dynamic
origins of this transition lie in a crisis [5] and unstable
dimension variability. In this paper we confirm the existence
of unstable dimension variability in the system, and study
the details of this crisis using dynamic characterizers such
as Lyapunov exponents, finite-time Lyapunov exponents, and
their distributions. Our studies indicate that the origins of
this crisis lie in a tangent bifurcation in high dimensions. We
also identify the route that leads to crisis in the system, and
find that it depends on the parameter as well as on initial
conditions. Thus, there are multiple routes to crisis due to
the high dimensionality of the phase space of the system and
the presence of Milnor attractors. While this phenomenon has
not been extensively studied, we note that multiple coexisting
attractors with fractal basin boundaries, as well as crisis
induced transitions, have been seen earlier in models of food
chains [6,7]. It has been noted that the presence of these
features may make these systems highly susceptible to external
perturbations and leads to high unpredictability for dynamical
behavior. Given that the coupled sine circle map system studied
here is a discrete version of the coupled oscillator systems
which model the behavior of a vast variety of experimental
and natural systems, a similar unpredictability of dynamical
behavior would have serious practical consequences.
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The statistical behavior of the system has also been
extensively studied in earlier work. Special spreading and
nonspreading solutions are seen at the boundaries of the
synchronized solutions seen above and below the infection line
in the phase diagram. These correspond to spatiotemporally
intermittent and spatially intermittent solutions, respectively.
The statistical signature of these solutions is the power-law
behavior of the laminar length distributions with their own
characteristic power. We will see that these solutions also
contribute their own signatures to the dynamic quantifiers.
We correlate these signatures with the bifurcation behavior
and statistical behavior of the system. We note that both
statistical and dynamical signatures need to be studied together
to understand the behavior of the system completely.

We note that the evolution of systems with a large number
of degrees of freedom is important in a large variety of
contexts, especially those that show pattern formation. Ex-
amples of these include fluid systems [8], chemical reactions
[9,10], biological systems such as neural networks [11],
and phenomena like ventricular fibrillation [12], as well as
the formation of coherent structures such as the red spot
of Jupiter [13]. Spatio-temporal intermittency and spatial
intermittency constitute a very special type of pattern which
is observed in many experimental situations such as chemical
reactions [14], Rayleigh-Benard and Couette flows [15,16], as
well as theoretical models [17,18], and the synchronisation-
desynchronisation transitions [19].

It is well known that dynamical system techniques can
be of great utility in understanding and characterising such
systems [19], and also that the tools required to study such large
systems require further development [20]. Our studies provide
pointers to the manner in which dynamic characterizers can
be of utility in the study of such systems, and can complement
the information obtained from the usual statistical character-
izers.

II. THE MODEL AND THE PHASE DIAGRAM

We describe the model and the phase diagram in this section.
The coupled sine circle map lattice is defined by the evolution
equation

xt+1
i = (1 − ε)f

(
xt

i

) + ε

2

[
f

(
xt

i−1

) + f
(
xt

i+1

)]
(mod 1), (1)

where i and t are the discrete site and time indices, respectively,
i = 1, . . . ,N , where N is the number of lattice sites, and ε is
the strength of coupling between the site i and its two nearest
neighbors. The local on-site map, f (x), is the sine circle map,
defined as

f (x) = x + � − K

2π
sin(2πx), (2)

where K is the strength of nonlinearity and � is the winding
number of the single sine circle map in the absence of
nonlinearity.

The phase diagram of this system is highly sensitive to
initial conditions due to the presence of many degrees of
freedom. The phase diagram obtained by evolving the model
starting from randomly chosen initial conditions is shown in
Fig. 1 at the parameter value K = 1, for the range 0 � � � 1

2π
,

0 � ε � 1. Periodic boundary conditions have been imposed.
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FIG. 1. (Color online) The phase diagram of the coupled sine
circle map lattice in �-ε plane starting from a randomly chosen
initial condition with lattice size L = 200. Each lattice has been
iterated for 5000 iterates after discarding 200 000 iterates. The
synchronized fixed point solution is denoted by dots (.), whereas
the nonsynchronized solutions fixed in time, and periodic in time
with period T = 15 × 16, are marked by star (�) and plus signs (+),
respectively. The spreading and nonspreading solutions are separated
by the infection line (shown by a solid line). The left end point
(� = 0.060, ε = 0.30), a point in the middle (� = 0.068, ε = 0.24),
and the right end point (� = 0.081, ε = 0.21) of the infection line
are marked by a diamond (♦), a down triangle (�), and a square (�),
respectively. At the point (� = 0.047, ε = 0.3360) marked with a
left triangle (�), spatial intermittency with period-5 bursts is seen.
Spatial intermittency with quasiperiodic bursts is seen at the point
(� = 0.040, ε = 0.402) marked by a circle (©). Spatiotemporal
intermittency is seen at the point marked by a right triangle (�).

A large part of the diagram is occupied by the spatiotemporally
fixed point solution (denoted by dots) wherein all the sites
converge to the fixed point

x∗ = 1

2π
sin−1

(
2π�

K

)
, (3)

which is the same as the fixed point of the single circle map.
In addition, the phase diagram also shows solutions which are
either nonsynchronized fixed points (indicated by plus signs)

FIG. 2. (Color online) (a) Space-time plots of typical nonspread-
ing solutions at (a) � = 0.065 and ε = 0.252. The bursts are periodic
and have period 15 × 16. (b) A typical spreading solution at � =
0.065 and ε = 0.254.
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FIG. 3. (Color online) The bifurcation diagram of the coupled
map lattice. A typical site xt

i is plotted over 500 time steps as a
function of the coupling strength ε in the region near the middle of the
infection line, at � = 0.065. The lattice size is L = 200. A transient
of 500 000 iterates has been discarded. (b) The semilog plot of laminar
length distribution at � = 0.068 and ε = 0.244. The distribution
shows exponential fit P (l) = ae−bl with b = 0.7512 ± 0.0172 and
a = 0.4813 ± 0.2313. The root-mean-square error is 0.2281 and R2

value is 0.9977.

or nonsynchronized and periodic (denoted by stars) in time
[21]. The periodic solution shown here has temporal period
T = 15 × 16.

The phase diagram is divided into two distinct regimes,
separated by a line, the infection line, indicated by a solid
line in Fig. 1. A spreading regime where the burst states can
infect their neighboring laminar states and spread through the
lattice can be seen above the infection line [5,22,23]. (Here,
the sites which relax to the fixed point solution x� are identified
as the laminar sites.) This is in contrast to the nonspreading
regime seen below the infection line, where the random initial
conditions die down to bursts which are localized, and do not
infect their neighboring laminar states. The space-time plots
of typical nonspreading solutions are shown in Fig. 2(a), and
those of spreading solutions are seen in Fig. 2(b).

Earlier results indicate that the change in the behavior of the
solutions from noninfecting to infecting is due to a dynamical
phenomenon, the existence of a crisis in the system at the
parameter values corresponding to the infection line [5]. A
crisis is described as a discontinuous change in the system
attractor for a small change in a parameter value of the
system [1]. Such a phenomenon is observed in our model,
when we increase the coupling strength ε at a given � in
the vicinity of the infection line, in a direction in which the
infection line is crossed. The bifurcation diagram of Fig. 3(a)
shows this behavior. Here, a typical variable xt

i is plotted over
500 time steps, as a function of the coupling strength ε at
the value � = 0.065. The bifurcation diagram shows that the
crisis appears at ε = 0.255 for � = 0.065 where the attractor

widens from a periodic trajectory to a chaotic structure which
accesses the entire range from zero to 1. The value of the
critical parameter εc exactly matches with the value of ε,
where a vertical line crosses the infection line at � = 0.065 in
the phase diagram, indicating a clear connection between the
spreading transition seen in the space-time plots and the crisis
seen in the bifurcation diagram.

We characterize this crisis further in the next section, and
study the bifurcation behavior which gives rise to the crisis.
The phenomena associated with the crisis can be most clearly
seen in the region near the midpoint of the infection line. We
note that the behavior of the solutions is different at different
points along the infection line, but for each kind of solution, the
crisis occurs via a tangent bifurcation. We study the behavior
for different regimes using dynamical characterizers, and iden-
tify the route to crisis. We find that the route to crisis is initial
condition dependent, due to the high dimensionality of the
system. There are thus multiple routes to crisis in this system.

It is also pertinent to discuss the behavior of the statistical
characterizers at this point. The behavior of the distribution
of laminar lengths is an important statistical characterizer of
intermittency. The length of the laminar state before being
interrupted by a chaotic burst is calculated at different time
steps and averaged over several different initial conditions.
In both the nonspreading and spreading regimes, at the
bifurcation boundary of the synchronized solutions, the
distribution of laminar length is seen to follow power-law
behavior [22], as we will see in the next section. In contrast,
the distribution falls off exponentially in the vicinity of the
infection line as is illustrated in Fig. 3(b) for � = 0.068,
due to the presence of infecting and noninfecting bursts.
Hence no scaling behavior is seen in the crossover region
near to the boundary. Similar behavior is seen for � = 0.065
as well.

Further, special spreading and nonspreading solutions are
seen above and below the infection line at the boundaries of
the synchronized solutions. Statistical characterizers, such as
exponents, can be used to characterize these solutions. The
special solutions are associated with power-law behavior and
exponents in the distribution of laminar lengths, whereas
other solutions do not show this power-law behavior. These
exponents correspond to spatiotemporal intermittency of the
directed percolation type in the spreading region [24,25], and
to spatial intermittency which does not belong to the directed
percolation class in the nonspreading region. We correlate
these statistical characterizers and exponents with the signa-
tures of these solutions seen in the dynamical characterizers,
viz. the Lyapunov exponents and their distributions, in later
sections.

TABLE I. Periods of the solution for different values of coupling strength ε starting from ten randomly chosen initial conditions at
� = 0.065 for lattice size L = 50.

ε I II III IV V VI VII VIII IX X

0.251 15 × 16 16 16 16 16 16 16 15 × 16 15 × 16 16
0.252 15 × 16 15 × 16 15 × 16 15 × 16 15 × 16 15 × 16 15 × 16 15 × 16 15 × 16 15
0.253 15 15 15 × 31 15 15 × 31 15 15 × 31 15 × 31 15 × 31 1
0.254 15 1 15 15 15 1 crisis 15 15 15
0.255 crisis crisis crisis crisis crisis crisis crisis crisis 1 crisis
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TABLE II. Periods of the solution for different values of coupling strength ε starting from ten randomly chosen initial conditions at
� = 0.068 for lattice size L = 200.

ε I II III IV V VI

0.238 24 × 5 × 17 × 23 2 × 5 × 19 × 23 23 × 5 × 17 2 × 32 × 5 × 17 5 × 17 × 37 2 × 32 × 5 × 17
0.239 24 × 5 24 × 5 × 13 24 × 5 24 × 32 × 5 24 × 5 × 37 24 × 5 × 11 × 37
0.240 24 × 5 24 × 5 24 × 3 × 5 × 43 × 113 24 × 5 24 × 3 × 5 × 13 24 × 5
0.241 24 24 24 24 24 24

0.242 15 × 16 15 × 16 crisis crisis crisis 15 × 16
0.243 crisis crisis crisis crisis crisis crisis

III. THE CRISIS AT THE INFECTION LINE

The phenomena associated with the crisis can be most
clearly seen in the region near the midpoint of the infection
line. We discuss the behavior seen at the points � = 0.065
and � = 0.068 in this region. Similar behavior is seen at
both points. The most important phenomena seen here are the
presence of unstable dimension variability, and the existence
of multiple routes to chaos.

A. Multiple routes to crisis

In the nonspreading regime, observed below the infection
line, all sites evolve periodically in time. These periodic
attractors are Milnor attractors [26], which are globally stable
but locally unstable. Therefore an arbitrary small perturbation
to an orbit at a Milnor attractor can kick the orbit away from it
to a different attractor, even though a finite measure of initial
conditions is attracted to the attractor by temporal evolution.
Such attractors are very common in high-dimensional systems.
The period of the attractor in the precrisis region also depends
on the initial conditions. The periods of the attractor before
crisis for different initial conditions for lattice size L = 50 are
listed in Table I for � = 0.065 and for L = 200 are listed in
Table II for � = 0.068. The period of the system is obtained
by calculating the least common multiplier of the periods of
all sites. We use the fast Fourier transform method to find the
periods of all sites. It is clear that there are multiple routes to
crisis, depending on the initial conditions.

We find temporal periods 1, 15, 16, 15 × 16, 15 × 31, 15 ×
16 × 31 for � = 0.065 in the vicinity of the infection line
just before the crisis for the lattice size L = 50. The temporal
fixed point solution appears just before the crisis for all initial
conditions. The route to crisis changes for a larger lattice size.
Periodic solutions with large periods can be seen in the system
with larger numbers of degrees of freedom. The period of
the solution in the precrisis region just before the crisis also
depends on the value of the parameter �, as � corresponds to
the frequency of the single circle map. This has been illustrated
in Table III which lists the last period seen before crisis at
different values of �. For values of � = 0.068 and above, the
period-16 solution become unstable after the crisis [27].

To study the stability of these periodic orbits, we calculate
the Floquet multiplier of the periodic solution (i.e., the
eigenvalues of the linear stability matrix corresponding to a
given period) before and after the crisis. The critical value εc

is obtained by noting the value of ε at which the largest Floquet
multiplier crosses the unit circle. The values of εc as a function
of � are plotted by a solid line in the phase diagram (Fig. 1). We
find that the largest eigenvalue always crosses the unit circle
through the positive real axis. This implies that the transition
from the temporal periodic solution to spatiotemporal chaos
is via a tangent bifurcation. We list the Floquet multipliers of
orbits of various periods for � = 0.068 for different values of
the parameter ε in Table IV. It can be seen that 12 Floquet
multipliers of period 16 cross the unit circle at ε = 0.242,
consistent with the route described earlier, and the existence
of a high-dimensional tangent bifurcation.

The nature of the bifurcation can be further confirmed by
looking at the return map. The sixteenth iterate of a typical site
is plotted against the site before crisis [Figs. 4(a), 4(b)] and
after crisis [Figs. 4(c), 4(d)] for � = 0.068. In the precrisis
region this particular site has temporal period 1 for ε = 0.241
although the period of the system is 16. The fixed point solution
of the site is indicated by a star in the figure. The expanded
view near the fixed point (right column in Fig. 4) shows that the
function is tangent to the y = x line passing through the fixed
point just before the crisis. The function goes up, i.e., away
from the fixed point after crisis, due to a tangent bifurcation.
Thus, the periodic solution destabilizes to a chaotic solution
after a tangent bifurcation at the crisis point. The table of
Floquet multipliers at � = 0.060 (Table V) also shows that
several Floquet multipliers cross one simultaneously at the
spreading transition, at ε = 0.301. Thus the bifurcation seen
here, is also a tangent bifurcation in high dimensions.

B. Crisis: Dynamic characterization and
unstable dimension variability

The crisis can be analyzed further, using dynamic charac-
terizers. We use the usual quantifiers of chaos, viz. Lyapunov
exponents and finite-time Lyapunov exponents (FTLEs), to
quantify the crisis. Here, we examine the distributions of

TABLE III. Periods of the solution for different values of � and ε starting from one randomly chosen initial condition for lattice size
L = 200.

� 0.062 0.063 0.065 0.066 0.067 0.068 0.069 0.070 0.071 0.072 0.073 0.074
ε 0.266 0.261 0.252 0.248 0.245 0.241 0.237 0.234 0.231 0.228 0.225 0.222
Periods 15 15 15 × 16 15 × 16 15 × 16 16 16 16 16 16 16 16
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TABLE IV. Floquet multipliers at � = 0.068 starting from one
randomly chosen initial condition after discarding 210 000 iterates
for lattice size L = 200.

Number of Floquet
ε Nature of solution multipliers more than 1

0.238 time periodic with 0
period 5 × 17

0.239 time periodic with 0
period 5 × 16 × 37

0.240 time periodic with 0
period 5 × 16 × 39

0.241 times periodic with period 16 0
0.242 crisis 12 (period-16

Floquet exponent)
0.243 crisis 15 (period-16

Floquet exponent)

finite-time Lyapunov exponents (i.e., finite-time averages of
the local stretching rates) at points near the infection line.
This is shown in Fig. 5 for � = 0.065 and for (a) ε = 0.251
(precrisis), and (b) ε = 0.253 (postcrisis). There is a change in
the distribution from (a) to (b) which shows the histogram at
precrisis and postcrisis values. The gap in the histogram before
crisis indicates that the distribution of finite-time Lyapunov
exponents is discontinuous before the crisis, indicating the
presence of localized or nonspreading modes. It becomes
continuous above the critical value, indicating the existence
of extended or spreading modes. The same signature can be
seen in the distribution of the variance of Lyapunov exponents
[shown in Figs. 5(e) and 5(f)]. It depicts the variance of the
FTLEs at an instant for � = 0.065 and at (e) ε = 0.251,
(f) ε = 0.253. The distribution becomes smoother on ap-
proaching the critical parameter εc, the value at which
the infection line is crossed, at a fixed �. We noticed a
significant change in the distribution of difference between
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FIG. 4. (Color online) The site xt
10 is plotted with xt+16

10 with
� = 0.068 and for ε = 0.241 (top row) and ε = 0.242 (bottom row).
The right column is the expanded view of the left column.

TABLE V. Floquet multipliers at � = 0.060 starting from one
randomly chosen initial condition after discarding 210 000 iterates
for lattice size L = 200.

Number of Floquet
ε Nature of solution multipliers more than 1

0.300 synchronized 0
0.301 crisis 42
0.302 crisis 40
0.303 crisis 45
0.304 synchronized 0
0.305 synchronized 0

two consecutive finite-time Lyapunov exponents [Figs. 5(c)
and 5(d)]. The distribution shows a sharp peak near to zero in
both cases. The difference in scale of the x axis of Figs. 5(c)
and 5(d) should be noted. Figure 5(d) shows that most of the
finite-time Lyapunov exponents are not well separated after
the transition. However, before the transition the distribution
is more spread out, due to the presence of both well separated
and not so well separated FTLEs. Similar behavior is seen
for � = 0.068 [28]. Thus, the distributions of finite-time
Lyapunov exponents show the signature of the crisis, where
the attractor widens from a periodic trajectory to a chaotic one.
More importantly, this system also shows the phenomenon of
unstable dimension variability near the crisis. We study this in
detail in the subsequent discussion.

Our system shows unstable dimension variability (UDV)
in the vicinity of the infection line. This phenomenon occurs
when a chaotic attractor contains embedded periodic orbits
with different numbers of expanding directions. The existence
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FIG. 5. (Color online) The distribution of 100-time Lyapunov
exponents [(a), (b)], the difference between two consecutive 100-time
Lyapunov exponents [(c), (d)], and variance of 100-time Lyapunov
exponents [(e), (f)] for � = 0.065. The left and right columns
correspond to the values of ε before and after crisis, respectively.
Here, lattice size L = 200.
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FIG. 6. The fraction of positive finite-time Lyapunov exponents
(time = 20) as a function of t after the crisis. A transient of 200 000
iterates has been discarded with lattice size L = 200.

of expanding and contracting directions in phase space
contributes to the existence of positive and negative Lyapunov
exponents, respectively. The large time average over the
infinite trajectory gives the asymptotic value of the Lyapunov
exponents which ultimately determine the qualitative nature
of the solution in the system. However, in the presence of
nonhyperbolicity, the shadowing distance between the original
chaotic orbits and the noisy ones diverges fast. Here, the
determination of local expansion and contraction rates is more
relevant than the asymptotic value, and is better quantified by
the FTLEs, which average the local expansion and contraction
rates and can be quantified for finite times. Thus, if a trajectory
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The data are collected for lattice size L = 200 over 10 000 time steps
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FIG. 8. (Color online) The six largest asymptotic Lyapunov
exponents are plotted as a function of ε for � = 0.068 with lattice
size L = 200. Six Lyapunov exponents cross zero simultaneously just
after the crisis. The maximum Lyapunov exponent starts oscillating
about zero for 0.247 � ε � 0.252, showing the presence of UDV.

visits regions of the attractor having different numbers of
expanding and contracting directions, the fraction of positive
finite-time Lyapunov exponents will vary with time. We
confirm the presence of UDV in our system by plotting the
fraction of positive time-20 Lyapunov exponents for parameter
values in the vicinity of the infection line after the crisis.
The fraction of positive finite-time Lyapunov exponents as a
function of time is plotted in Fig. 6 for four different parameter
values, (a) � = 0.060, ε = 0.302, (b) � = 0.068, ε = 0.243,
(c) � = 0.081, ε = 0.235, (d) � = 0.073, ε = 0.472. For all
four cases we discard 400 000 transient iterations taking lattice
size N = 200. It is clear that the fraction fluctuates, and that the
trajectory visits regions with different numbers of stable and
unstable directions. We note that these points are at different
points along the infection line, so it is clear that the UDV is
seen at all the points along the infection line.

The UDV is further illustrated in Fig. 7, which shows
the distribution of the largest finite-time Lyapunov exponent

FIG. 9. (Color online) (a) The space-time plot of the spatiotempo-
rally intermittent solution with 1000 iterates and lattice size L = 200
for � = 0.060 and ε = 0.302. A transient of 200 000 iterates has
been discarded. (b) The log-log (base 10) plot of cumulative laminar
length distribution for STI at � = 0.060 and ε = 0.300. The exponent
ζ is 1.63 ± 0.05. The root-mean-square error for the fit up to laminar
length 101.5 is 0.04849 and the R2 value is 0.9457. The data is taken
for lattice size L = 10 000 and averaging over 50 initial conditions.
For each initial condition each lattice has been iterated for 50 000
iterates after discarding 50 000 iterates.
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FIG. 10. (Color online) (a) The bifurcation diagram of the
coupled map lattice at � = 0.060 (marked by ♦ in Fig. 1). A typical
site xt

2 is plotted over 200 time steps as function of the coupling
strength ε in the neighborhood of the infection line, for lattice
size L = 200. A transient of 50 000 iterates has been discarded.
Synchronized solutions are seen before and after the crisis. (b) The six
largest Lyapunov exponents are plotted as function of ε for � = 0.060
for lattice size L = 200.

for different values of � and ε. We calculate the time-100
largest Lyapunov exponent taking lattice size N = 200 over
10 000 time steps and by averaging over 2 initial conditions.
The distributions of the largest finite-time Lyapunov exponent
before crisis are shown by solid lines, whereas the same
quantities after crisis are shown by dotted lines. In the
precrisis region the distributions are spread over positive
and negative values with the peak at negative values. In
contrast, the distributions shift towards the positive values
only in a postcrisis situation. Unstable dimension variability
is noticeable at this point and can be seen in the fluctuations
of the largest Lyapunov exponent about zero in Fig. 8, plotted
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FIG. 11. (Color online) The distribution of time-50 Lyapunov
exponents [(a), (b)], the difference between two consecutive time-50
Lyapunov exponents [(c), (d)], and the variance of time-50 Lyapunov
exponents [(e), (f)] for � = 0.060. The left and right columns
correspond to the values of ε before and after crisis, respectively.
The lattice size L = 200.
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FIG. 12. (Color online) The site xt
10 is plotted with xt+1

10 for
� = 0.060 and (a) ε = 0.300, (b) ε = 0.302. In (a) the synchronized
solution x∗ = 0.0615 is stable. In (b) this solution becomes unstable
via a tangent bifurcation.

for � = 0.068. Similar fluctuations occur at other points along
the infection line.

At the point under current discussion, the distribution
of laminar lengths shows exponential behavior. However,
as seen in earlier work, the system contains regions of
spatiotemporal intermittency where the distribution of laminar
lengths shows power-law behavior, with an exponent of
the directed percolation class. We note that a full set of
critical exponents, which characterize the order parameter, the
susceptibility, and the correlation function, can be defined at
these points, and turn out to belong to the directed percolation
class [5]. These correspond to the parameter values at the
edge of the synchronized regions in the spreading regime.
Conversely, points on the edge of the synchronized regime in
the nonspreading regime show spatially intermittent behavior
with power-law behavior for the laminar length distributions,
but with an exponent that does not belong to the directed
percolation class. It is interesting to correlate the statistical
characterizers seen here with the dynamical characterizers,
and to identify the signatures of spatiotemporal behavior in
both quantities. We discuss these in the next section.
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FIG. 13. (Color online) The power of the mode xt
101 has been

plotted with frequency (a) linear scale (b) log scale for � = 0.073
and ε = 0.472. The signal shows chaos.
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FIG. 14. (Color online) (a) The bifurcation diagram of the coupled map lattice at � = 0.040 (marked by a © in Fig. 1). A typical site xt
2 is

plotted over 500 time steps as function of coupling strength ε in the neighborhood of the infection line, taking lattice size L = 200. A transient
of 500 000 iterates has been discarded. (b) The space-time plot of an spatially intermittent solution with 1000 iterates and lattice size L = 200
for � = 0.040 and ε = 0.402. A transient of 200 000 iterates has been discarded. (c) The log-log (base 10) plot of the cumulative laminar
length distribution at � = 0.040 and ε = 0.402. The exponent ζ is 1.1183 ± 0.0136. The root-mean-square error for the fit up to the laminar
length 101.7 is 0.01601 and the R2 value is 0.8669. The data are taken for lattice size L = 10 000 and averaged over 50 initial conditions. For
each initial condition each lattice has been iterated for 50 000 iterates after discarding 50 000 iterates.

IV. SPATIOTEMPORAL AND SPATIAL INTERMITTENCY
AND DYNAMICAL CHARACTERIZERS

We will illustrate the behavior seen at spatiotemporal
intermittency at the left end of the infection line, the point
marked with a diamond in the phase diagram (Fig. 1). Here
the parameter values are � = 0.060 and ε = 0.302. We note
that this point lies on the boundary of the synchronized
solutions. A space-time plot of the solution is seen in Fig. 9(a).
Spatiotemporally intermittent solutions can be clearly seen
in the space-time plot. The distribution of laminar lengths
shows power-law behavior with the exponent 1.63 ± 0.05 [see
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FIG. 15. (Color online) The distribution of time-50 Lyapunov
exponents [(a), (b)], the difference between two consecutive time-50
Lyapunov exponents [(c), (d)], and the variance of time-50 Lyapunov
exponents [(e), (f)] for � = 0.040. The left and right columns
correspond to the values of ε before and after crisis, respectively.

Fig. 9(b)]. The spatiotemporal intermittency seen here has been
verified to belong to the directed percolation (DP) class [23];
hence the exponent is in agreement with the expected DP value.

The bifurcation diagram of a typical site can be seen in
Fig. 10(a), and the Lyapunov exponents at the same value
can be seen in Fig. 10(b). Synchronized solutions are seen
above and below the infection line. An attractor widening
solution is seen at the infection line. We plot a histogram of
the time-50 finite-time Lyapunov exponents in Figs. 11(a) and
11(b). It is clear that the finite-time Lyapunov exponents are
well below zero in the synchronized regime [Fig. 11(a)], and
cross zero where the spreading modes are seen at ε = 0.302
[Fig. 11(b)]. We also plot the histogram of the difference
between consecutive values of the FTLEs in Figs. 11(c) and
11(d). Here, in the synchronized regime [Fig. 11(c)], the values
are very closely clustered around zero, and the signature of the
spreading mode is seen at crisis at ε = 0.302 [Fig. 11(d)],
where a gap in the spectrum is clearly seen. We also see a clear
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FIG. 16. (Color online) The power of the mode xt
56 has been

plotted with frequency (a) linear scale and (b) log scale for � = 0.040
and ε = 0.402.
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FIG. 17. (Color online) The site xt+1
56 is plotted with xt

56 for � =
0.040 and for (a) ε = 0.404, (b) ε = 0.402.

signature in the variance of the FTLEs [see Figs. 11(e) and
11(f)]. The variance in the FTLEs is much broader after the
crisis [Fig. 11(f)], and also shows discrete jumps reflective of
the gaps in the distribution. The Lyapunov exponents of the
system [Fig. 10(b)] show indications of unstable dimension
variability, but they are not clear. However, the transition
to spatiotemporal intermittency (STI) clearly takes place via
a tangent bifurcation. This can be clearly seen in the plot
of the return map of a typical site at the precritical and
critical values of the parameter (see Fig. 12). It can be clearly
seen that the fixed point of the map is barely stable at the
critical value, but goes unstable beyond the critical value.
Thus, the nonspreading to spreading transition is via a tangent
bifurcation, as farther down the infection line, and corresponds
to an attractor-widening crisis. (See Table V for the behaviour
of the Floquet multipliers).

Similar behavior is seen at points along the boundary of the
synchronized solutions that lie above the infection line, e.g.,
at the parameter values � = 0.073 and ε = 0.472, which is
the point marked with a right triangle in the phase diagram
(Fig. 1). The STI seen here belongs to the directed percolation
class, the dynamical characterizers show similar behavior, and
the power spectrum at a typical burst site (plotted in Fig. 13)
shows clear chaotic behavior.

The intermittency seen at the edges of the synchronized
solutions below the infection line belongs to a different
universality class. Here, the bursts are noninfectious in nature,
and spatial intermittency, where the distribution of laminar
lengths scales as a power law, is seen. The laminar regions
in this regime correspond to the synchronized solutions,
although laminar regions could correspond to other kinds of
dynamic regimes as well [25,29]. Similarly, the burst regimes
can also correspond to different kinds of dynamics. In the
regime considered here, the bursts in the spatially intermittent
solutions can be periodic as well as quasiperiodic (see Fig. 1).
Here, we discuss the behavior of the dynamic characterizers
in these regimes.

A. Spatial intermittency with quasiperiodic bursts

These solutions are seen at the edges of the boundary of the
synchronized solutions, below the infection line. We discuss
the solutions at the parameter values marked with a circle
in Fig. 1 (� = 0.040,ε = 0.402). The bifurcation diagram
for a typical site and the space-time plot can be seen in
Figs. 14(a) and 14(b), respectively. The distribution of laminar
lengths shows power-law behavior with the power ζ = 1.1
[Fig. 14(c)].

The distribution of the time-50 FTLEs shifts from the
negative side seen for the synchronized solutions [Fig. 15(b)]
to near zero values seen for the quasiperiodic bursts, Fig. 15(a).
The difference between successive eigenvalues shows a much
larger spread for the spatially intermittent solution [Fig. 15(d)],
as compared with Fig. 15(c), and the variance of the FTLEs is
smooth for the synchronized solution [Fig. 15(f)] and shows
gaps for the spatially intermittent case Fig. 15(e). The power
spectrum of a typical burst site demonstrates the quasiperiodic
nature of the solution (Fig. 16). The synchronized solution
goes unstable via a tangent bifurcation (Fig. 17).
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FIG. 18. (Color online) (a) The bifurcation diagram of the coupled map lattice at � = 0.047 (marked by � in Fig. 1). The value of the
variable at a typical site xt

2 is plotted over 500 time steps as function of the coupling strength ε in the neighborhood of the infection line,
taking lattice size L = 200. A transient of 500 000 iterates has been discarded. A transition from a periodic solution to synchronized solution is
observed at ε = 0.337. (b) The space-time plot of the spatially intermittent solution with 1000 iterates and lattice size L = 200 for � = 0.047
and ε = 0.32. A transient of 200 000 iterates has been discarded. The period of the system is 5 × 13. (c) The log-log (base 10) plot of the
cumulative laminar length distribution at � = 0.047 and ε = 0.3360. The exponent ζ is −1.1865 ± 0.0284. The root-mean-square error for fit
up to laminar length 101.3 is 0.01562 and the R2 value is 0.9237. The data are taken for lattice size L = 10 000 and averaging over 50 initial
conditions. For each initial condition the lattice has been iterated for 50 000 iterates after discarding 50 000 iterates.
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FIG. 19. (Color online) The power of the mode xt
101 has

been plotted with frequency (a) linear scale and (b) log scale
for � = 0.047 and ε = 0.320. The signal shows frequencies at
0.077,0.154,0.231,0.308,0.385,0.462. The period of the mode x101

is 13. The period of the full system is 5 × 13.

B. Spatial intermittency with periodic bursts

Spatial intermittency with periodic bursts is also seen below
the infection line. We discuss the dynamical behavior at the
point marked with a left triangle on the phase diagram (Fig. 1),
i.e., at the parameter values (� = 0.047,ε = 0.3360). Here,
the periodic bursts have time period 5. The bifurcation diagram
at a burst site can be seen in Fig. 18(a). The space-time plot
of the solution can be seen in Fig. 18(b). The distribution
of laminar lengths scales as a power law with exponent
ζ = 1.18 [Fig. 18(c)]. The power spectrum of a burst site
is seen in Fig. 19. The Floquet multipliers (Table VI) and
the return map (Fig. 20) indicate that the spatially intermittent
period-5 state is obtained by a bifurcation from a synchronized
solution. The distribution of FTLEs (Fig. 21) shifts from
a completely negative range for the synchronized solution
[Fig. 21(a)] to an upper bound in the vicinity of zero for
the period-5 intermittent solution [Fig. 21(b)]. The histogram
of the difference between consecutive values of the FTLEs
[Fig. 21(d)] shows wide spreads for the spatially intermittent
solution, and a far narrower spread for the synchronized
(and laminar) solution [Fig. 21(c)]. The signature of each
kind of solution is also seen in the distribution of variances
and is smooth for the synchronized case [Fig. 21(e)] and
discontinuous for the spatially intermittent case [Fig. 21(f)].

TABLE VI. Floquet multipliers at � = 0.047 starting from one
randomly chosen initial condition after discarding 210 000 iterates
for lattice size L = 200.

Number of Floquet
ε Nature of solution multipliers more than 1

time periodic 0 (5-time Floquet multiplier),
0.335 with period 5 2 (1-time Floquet multiplier)

time periodic 0 (5-time Floquet multiplier),
0.336 with period 5 4 (1-time Floquet multiplier)
0.337 synchronized 0 (5-time), 0 (1-time)
0.338 synchronized 0 (5-time), 0 (1-time)
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FIG. 20. (Color online) The site xt
17 is plotted with xt+1

17 (left
column) and with xt+5

17 (right column) for � = 0.047. For ε = 0.34
synchronized solution is stable, whereas for ε = 0.3307 the time
periodic solution with temporal period-5 is stable.

Thus, in the case of spatial and spatiotemporal intermit-
tency, the dynamic characterizers provide a detailed character-
ization of the type of solution seen before the bifurcation and
can identify the type of bifurcation, as well as the critical
value of the parameter where the bifurcation takes place.
The present analysis is for a situation where the laminar
state is the synchronized state, but can be straightforwardly
extended to situations where the laminar state is of other

−2
0

50

100

P
(λ

50
)

λ
50

−4 −2 0
0

50

100

0 0.2
0

100

200

λ
50
d

P
(λ

50d
)

0 0.2 0.4
0

100

200

0 100 200
0

0.5

1

λ
50

σ(
λ 50

)

0 100 200
0

0.5

1

(a) (b)

(c)

(e)

(d)

(f)

ε=0.32 ε=0.3307

FIG. 21. (Color online) The distribution of time-50 Lyapunov
exponents [(a), (b)], the difference between two consecutive time-50
Lyapunov exponents [(c), (d)], and the variance of time-50 Lyapunov
exponents for � = 0.040. The left and right columns correspond to
the values of ε before and after crisis, respectively.
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types, e.g., of higher periods [29], or of the traveling wave
type [22,25,30]. The characterizers are simple and can be
easily constructed for the broad variety of systems that show
spatiotemporal intermittency [14–20,31]. Spatial analogs and
statistical quantities can further classify the patterns.

V. SUMMARY AND CONCLUSIONS

To summarize, we study the phenomenon of crisis and
its consequences in a system with a high-dimensional phase
space. The attractor widening crisis in this dynamical system
translates to a spreading transition in the phase diagram
of the system. Spreading modes can be clearly seen in
the space-time plots of the system post crisis, and the
corresponding attractor widening can be seen in the bifurcation
diagram. Thus the spreading transition has its dynamical
origins in an attractor widening crisis. The signatures of the
spreading and nonspreading modes can be seen in the statistical
characterizers, and the signatures of the dynamical behavior
of the modes can be seen in the dynamical characterizers. The
high-dimensionality of the phase space of the system con-
tributes special features to the crisis, including strong unstable
dimension variability at the infection line, and the existence of
multiple routes to crisis, depending on the initial conditions.
We list some of the multiple routes seen here, in this paper.
Multiattractor systems with fractal basins of attraction have
been seen earlier in the context of food chains, and it is possible
that phenomena of the kind seen here appear in such systems.

We identify the nature of the bifurcation that gives rise
to the crisis. Although there are multiple routes to crisis,
the Floquet multipliers of the system and return maps indicate
that the crisis occurs due to tangent bifurcations in every case
studied. The signatures of the unstable dimension variability
near the crisis are seen in the fluctuations in the number of
positive eigenvalues and fluctuations in the largest Lyapunov
exponents around zero. The signatures are strong around the
middle of the infection line and less strong about the edges.

We also set up additional dynamical characterizers, viz.
distributions of finite-time Lyapunov exponents, statistics of
level separations (i.e., differences between successive FTLEs),
and variances of FTLEs [31]. These also contain strong
signatures of the dynamical behaviors of the system pre-
and postcrisis. We note that fields of FTLEs have been used
as identifiers of Lagrangian coherent structures in a variety
of contexts ranging from fluid flows [32] to urban transport
[33]. It would be interesting to see whether the dynamical
characterizers used in the present paper, viz. the distributions
of FTLEs, level separations, and variances, are able to yield
useful information in these and other contexts.

Finally, special solutions of the spreading and nonspreading
types are seen at the boundaries of the synchronized solution.
The special solutions of the spreading or infecting type, seen
above the infection line, are spatiotemporally intermittent in
nature, whereas the nonspreading solutions or noninfecting
solutions seen below the infection line are spatially intermittent
in nature. Statistical characterizers are essential to characterize
the difference between the two kinds of solutions. The
spatiotemporally intermittent, infecting solutions show scaling
behavior and a complete set of directed percolation exponents
[5,23], and belong to the DP universality class, whereas the
noninfecting solutions show scaling behavior and an exponent
characteristic of spatial intermittency, which does not belong to
the DP class. Thus, the statistical characterization is essential
to identify the universality class of the system.

The dynamical characterization can identify the type
of bifurcation that takes place, as well as the dynamical
nature of the spreading and nonspreading modes. Power
spectra are useful to identify the exact dynamics of the
burst states. We also note here that the origin of the
emergence of two distinct universality classes for the same
system lies in a dynamical phenomenon, viz. the crisis
which occurs at the infection line. Thus the dynamical and
statistical phenomena are linked at a fundamental level.
Hence, both statistical and dynamical characterizations are
required for the complete understanding of the behavior of the
system.

We also note that that the cellular automaton version of
the system shows a transition from a deterministic cellular
automaton to a probabilistic cellular automaton at the crisis
line [5]. Thus the phenomena are linked at three levels, the
transition in the cellular automaton, the spreading transition in
the space-time plots, and the crisis in the dynamical system.
We also intend to see whether the cellular automaton level of
description can provide further insights into the system.

Thus, the spatiotemporal dynamics of extended systems
has implications for their statistical behavior. Our analysis
indicates that both dynamical and statistical characterizers
complement each other in the analysis of the spatiotemporal
dynamics of extended systems. In most studies of pattern
formation, e.g., sand pile problems and cellular automata,
statistical characterization is used to understand the behavior
of the system. The present study indicates that a twofold char-
acterization is necessary for the complete analysis of evolving
extended systems. Some of the characterizers discussed here
can go some way towards this. The development of further
tools for the analysis of evolving systems with many degrees
of freedom is also important. We hope this work will provide
some impetus towards this.
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