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Irregular excitation patterns in reaction-diffusion systems due to perturbation by
secondary pacemakers
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Spatiotemporal excitation patterns in the FitzHugh-Nagumo model are studied, which result from the
disturbance of a primary pacemaker by a secondary pacemaker. The primary and secondary pacemakers generate
regular waves with frequencies fpace and fpert, respectively. The pacemakers are spatially separated, but waves
emanating from them encounter each other via a small bridge. This leads to three different types I–III of irregular
excitation patterns in disjunct domains of the fpace-fpert plane. Types I and II are caused by detachments of waves
coming from the two pacemakers at corners of the bridge. Type III irregularities are confined to a boundary
region of the system and originate from a partial penetration of the primary waves into a space, where circular
wave fronts from the secondary pacemaker prevail. For this type, local frequencies can significantly exceed fpace

and fpert. The degree of irregularity found for the three different types is quantified by the entropy of the local
frequency distribution and an order parameter for phase coherence.
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I. INTRODUCTION

Reaction-diffusion models are widely used to study the self-
excitatory dynamics in different research fields. Prominent
examples are the Bhelousov-Zhabotinsky reaction [1,2] and
the catalysis of carbon monoxide [3,4] in chemistry, popula-
tion [5] and plankton dynamics [6] as well as aggregation
processes [7] in biology, and spreading of forest fires [8]
in ecology. In physiology, reaction-diffusion models can be
applied to study the propagation of electrical excitations in
the brain [9] or heart [10]. Irregular excitation patterns in
these systems, manifesting themselves in a spread of local
activation frequencies, can result from a reduced or modified
functionality of pathological states. Different causes for the
appearance of these irregularities have been discussed in the
literature, including nonlocal feedback [11,12], global changes
of system properties such as excitability [13] and excitation
thresholds [14], gradients in system parameters [15], changes
due to remodeling [16,17] or mutations [18], influences of
boundaries [19] or externally applied amplitude modulations
[20], and the coupling between mechanical and electrical
activation of the heart cells [21,22].

In this work we investigate another possible mechanism for
the emergence of irregular excitation patterns, which is the
perturbation of an initially regular activation by a secondary
source. This mechanism can be important, for example,
to understand electrophysiological observations during atrial
fibrillation. Peculiar spatiotemporal patterns of the electric
potential such as spiral waves, mother waves, or ectopic foci
are thought to be responsible for this arrhythmia [10,23–26].
These patterns are often located near physiologically modified
regions of the heart tissue in the left atrium [26–29], while
the irregular fibrillatory states are often observed in the right
atrium [28–30]. It is therefore important to better understand
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how self-excitatory sources such as spiral waves or ectopic
foci with rather regular dynamics in one region can induce
irregular excitation patterns in another region.

Inspired by the idea that the mutual interference of
originally regular wave fronts could be a cause of atrial
fibrillation, we consider an idealized geometry where two
pacemakers generate regular waves in two different areas that
are connected by a small bridge. The primary pacemaker is
thought to represent the sinus node in the right atrium, while
the second pacemaker represents a self-excitatory source in the
left atrium. To explore effects caused by the disturbance of the
secondary pacemaker, we use the FitzHugh-Nagumo (FHN)
model as one of the most studied standard reaction-diffusion
systems for excitable media. Different types of irregularities
are found in the area of the primary pacemaker and quantified
by their phase coherence and the entropy of the local frequency
distribution. With respect to the spatiotemporal dynamics of
the electric potential in the atria, the FHN equations are
certainly not realistic, but we are interested here in generic
features, which may be independent of details such as the
correct functional forms and duration of action potentials and
the lengths of total and partial refractory periods.

II. MODEL

The FHN equations [31] are a set of two coupled nonlinear
ordinary differential equations that describe excitable media
via an inhibitor-activator mechanism. They were originally
developed by searching for a simplified version of the
Hodgkin-Huxley equations for electric pulse propagation
along nerves [32]. When combined with a spatial diffusion
term, the equations are
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The variable u is the fast activation variable, which describes
the excitation of the system. The variable v is the inhibiting
variable, which is responsible for driving the system back into
the resting state after an excitation. The diffusion coefficient
D describes a spatial coupling and z is an applied stimulus.
The influence of the parameters a, b, and c can be inferred
by numerical solutions of Eqs. (1) without the diffusive term.
The parameter values are limited to some range, with respect
to the ability to generate excitability, and their detailed effect
on the pulses is complicated due to mutual interdependences
originating from the nonlinearity in Eq. (1). Roughly speaking,
a affects the length of the refractory period [33], b influences
the stability of the resting state, and c controls the excitability
and strength of the response to a stimulus. In the following we
will associate the following set of parameters with the normal
state of the system: D = D0 = 0.1, a = a0 = 0.7, b = b0 =
0.6, and c = c0 = 5.5. The resting state for this parameter set is
given by the pair of values u = u0 = 1.2 and v = v0 = −0.6.

The two nonlinear coupled partial differential Eq. (1)
are solved with the finite-element method, using a triangu-
lation consisting of about 9000 nodes and an integration
time step �t = 0.01 [34]. Simulations with 130 000 nodes
and time step �t = 0.005 were performed to check the
spatial and temporal resolution. The nonlinearity u3(�x,t) in
Eq. (1) is treated as an inhomogeneity, which means that
for u(�x,ti) the value u(�x,ti−1) of the preceding time step is
used.

Calculations are carried out on a two-dimensional sim-
ulation area as shown in Fig. 1, which is considered to
represent an isolated section of atrial heart tissue, as it is
used often in experiments [35–37]. The simulation area has
size 21 × 10 and is divided into three regions: the rectangular
area L with 0 � x � 10 and 0 � y � 10 (representing the
left atrium), the rectangular area R with 11 � x � 21 and
0 � y � 10 (representing the right atrium), and the small
bridge B with 10 < x < 11 and 4 < y < 6 (representing fast
conducting pathways between the electrically isolated atria
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FIG. 1. (Color online) Sketch of the simulation area. In region R
the primary pacemaker excites planar waves (red dash-dotted line)
propagating in the y direction with frequency fpace. In region L
the secondary pacemaker generates planar waves (blue dashed line)
propagating in the x direction with frequency fpert. Here P1, P2, and
P3 mark the points for which time series of u are shown in Fig. 2.
The red solid rectangle in the bridge (10 < x < 11 and 4 < y < 6)
indicates the region of detachment referred to in Sec. III.

such as Bachmann’s bundle [38]). The boundaries conditions
are of von Neumann type.

We focus on situations where the secondary pacemaker in
region L is located far outside the left part of the simulation
area, which allows us to treat the wave fronts as effectively
planar [39]. In the simulations these secondary waves are
generated by periodically applying a current z = −1 with
duration one and period 1/fpert in the region x � 0.5 and
0 � y � 10. The primary waves representing the pacemaker
in region R are generated analogously by periodically applying
a current z = −1 with duration one and period 1/fpace in the
region 11 � x � 21 and y � 0.5.

To quantify the irregularity (or, conversely, the regularity)
of excitation patterns in region R we use two different
methods. In the first method the Shannon entropy of the
distribution of irregular frequencies is determined in region
R. For every point on a grid with resolution �x = �y = 0.1,
corresponding to a number Ng = 100 × 100 of grid points,
a local frequency is calculated as the inverse mean time
interval between consecutive action potentials. To determine
the frequency distribution, we divide the frequency range into
Nb bins of size �f = 0.01 and calculate the probabilities pl

of finding a frequency f in each bin fl � f � fl + �f . The
bins containing the pacing and perturbation frequencies are
excluded from this analysis, i.e., only the irregular frequencies
resulting from the interplay of the primary and secondary
waves are considered. The (normalized) Shannon entropy of
the irregular frequency distribution is

S(fpace,fpert) = −
∑Nb

l=1 pl ln pl

ln Nb

. (2)

For a single irregular frequency (pl = δl,l0 ), S = 0, while for
a chaotic pattern with a uniform frequency distribution (pl =
1/Nb), S = 1. Notice that the local frequency distribution will
depend sensitively on the pacemaker frequencies fpace and
fpert, which we indicated by defining S as a function of these
two frequencies in Eq. (2).

The second method quantifies the regularity by an order
parameter � [40] for phase coherence in the system. To each
potential uj (t) in element j of the grid, an imaginary part ũj (t)
is assigned by a Hilbert transform [41,42]

ũj (t) = P.V.

∫
dt ′

π

uj (t ′)
t − t ′

, (3)

where P.V. denotes Cauchy’s principal value. Numerically,
the Hilbert transform is carried out by a fast Fourier trans-
form of uj (t), multiplication of the spectral components
with −i sgn(f ) at frequency f , and Fourier back-transform
into the time domain. With ũj (t) known, a phase ϕj (t) =
arctan[ũj (t)/uj (t)] can be associated with the signal at time t

in each element j . The order parameter for phase coherence is
defined by

�(fpace,fpert) = 2

Ng(Ng − 1)

Ng∑
j>k

|〈exp{i[ϕj (t) − ϕk(t)]}〉t |,

(4)

where 〈· · ·〉t denotes a time average. In practice, we have
taken a moving average 〈· · ·〉t = T −1

∫ t0+T

t0
dt · · · in a time
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interval T � max(f −1
pace,f

−1
pert) and checked that �(fpace,fpert)

fluctuates around a constant value after evolving the system
into a stationary state.

III. INFLUENCE OF SECONDARY PACEMAKER ON
PRIMARY WAVES

The secondary pacemaker can be expected to have a
destabilizing effect on an a priori regular propagation of the
primary waves. In certain circumstances it is also conceivable
that a stabilization of an irregular excitation pattern of the
primary waves occurs. The formation of irregularities by
the secondary pacemaker is demonstrated in Fig. 2, where
the time evolution of u is shown at the three points Pi

marked in Fig. 1 for fpace = 0.091 and fpert = 0.1 and 0.105.
While for fpert = 0.1 [Fig. 2(a)] the evolution remains regular,
irregular behavior is found for the slightly higher frequency
fpert = 0.105 [Fig. 2(b)]. This is reflected in changes of the
shape of the action potential u(t) [see, for example, the
unsuccessful activation at point P2 (dashed line) at t = 175].

Spatial irregularity expresses itself by wave breaks, wave
fragments, or instabilities with reentrant characteristics and
examples of it will be shown in the following section. With
respect to the formation of irregularities in region R, we can
distinguish three different regimes I–III in the fpace-fpert plane
(see Fig. 3). The decisive quantity separating these domains is
the critical frequency fc [43,44], above which traveling planar
waves detach from sharp corners. We determined this critical
frequency by evaluating the velocity ṽx of the primary wave
(region R) in the x direction at the lower left corner (x � 10.9
and y � 4.1) of the bridge when the secondary pacemaker
is absent (fpert = 0). The velocity is calculated by tracking
the peak position of the action potential. For small pacing
frequencies the velocity ṽx is negative where its magnitude
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FIG. 2. (Color online) Time evolution of the activation variable
u at three points marked in Fig. 1, P1 = (11.49,5.34) (black solid
line), P2 = (11.33,6.34) (red dashed line), and P3 = (11.94,6.15)
(blue dash-dotted line), for a pacing frequency fpace = 0.091 and
two different perturbation frequencies (a) fpert = 0.1 and (b) fpert =
0.105. It was checked that the behavior remains qualitatively the same
after a three times longer simulation time, which gives confidence that
the obtained features are not a transient phenomenon.
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FIG. 3. (Color online) The three domains in the fpace-fpert plane,
where different types of irregularities occur. The symbols mark the
points where solutions of the FHN equations (1) have been generated.
Circles refer to solutions where regular excitation patterns have been
obtained and squares, diamonds, and triangles refer to solutions
where irregularities of types I, II, and III, respectively have been
found. The scale of the frequencies is limited to f = 0.1176. Above
this frequency planar waves cannot be excited if the frequency of
generated wave fronts corresponds to the pacing frequency in a
one-to-one manner.

becomes smaller with increasing f until reaching zero at f =
fc. For our parameters (see Sec. II) we find fc = 0.102.

While the phenomenon of detachment from sharp corners is
known both theoretically [43–45] and experimentally [44,45],
the question of how this primary effect affects the excitation
patterns arising from colliding waves of the two pacemakers
has not been established yet. In the following we discuss
spatiotemporal excitation patterns in the three regimes I–III
and characterize them with respect to (i) the ratio of the highest
local frequency fmax = maxl fl found in region R to the pacing
frequency, (ii) the entropy S in Eq. (2), and (iii) the phase
coherence of the resulting patterns, described by the order
parameter �.

A. Spatiotemporal excitation patterns in regimes I–III

Regime I corresponds to high pacing frequencies fpace > fc

(see Fig. 3), where the primary planar waves detach from
the lower corner of the bridge. Planar wave fronts with open
ends curl in the direction opposite to the propagation direction
of the front. In the absence of secondary waves, this leads
to the known irregularities initiated by such curling. In the
presence of perturbing secondary wave fronts, it is however
conceivable that the detachment of the primary waves is
effectively avoided.

A typical situation for the possible occurrence of this effect
and its further time evolution is followed in Fig. 4. Figure 4(a)
refers to a time instant where one of the primary waves
approaches the lower corner of the bridge and a detached wave
with an open end is propagating ahead of it. With progressing
time the primary wave transverses the bridge while merging
with a secondary wave that passes through the bridge at the
same time [Figs. 4(b) and 4(c)]. As a consequence, the merged
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(a) (b) (c) (d)
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FIG. 4. (Color online) Time evolution of u for irregularity type I for fpace = 0.117 and fpert = 0.091. Time steps between the pictures are
(a)–(e) �t = 4 and (f)–(h) �t = 3. The color coding is given by the bar on the right. Yellow refers to the excited state and red to the excitable
or refractory state.

wave front is not detached from the boundary after the bridge
has been transversed [see Fig. 4(d)]. The secondary wave thus
leads to a pattern where an open end of a wave front is first
avoided. However, the curling of the wave with an open end
running ahead [Fig. 4(e)] leads to a merger with the wave
still having contact with the boundary. As a result, a fork-type
shape of the excited area in the upper part of region R is seen
in Fig. 4(f). Because the part connecting the lower tooth with
the stem cannot propagate into the refractory area between the
teeth, this part becomes thinner [Fig. 4(g)] and eventually a
rupture of the excitation front takes place [Fig. 4(h)]. Hence,
despite the initial avoidance of a detachment after traversal of
the bridge, eventually a wave front with an open end again
results.

For fpace < fc, the primary waves, in the absence of the
second pacemaker, would exhibit planar wave fronts with
contact with the boundaries, propagating regularly in the
y direction. The question is whether this regularity is destroyed
by the secondary pacemaker.

In regime II fpert > fc (and fpace < fc) (see Fig. 3), the
secondary waves detach from the corners of the bridge, leading
to two open ends of the wave fronts after passing the bridge.

These open ends start to curl, which in the absence of the
primary waves can lead to two counterrotating spirals. In
the case of an interplay of the propagating open ends with the
primary waves, complex excitation patterns emerge in region
R. An additional source of this complexity is that due to the
high fpert, the time periods of excitability in the region R near
the bridge are rather short and accordingly the propagation
of the primary waves cannot be continued in this area, i.e.,
detachment of the primary waves takes place close to the
bridge.

An example of the spatiotemporal behavior in regime II
is shown in Fig. 5. In Fig. 5(a) two subsequent fronts of
the primary waves in region R can be seen, where the front
running ahead has detached from the boundary and the left
open end is already curled. A secondary wave has just passed
the bridge and exhibits two open ends. In the course of time,
the curled primary wave front merges with the secondary wave
front [Figs. 5(b) and 5(c)]. Subsequently, a further merger
with the following primary wave occurs, resulting in a pattern
where the two primary wave fronts are connected by a thin
stripe parallel to the y axis [Fig. 5(d)]. The lower part of this
stripe can propagate in the x direction, while a corresponding

(a) (b) (c) (d)

(h)(g)(f)(e)

FIG. 5. (Color online) Time evolution of u for irregularity type II for fpace = 0.091 and fpert = 0.105. Time steps between the pictures are
(a)–(d) �t = 2 and (e)–(h) �t = 4. The color coding is given by the bar on the right. Yellow refers to the excited state and red to the excitable
or refractory state.
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FIG. 6. (Color online) Time evolution of u for irregularity type III for fpace = 0.067 and fpert = 0.100. Time steps between the pictures are
(a)–(d) �t = 2 and (e)–(h) �t = 4. The color coding is given by the bar on the right. Yellow refers to the excited state and red to the excitable
or refractory state.

propagation of the upper part is hindered because the primary
wave running ahead has left behind a refractory area. As a
result, the stripe ruptures [Fig. 5(e)]. At the same time the
following primary wave cannot enter the area in front of
the bridge due to the missing excitability discussed above.
With further time this wave is detached from the boundary
[Fig. 5(f)], another secondary wave passes through the bridge
[Fig. 5(g)], and eventually an excitation pattern [Fig. 5(h)]
corresponding to a situation shortly before the pattern in
Fig. 5(a) is obtained.

In regime III, fpert > fpace and both fpert and fpace are
smaller than fc. After passing the bridge the secondary
waves now keep contact with the boundary and form circular
wave fronts that spread out in region R. Because fpert > fpace

these circular waves expel the primary waves after a transient
time. A representative example of the spatial activation pattern
and its temporal evolution is shown in Fig. 6. Overall the
circular waves represent a regular pattern. However, the
primary waves activated at the lower boundary in region R can
partially penetrate the space between the circular wave fronts
and thus build up wave fragments [see Figs. 6(a), 6(b), 6(g),
and 6(h)]. Irregularities in regime III are thus confined to a
boundary layer.

Since the irregular features occur in small domains that are
located near the bridge for type I and II irregularity and near the
lower right boundary for type III irregularity, one should expect
them to be essentially unaffected by the system size. Indeed,
by carrying out additional calculations for a larger system,
where we extended the right region R from 11 < x < 21 and
0 < y < 10 to 11 < x < 31 and 0 < y < 20, we recovered all
three types of irregularities in the extended system.

B. Strength of irregularities in regimes I–III

Figure 7 shows the maximal local frequency fmax as a
function of fpert for five different pacing frequencies fpace.
As long as fpert � fpace, the activation patterns are regular and
fmax = fpace. If fpace < fc = 0.102 (all curves except the one
marked by the green triangles), regime III is first entered when
fpert becomes larger than fpace (see Fig. 3). The irregularities
in this regime are reflected by fmax values that in general

exceed fpert slightly. In certain cases the enhancement can
be quite large, as evidenced by the value fmax � 0.15 found
for fpace = 0.05 (black circles) at fpert = 0.1. For fpert > fc,
regime II is entered (right of dotted line in Fig. 7). In this
regime fmax is weakly enhanced with respect to fpert. In
the situation where fpace > fc (curve marked by the green
triangles), which corresponds to regime I (see Fig. 3), a similar
moderate enhancement of fmax with respect to fpace is obtained.

The entropy S and the order parameter � of phase
coherence [see Eq. (2)] are displayed in Fig. 8 as a function
of fpert for the same set of fixed pacing frequencies as in
Fig. 7. Figures 8(a) (for S) and 8(c) (for �) refer to the area
y < 4 below the lower corner of the bridge (see Fig. 1), while
Figs. 8(b) (for �) and 8(d) (for S) refer to y > 4, where
the corner detachments of the waves can have an influence.
With both measures changes in the degree of regularity of
the excitation patterns can be clearly identified. Transitions
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FIG. 7. (Color online) Maximal local frequency in region R as a
function of fpert for different pacing frequencies fpace = 0.050 (black
circles), 0.067 (red squares), 0.091 (blue diamonds), 0.10 (orange
stars), and 0.111 (green triangles). The dotted line marks the critical
frequency fc and the case fmax = fpert is indicated by the dashed line.
The solid lines connecting the data points are drawn as a guide for
the eye.
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FIG. 8. (Color online) Order parameter � for phase coherence
and entropy S of the local frequency distribution dependent on the
perturbation frequency fpert, calculated for areas (a) and (c) y > 4 and
(b) and (d) y < 4 in region R. Results are shown for different pacing
frequencies: fpace = 0.050 (black circles), 0.067 (red squares), 0.091
(blue diamonds), 0.10 (orange stars), and 0.111 (green triangles). The
vertical dashed line marks the critical frequency fc.

from more regular to less regular states are reflected in
decreases of � and increases of S, respectively. Focusing on
the behavior of �, the transition from the regular regime to
regime III is seen in Fig. 8(b) as a sharp drop after which
� remains essentially constant upon further increasing fpert

below fc (left of the dotted line). In Fig. 8(a) the drop of �

becomes less pronounced with increasing fpace and is followed
by a smooth increase. This can be understood from the fact that
the irregularity in regime III is confined to the lower boundary
of region R. With increasing fpert the regularity induced by
the secondary waves in the upper part of region R can be
more easily established and the perturbations induced by the
irregularities at the lower boundary become less relevant. In
the lower part of region R by contrast, the effects induced by
the irregularities at the lower boundary prevail and accordingly
� is not significantly affected by fpert. The transition from
regime III to II is reflected in a drop of � in Fig. 8(a).
In Fig. 8(b) the behavior is more complicated. For small
fpace (curves marked by black circles and red squares) the
irregularities in the upper part of region R can penetrate to
the lower part and accordingly � is small. In fact, the �

values are comparable to the ones obtained for fpert < fc. As
a consequence, the transition from regime III to II cannot be
seen clearly in the data. For larger fpace (curve marked by blue
diamonds) the penetration of the irregularities from the upper
to the lower part of region R is suppressed, which is reflected in
an increase of � when fpert exceeds fc. For fpace > fc (curve
marked by green triangles), where the system stays in regime
I, a small constant � value is obtained in Fig. 8(a) and a large
constant value in Fig. 8(b) as a result of the detachment of
the primary waves at the bridge.

While both measures S and � are well suited to identify
transitions between different regimes of irregularity, they can
show different behavior in detail. The entropy S quantifies the
spread in local frequencies, while the order parameter � is
more sensitive to correlations in the spatiotemporal behavior.
For example, in the case fpace > fc (curve marked by green
triangles) the entropy in the upper part of region R [Fig. 8(c)]
shows some variations when fpert is close to fc in contrast to
� [Fig. 8(a)]. In contrast, the slow rise of � for small pacing
frequencies after entering regime III [curves marked by black
circles and red squares in Fig. 8(a); see discussion above] is
not seen in S [Fig. 8(c)].

It is interesting that the highest local frequencies are
obtained in regime III, where neither the primary nor the
secondary waves detach from the bridge. In contrast, one
has to keep in mind that the irregularities at the boundaries
leading to these high frequencies appear after some transient
time ttr, which depends on fpert and fpace. To quantify this
effect we define ttr by the time where the order parameter
starts to deviate significantly from its value in the unperturbed
system [46]. As shown in Fig. 9, ttr decreases with fpert (at
fixed fpace) and increases with fpace (at fixed fpert). This can be
intuitively understood from the fact that the penetration of the
secondary waves in the region R should occur faster the larger
the difference fpert − fpace is. When fpert is approaching fpace,
ttr appears to diverge.

In fact, for large ttr, the functional dependence on fpert and
fpace can be determined by considering that the secondary
waves have to reach the lower boundary in region R and
on their way the leading penetrating front is effectively
annihilated once it collides with a front of the primary waves.
This effective annihilation is caused by the refractory area
following the front of the primary wave. In the time interval
between two annihilations, the leading front of the secondary
travels a distance �s ′ = (v/fpace + v/fpert)/2, where v is the
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FIG. 9. (Color online) Transient time ttr before onset of irreg-
ularities in regime III as a function of fpert for fpace = 0.050 (black
circles), 0.059 (red diamonds), 0.067 (blue squares), and 0.077 (green
triangles). Dashed lines are calculated according to Eq. (5) with ta = 0
for fpace = 0.05 (black line), ta = 9 for fpace = 0.0588 (red line),
ta = 18 for fpace = 0.0667 (blue line), and ta = 36 for fpace = 0.077
(green line).
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velocity of wave propagation (v � 1 in our units for the chosen
parameters). After this time, the leading front is annihilated and
the following one is propagating until it is also annihilated.
Because the distance between two subsequent fronts of the
secondary wave is v/fpert, the distance between two successive
annihilated fronts (i.e., the increment in the penetration depth)
is �s = �s ′ − v/fpert. Let us denote by s0 the travel distance
of the secondary wave to the lower boundary of region R
after the first annihilation, i.e., the size of the penetration
area. A number n = s0/�s of annihilations then occurs before
the secondary wave reaches the lower boundary in region R.
Accordingly, for large transient times (fpert ↘ fpace) we obtain
ttr ∼ n/fpace = 2s0fpert/[v(fpert − fpace)]. For small transient
times, the accommodation of the action potential duration
and propagation velocity to excitation frequency gives a
non-negligible contribution, which can be effectively taken
into account by an additive time ta . This leads to

ttr � 2s0

v

fpert

fpert − fpace
+ ta. (5)

In our setting where the first primary and first secondary waves
are generated at the same time instant, s0 = 16/2 = 8 (see
Fig. 1). As shown by the dashed lines in Fig. 9, this equation
describes well the simulated data.

IV. CONCLUSION

The appearance of self-excitatory sources as ectopic foci
or spiral waves is widely assumed to be a condition for
the emergence of irregular excitation patterns, although these
sources can generate quite regular excitations. In this context
it can be conjectured that irregularities emerge from the
interaction of waves from two different sources, for example,
waves of an ectopic focus collide with waves originating
from a pacemaker. In previous studies on interactions of
paced with self-excitatory waves, the influence of pacing on
a spiral wave was studied, e.g., by Osipov et al. [47] and
Davidenko et al. [48] with the aim of suggesting a possible

therapy to suppress fibrillation or tachycardia in the heart. The
pacing was applied to the region where the spiral wave was
located. It was found that it leads to an annihilation of the
reentrant activity or to a shift of the spiral core [48–51].

This work studies the interaction of two pacemakers under
geometrical constraints. In an idealized geometry, resembling
a connection between the left and right atria in the heart, three
different types of irregular excitation patterns could be identi-
fied. Which of these types occurs depends on the frequencies
fpace and fpert of the two pacemakers. We showed that in
addition to the entropy S of the local frequency distribution,
the order parameter � for phase coherence is a useful measure
for quantifying the degree of irregularity. Transitions between
regular and irregular behavior and between different types of
irregularities can be identified with both measures.

The type III irregularity yields local frequencies that can
significantly exceed the pacing and perturbation frequencies.
It might be a possible cause of atrial fibrillation, for example,
when one considers L to represent the left atrium with a
self-excitatory source and R the right atrium paced by the
sinus node. With respect to the condition fpert > fpace for
type III irregularity to occur, it is interesting to note that the
frequency of a self-excitatory pacemaker in the left atrium
often has a higher frequency than the sinus node [28,29].
In the future it will be of particular interest to see whether
this mechanism of generating irregular excitation patterns
can be found in more realistic model equations for atrial
electrophysiology, e.g., in the model of Courtemanche et al.
[52] or that of Bueno-Orovio et al. [53]. Furthermore, the role
of spatial inhomogeneities should be clarified with respect to
the different mechanisms leading to the irregularities.
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