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Scattering by a boundary with complex structure
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The distribution of escape times is usually studied in open billiards theory. In this work, we will concentrate
on another important question: The distribution of outgoing rays by exit directions, which we refer to as billiard’s
indicatrix. It can be obtained analytically and consists of two parts: the symmetric diffuse part and the asymmetric
directed part. The criterion for the separation of the indicatrix into these two parts is established. The asymmetry
of the directed part of the indicatrix and the influence of the billiard’s borders on it is investigated. We also
propose a method of the creation of a matte surface model using open billiards with a fully diffuse indicatrix.
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I. INTRODUCTION

Questions of the dispersion and reflection from boundaries
with a complicated structure arise in many physically inter-
esting environments. Examples are granulated substances [1],
mediums with fractally arranged boundaries [2], and so on.
Generally speaking, the boundary of any real substance, if it
is not specially processed, as a rule is extremely difficult.
Owing to this complexity, the reflection from it possesses
many general properties caused by the boundary structure. In
researching these properties we offer a model of a structurally
difficult boundary made of open billiards. A billiard is called
open when its boundary is not closed and has sites through
which particles can both enter and leave the billiard (see, for
example, [3,4]). Such billiards have been intensively studied
recently [5—8]. Attention was mainly given to the distribution
times of the particle residence inside an open billiard, the
general case study of which is not yet complete. It has been
shown that for the billiards whose closed forms demonstrate
strongly chaotic dynamics, the exponential distribution law
is typical, and in the case of regular dynamics, sedate (see,
e.g., [9]). The properties of these distributions and open
questions were discussed in detail in Ref. [10]. In this work,
we will concentrate on another prominent aspect, namely on
how the directions of the trajectories leaving the billiard are
distributed. We will use for this distribution term indicatrix
in the sense of a distribution of outgoing rays by their exit
directions. In particular, we will investigate how this indicatrix
is formed from some parallel beams falling on the hole in the
billiard boundary. This question is important for a wide set of
phenomena, in particular, the nonspecular type of reflection
from the boundaries of real bodies. For example, the not
specular reflection of light from the boundaries of scintillation
crystals [11] is well known.

The classical description of the propagation of light in a
scintillation crystal with a diffusively reflecting surface leads
to the integral equation of light gathering with a singular
kernel. This is a complex integral nonlinear equation, and the
search for and analysis of its exact solutions meets with serious
difficulties. One of the possible solutions in such situations is
modeling the processes of light propagation in a crystal using
billiards (see, for example, [12]).
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To model the propagation of light in a scintillation crystal,
it is quite natural to use a billiard of the same form as
the crystal. However, in this billiard the reflection from the
boundary follows the mirror law whereas in the crystal the
indicatrix of the reflection can have a significantly diffuse
component. We will show that it is possible to overcome this
contradiction and model a diffuse type of reflection by means
of a strictly mirror reflection. For this purpose we use a billiard
with a boundary that does not have a trivial structure. Such a
macroscopically flat boundary consists of “microscopic” open
billiards, possibly of several different kinds. Possible variants
of the construction of such a boundary are shown in Fig. 1.
In the first case, the reflection from the boundary as a whole
is mainly ideally specular, with the amendment caused by
beams from microscopic billiards. In another formation of the
boundary, microscopic billiards are imposed against each other
so that the macroscopical global billiard boundary entirely
consists of inputs in microscopic billiards (Fig. 1, right). In
this case the ratio of the specular and diffuse components of
the reflection depends only on the indicatrixes of the reflection
of microscopic open billiards.

Apart from the reflection from a boundary with a com-
plex structure, the indicatrixes of reflection generated by
open billiards also concerns other important questions. For
example, modern methods of lithography allow the creation
of nanostructures, often heterostructures based in gallium
arsenide. The transport properties of such structures have
interesting “anomalies.” The electrons at the Fermi level in
these structures at low temperatures are in ballistic mode
and form a two-dimensional electron gas. The size of the
system is less than the length of the electron’s free path,
therefore its resistance is defined not by the usual diffuse
dispersion of electrons, but, at least for short trajectories,
by the reflection from structure boundaries [13]. The system
border is defined by the electrostatic depletion of the chosen
area of the two-dimensional electronic gas. The resistance of
such structures appears [14,15] to not be additive and shows
complex, nonmonotonic alteration depending on the weak
magnetic field enclosed perpendicularly to the structure. It
is possible [16] to successfully explain all these anomalies
within the scope of the classical movement of a particle in an
open billiard. There, the electron plays the role of a particle
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FIG. 1. Two ways of constructing global boundaries from micro-
scopic billiards are shown. At left, a structurally complex border of
a global billiard obtained by the simple joining of “microscopic”
open disseminating billiards. The periodic top flat part of the
boundary provides a considerable specular reflection component. On
the right, the boundary of a global billiard obtained by overlaying
of “microscopic” ones. In this case, the flat sites of the border are
absent and the specular component is defined only by the properties
of “microscopic” billiards.

moving in a billiard, and the border of the structure acts as
the billiard boundary. The billiard’s indicatrix is important for
the resistance of these structures in a series. A comparison
of the classical and quantum approaches shows [17-19] that
the classical approach is in full agreement with the results of
the quantum description of this system. Thus, questions of
chaotic transport through open billiards are also important for
the development of modern nanoelectronics.

II. MICROSCOPIC BOUNDARY STRUCTURE

The structure of a macroscopical boundary is defined by
the periodic conjunction of microscopic billiards. Clearly,
the choice of a microscopic billiard plays the key role in
dispersion from such a boundary. In the case of a general
position billiards possess chaotic dynamics. So as microscopic
billiards we will choose those open billiards whose closed
forms possess chaotic dynamics of beams with a positive
Lyapunov’s exponent, such as the disseminating billiard of
Sinai [20]. The choice of the exact form of microscopic
billiard is optional. As the simplest choice we will take the
disseminating billiard shown in Fig. 2. In the closed form of
such a billiard strong chaos is realized. The form of this billiard
is defined by three dimensionless parameters, which may be
easily constructed from the radius of the curvature of a concave
site of border r, width of billiard /, heights /4, and distance to
the entrance window a. The presence of a disseminating site
on a boundary with nonzero curvature guarantees chaos [21] in
this billiard. A small number of the parameters characterizing
the billiard form allows for the analysis of the influence of the
billiard form on the reflection indicatrix.

III. DIFFUSE COMPONENT OF INDICATRIX

We will begin with general relationships. It should be
noted that as soon as the “microscopic” billiard is open,
the trajectories getting inside always leave the billiard after
a certain number of collisions with its boundary. This fact
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FIG. 2. Simple “microscopic” chaotic billiard. The form of this
open billiard is defined by parameters r, h, a, and [.

naturally follows from Poincare’s theorem of recurrence [22].
However, there is a difference between the trajectories leaving
after several collisions and the trajectories that stayed in the
billiard for quite a long time. Indeed, the loss of memory about
the initial conditions occurs on times greater than the time of
the uncoupling of correlations. For a strongly chaotic billiard
this time 7, ~ Ail , where A is a positive Lyapunov’s exponent.
In the case of ¥ < . memory may remain. In this case a narrow
beam of falling trajectories will leave the billiard. This results
in the reflections in certain directions depending on the angle
of incidence and the form of the billiard.

The trajectories leaving the billiard after time ¢ > 7, will
completely lose the memory of the angle of incidence and
leave the microscopic billiard in directions independent of the
initial data, having some universal distribution. This, in a sense,
is a result of asymptotic chaos, while directed reflection can
be thought of as the result of transient chaos [23]. Numerical
modeling shows that this distribution completely coincides
with the Lambert indicatrix [24] of diffuse reflection from an
ideally matte surface. That is why it is possible to call this part
of the indicatrix of the reflection, created by such trajectories,
diffuse. Generally, an indicatrix generated by a “microscopic”
billiard contains both diffuse and directed components. Some
examples of the obtained indicatrixes are shown in Fig. 3.

For the billiard form described above (see Fig. 2) it is
possible to derive in explicit form the criterion for the quantity

oy

FIG. 3. On the left is a diffuse reflection indicatrix of a “micro-
scopic” billiard with lateral walls and parameters / = 100, 7 = 80,
R =55.1, a = 49.5, and the angle of incidence ¢ = 0.896. On the
right is the more general case of an indicatrix of reflection having
diffuse and directed components. Billiard parameters are / = 100,
h =80, R =55.1,a =45, and ¢ = 0.896. The directions of falling
beams are shown by arrows.
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FIG. 4. Left: Reflection from the convex site of the border of the
beam, falling from a point at distance /;; from the point of reflection,
r is the radius of the curvature of the border. Right: Illustration
explaining the choice of an initial angle of discrepancy of beams.

of collisions with the convex part of a boundary, after which
it is possible to consider the trajectory chaotic. Because of
the presence of a disseminating boundary site, the discrepancy
of trajectories, including the angle between directions of their
movement, moves exponentially: Ao = Aape™”. We will now
estimate the Lyapunov exponent.

Let us consider two close beams, which fall on the convex
part of a boundary having angles with horizontal axes o and
o + do and the angle of incidence ¢, as it is shown in Fig. 4.
It is easy to see that after reflection the angle between these
trajectories will increase on 2df

do' = da + 2dP. (1)

Since rdp cos ¢ = l,da, we will receive

L
m/=<1+2—4—>dm )

r cos ¢

Comparing with do’ = e*da, for the Lyapunov exponent

we have
20/ 1
A=1n<1~|——< >) 3)
r \cosg

where [ is the mean path in the billiard between collisions with
the concave part. Since we cannot perform exact averaging
along the trajectory, as an estimate here the average product
is replaced by the product of average values. The average
value of the cosine of the angle of incidence is not equal to
zero because it can accept values only in the range [—Z

b4
2021
Further, for estimation we will use (——) ~ 1.

cos ¢

To estimate  we will use the well-known Sabine’s law [25]

[ = 7 G))
Here S is the billiard area and P its perimeter. However, its
direct application to the closed billiard form will establish only
the mean free path between collisions with all walls, not only
with the convex site. To overcome this difficulty we will use the
principle of trajectory flattening in collisions with rectilinear
walls. As the result of such a procedure on the Nth construction
step we will receive the billiard shown in Fig. 5. In this billiard,
collisions occur only with convex sites (N >>1). Therefore the
average free path calculated for it will give the length of the
path between collisions with the scattering boundary part.
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FIG. 5. Procedure of trajectory flattening on Nth construction
step is shown here. This trajectory in the constructed billiard
corresponds to collisions with concave sites of boundary.

The average trajectory length in this billiard is easily
calculated as

TN2S

l=—T—.
4h + N2,

®)

Here S = hl + f—1\/4r2 — 12— arcsin(zl—r) is the the area of
initial billiard, and [, = 2r arcsin(zl7) is the length of the
concave part. According to the obtained relations, at N>>1
the average length of the trajectory between concave parts is

5 7S w[hl+ V4T =12 — r?arcsin (£)]
=22 = l )]

- 2r arcsin (5)

(6)

This is indeed the mean free path between concave sites
because the contribution of collisions with flat lateral walls in
average length at N going to infinity goes to zero.

The same result can be obtained by noting that, owing
to strong chaos in the considered billiard, collisions are
distributed uniformly along its boundary, so its concave part
has l;f of the total number of collisions. The average mean
path between them is a corresponding number of times greater
lhlr)y="57 =15

Thus in order of magnitude we obtain

(e faa) =m0+ 7)
A=In|1+- ~Ahn|{l+—]). 7
r \cos ¢ lr

The value of the Lyapunov exponent depends on all three
parameters that define the form of the microscopic billiard.
We will now estimate the number of collisions after which the
memory of the initial conditions is lost. The initial angle of
the discrepancy of trajectories after the first collision with the
scattering part (see Fig. 2) we estimate as

[ —2
doy = 2dfy = 22—t | ®)

2

=)
where x = & tan ¢i,s mod . Considering that memory is lost
as angle o reaches 2 we obtain

N
172aS ) (9)
In (1 + l,_r)

~
Rep ~
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FIG. 6. Top left: Dependence of diffuse component part in
indicatrixes of reflection on the angle of incidence ¢, at/ = 100, h =
85, r = 150, a = 46. Top right: Dependence of diffuse component
part in indicatrix on height #, at/ = 100, a = 46,r = 150, ¢ = 0.57.
Bottom left: Dependence of same part on parameter a, at [ = 100,
h =85, r =150, ¢ = 0.77. Bottom right: Dependence of same part
on curvature radius r, at [ = 100, a = 46, h = 85, ¢ = 0.77. Small
squares correspond to the diffuse part, calculated using criterion (9),
crosses are obtained from the analysis of shape of the indicatrix of
reflection.

The criterion thus obtained has a qualitative character
defining a characteristic order of values. Thus, the trajectories
leaving the billiard after a number of collisions greater than n,,
lose the memory of their entry conditions. Such trajectories
leave the billiard in directions which do not depend on
the initial data and follow the general distribution for such
trajectories. These trajectories form the diffuse component of
the indicatrix of reflection.

The next important question is the dependence of charac-
teristics of the full reflection indicatrix on the form of the
“microscopic” billiard. First, it is important to find out what
portion of the falling beams goes in the diffuse reflection
component and what in the directed one. Then it is necessary
to consider the dependence of these on the parameters of the
microscopic billiard and the angle of incidence of the beams.
The influence of certain parameters at a qualitative level can
be understood with simple considerations. For example, the
increase in the curvature of the scattering part leads to an
increase of the Lyapunov exponent and therefore the portion
of the diffuse component. It is possible to come to the same
conclusion analyzing the dependence 7., on the curvature of
the scattering part. The critical value decreases with an increase
in the curvature 1/r and therefore the beams will fill up the
diffuse component after a smaller number of collisions.

The diffuse component portion in the reflection indicatrix
was calculated numerically and shown in Fig. 6. It was defined
in two ways: the first, by the division of trajectories according
to the criterion received above n > n., (shown by thesquares)
and the second by the direct analysis of the shape of the
calculated indicatrix of reflection (shown by the crosses). This
analysis is based on the choice of a parameter of Lambert
distribution that best fits the constructed indicatrix. The results
of these two methods correlate well. Some divergences arise
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if the falling beams hit a corner of the billiard or in a case
of of a large curvature in the scattering part. In these cases it
is necessary to consider the initial angle of divergence more
precisely. Thus, generally criterion n > n., defines the diffuse
component portion well.

The diffuse component portion of the indicatrix depends
mostly on the size of the entrance window ¢ =/ —2a. It
is clear that with its reduction the trajectories will have
more collisions with the scattering part before leaving the
billiard. Hence the portion of the diffuse component increases
with increase of a that corresponds to decrease of the
entrance window. Shown on the bottom left of Fig. 6 is the
corresponding dependence derived as a result of numerical
calculation. For fairly large entrance windows the portion of
the diffuse component is too small to be obtained from the
indicatrix, therefore only values for a > 0.25 are shown.

Now we will discuss the influence of parameter 4 on the
diffuse component. It is easy to see that with an increase of /
the mean free path also increases, and hence Lyapunov’s factor
also increases. It in turn leads to an increase in the diffuse
component part in the indicatrix of reflection according to
criterion 1. At the top right of Fig. 6 this dependence is shown,
obtained numerically. It is possible to note the increase of the
diffuse component as parameter 4 increases.

It remains to discuss the dependence of the indicatrix
on the angle of incidence. At small angles of incidence a
small reduction of the diffuse component part is observed. A
possible explanation is that with an increase in the angle of
incidence, the bunch of trajectories getting into the billiard
becomes narrower. A narrower bunch requires more time for
the divergence and formation of diffuse trajectories. At angles
of incidence close to horizontal the mean free path increases
considerably, as does the angle of initial divergence, which
results in an increase of diffuse component part to unity.

IV. SPECULAR REFLECTION COMPONENT

We will now discuss the directed components observed
in the indicatrix of reflection. If the entrance window is
big enough, of the order of characteristic billiard size, an
appreciable portion of the falling beams will leave the billiard
after only several reflections from its border. In this case the
number of reflections will be insufficient for the mechanism of
memory loss to work. Therefore the dispersion indicatrix will
contain several directions on which the local maxima of the
indicatrix (see Fig. 3) will be observed. It is convenient to begin
with the simple case of » — oo. In this case the beams move in
a rectangular billiard (Fig. 7) n., = oo and hence the diffuse
component is absent. It is easy to see that in a rectangular
billiard, irrespective of the number of collisions, the beams
extend only in four directions. These are the direction of the
initial input into the open billiard, the direction equivalent to
the specular reflection of the falling beam, and its opposite.
Therefore there are only two directions of exit from the open
billiard: the direction of a specular reflection and the direction
directly opposite to the falling direction. In other words, part of
the beams after a number of reflections leave this open billiard
in a direction strictly opposite to their falling direction.

If we choose a microscopic billiard that is a polygon
with rational angles, the number of all possible directions of
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FIG. 7. A beam path in an open rectangular billiard is shown here.
All possible directions of the movement of the beam and therefore
the possible directions of its exit are visible.

movement of the trajectories increases but remains finite. The
number of possible exit directions from the billiard increases.
It is interesting to note that the specular component among
them will be absent as a rule, while the opposite exit direction
will be observed in half of such microscopic billiards.

With a finite radius of curvature the situation becomes
more complicated. The number of possible exit directions
becomes more than two and the number of observed prominent
directions in the indicatrix depends on the angle of incidence
and the exact form of the billiard. The formation mechanism
of these directions is as follows. The falling stream of beams
is divided into bunches, each of which will leave the billiard
after a certain number of reflections from the billiards border.
Bunches with a small number of collisions form corresponding
splashes in the indicatrix of dispersion. With an increase in the
number of collisions, as discussed above, the beams lose the
memory of the initial conditions and form a diffuse component.

Following these concepts, we consider trajectories leaving
the billiard after one collision (Fig. 8). It is easy to understand

FIG. 8. A beam of trajectories leaving the billiard after one
collision with its boundary is shown. This beam always maintains
the direction of a specular reflection, corresponding to the reflection
from the central point of the concave segment. The trajectory defining
the critical angle is indicated by a dotted line.

PHYSICAL REVIEW E 87, 042901 (2013)

that there is a critical angle ¢, such that if the angle of
incidence ¢ > ¢, trajectories leaving after one collision do
not exist. However, if 0 < ¢ < ¢, they do exist. To find
@ We note, that if such trajectories exist, they necessarily
contain the trajectory reflected from the center of the convex
part of the boundary, i.e., a point with the coordinates
(é,r). Therefore the critical angle is defined by the condition
of the existence of this trajectory. At the moment of its
disappearance the trajectory touches the right edge of the
entrance window and passes through the central point of the
scattering segment (see Fig. 8). This allows the calculation of
the critical angle ¢, = arctan — é;alz from these simple
+\re—F—r

geometrical considerations. Thus, the4 considered beams, if
any, are reflected in the range of angles containing the angle
of specular reflection. Hence part of the beams leaving the
billiard after only one collision with its boundary contributes
to the specular reflection component

We will now evaluate what part of the stream falling into
the entire entrance window goes to this beam. As its measure
we will choose the relation of the width of the beam reflected
after one collision to the width of the entrance window =5-.
It is easy to see that x is the distance from the right edge of the
entrance window to the beam which, after reflection, touches
the left edge of the entrance window (see Fig. 8). Thisleadstoa

simple geometrical problem, after calculations we will see that

i L_g4

< ¢ < arctan 2

/’H—,/rz—%—r

X sin2[g; — (% — ¢)]
1= 2a (I —2a)sin [2¢; — (% — )] sin (Z — ¢)

12
x<h+,/r2—z—rsinrp1>, (10)

where ¢, is defined implicitly by the equation

(o5 (5 )]
e SN R R

If the angle of incidence of this
1

5—a
arctan T T—%’
through the entrance window does not leave the billiard after
one collision with its border. Therefore the maximum of the
considered portion of the beams does not lie at the normal
angle of incidence of the bunch. The occurrence of such beams
leads to a change of parities describing the part of beams
leaving billiard after one collision. It is possible to prove
that the maximum dependence of energy of the considered

.. 5—a
under conditions arctan —2——
h+ rz—ﬁ
4

beam is ¢ <

then the extreme right of the beams passing

1
reflected beam is reached at ¢ = arctan —2——. The obtained
h++/ rzf%

analytical dependence (10) is quite complex, therefore the plot
of this function is shown in Fig. 9.

Similarly, it is possible to consider the beams leaving after
two, three, or more collisions with the boundary, till 7., number
of collisions with the scattering part. With a growth in the
number of collisions the contribution of the considered beam
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FIG. 9. Dependence of the portion of falling beams, correspond-
ing with the one collision beam, on the angle of incidence of the

stream 0 < ¢ < /2, for a billiard with parameters [ = 100, & = 40,
r=63,a=17.

to the indicatrix will decrease and the relations defining it will
become more complicated. Thus, in principle, the directed part
of the indicatrix of reflection can be constructed analytically.
The beam leaving after only one reflection is one of the most
essential for the formation of the directed part of the indicatrix
and, within a certain range of angles of incidence, exists at
any admissible choice of billiard parameters. It can be used to
establish a qualitative criterion with which it is possible to di-
vide all billiards of a considered form into two classes: billiards
with a purely diffuse indicatrix of reflection and billiards with a
mixed indicatrix of reflection, containing a more or less clearly
expressed directed reflection. It is possible to consider billiards
with a purely diffuse reflection indicatrix those billiards with
the energy density of the beam leaving after one reflection

s—Lmx gt an angle of incidence when the energy of this
2p1+9—3)

beam is at its maximum, much less than the density of the
energy of purely diffuse reflection 1722" cos ¢. It is similarly
possible to receive values for the portion of energy in beams
leaving the billiard after two and more collisions. These beams
also form corresponding splashes in the reflection indicatrix.
Thus, the specular part of the reflection from the boundary
as a whole in the first means of the formation (see Fig. 1) is
made up of two parts: the reflection from the top flat sites of the
boundary and the specular reflection generated by the interior
of the microscopic billiard. The part of the energy of the falling
beam, reflected in the specular direction, in this case weakly
depends on the falling direction. The presence of flat sites
between the entrance windows of microscopic billiards is not
necessary. By superimposing microscopic billiards it is pos-
sible to make the whole macroscopic border only out of win-
dows. Basically this makes such a border even more realistic
than a boundary with a periodic structure of flat sites between
entrance windows. In this case the influence of beams from the
billiard onto the specular component will be more significant.
It should be noted that the construction of a boundary with
microscopic billiards of several types and the modification
of their form allow to obtain the indicatrix of reflection with
different properties. For example, in real crystals, reflection
occurs not only strictly mirror like, but in a certain narrow
range of angles including the direction of the specular
reflection. This imperfection can be modeled with a special
billiard. Choosing the lateral sides for this billiard in the form
of parabola sites we will receive the billiard shown in Fig. 10.

PHYSICAL REVIEW E 87, 042901 (2013)
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FIG. 10. The indicatrix of a nonideal specular reflection. Billiard
parameters correspond to completely regular dynamics.

This billiard type can be referred to as a Bunimovich focusing
billiard [26]. Certain parameters of this billiard correspond to
completely regular dynamics, and the indicatrix of reflection
for all angles of incidence looks like those shown in Fig. 10.
The width of the specular reflected bunch varies depending
on the size of the entrance window. Reflection in the direction
opposite to the direction of the beams falling is practically
absent for all angles of incidence.

As noted earlier, generally the reflection indicatrix has
a significant contribution from the return reflection. The
presence of this type of dispersion is characteristic for super-
conducting systems with Andreev type reflection [27], but is
not observed in crystals, for example. The reflection indicatrix
in scintillating crystals contains only specular and diffuse
components [11], without reflection in opposite direction.
We will consider the possibility of the suppression of such
reflection by directing the form of a microscopic billiard. First
of all we will note that reflection in the opposite direction will
be obviously observed after transition to a rectangular billiard
r — oo. Reflections from the lateral walls of the microscopic
billiard are important for this effect. Therefore it is necessary to
considerably modify the microscopic billiard, having removed
the lateral walls. From the physical point of view it means
a change in the billiard’s topology and the transition to a
billiard on a cylinder. Such a billiard can be received gluing the
lateral walls to one another. The typical numerically obtained
indicatrix of reflection of the modified billiard is shown in
Fig. 11. It can be seen that this indicatrix has a corresponding
maximum in the direction of the specular reflection.

Thus, by changing the billiard form, it is possible to
receive various indicatrixes of dispersion containing diffuse

\

e

FIG. 11. Diffuse reflection indicatrix of a “microscopic” billiard
without lateral walls with parameters / = 100, 4 = 80, R = 55.1, and
a = 45 for an angle of incidence ¢ = 0.675. The direction of falling
and specular reflection of beams are indicated by arrows.
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components, strictly specular reflections, or reflections in some
range of angles close to the specular direction.

V. INDICATRIX OF REFLECTION ASYMMETRY

We will now discuss in detail one more general property of
indicatrixes, connected with return reflection. The indicatrix
of reflection generated by open billiards is not symmetric,
which is a consequence of the asymmetry of the directed part
of reflection. Note that all trajectories leaving an open billiard
can generally be divided into trajectories leaving to the left
and to the right. It is roughly possible to name trajectories
of “mirror” reflection as those that leave the billiard in the
direction of movement of a falling beam. The second type of
trajectories which leave the billiard roughly in the opposite to
falling direction we will refer to as trajectories of the return
“reflection.” In this case we will consider only the movement
of the beam projection on an axis parallel to the entrance
window. To estimate the value of the indicatrix asymmetry
it is possible to ask the following question: What part of the
exiting trajectories changed their movement direction to the
opposite, and, accordingly, what part of the beams kept their
initial direction of movement? Let the falling beams have a
positive x velocity component, i.e., it falls on the entrance
window from the left, then we will denote as p the part of the
beams which after exit have a negative x velocity component.
In a sense, p is the part of the beams which are reflected in the
opposite direction and form an echo effect. This part depends
on all parameters changing the indicatrix of reflection and also
on whether a case of a billiard with or without lateral walls is
being considered.

As shown above, the part of the directed component
is mostly influenced by the size of the entrance window.
Therefore the dependencies of part p from the size of the
billiard entrance window were obtained numerically. To track
the influence of lateral walls, they were calculated for pairs
of billiards with identical parameters and angles of incidence
where the only distinction was the presence or absence of
lateral walls. The typical dependencies obtained are shown in
Figs. 12 and 13. It is shown that for a small size of the entrance
window, reflection occurs symmetrically, which corresponds
to purely diffuse reflection indicatrixes. However, starting from
a certain size of entrance window asymmetry arises, and its
character remains unchanged with a further increase of the
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FIG. 12. Dependence on the size of the entrance window of
the portion of trajectories that changed the sign of x, the velocity
component after exit from the billiard, calculated for a billiard with
parameters 7 = 80,/ = 100 and r = 55.11 and an angle of incidence
@ = 1.15. On the left for a billiard with lateral walls, on the right,
without. The level of symmetric reflection is shown with a dotted
line.
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FIG. 13. Dependence of the part of trajectories that changes sign
of the x velocity component after exit from the billiard on the size of
entrance window calculated for a billiard with parameters 2 = 100,
[ =100, and r = 53.11 for an angle of incidence ¢ = 1.15. On the
left for a billiard with lateral walls, on the right, without. The level of
symmetric reflection is shown with a dotted line.

entrance window. For the parameters of the billiard in Fig. 12,
the dominance of the return reflection for a billiard with lateral
walls is visible, and of a “mirror” reflection in the case of their
absence. With different parameters in Fig. 13 the dominance
of reflection in the opposite to falling direction and hence the
occurrence of an echo effect for both forms of billiards is very
visible. Therefore lateral walls can lead to the occurrence of an
echo effect, however, their absence does not necessarily mean
its disappearance. In changing the form of the billiard and
the angle of incidence we also found that the critical value of
window size, after which asymmetry appears, is not a constant
and widely varies. A reasonably typical case is when even for
7 = 0.4 (a =40 at/ = 100) asymmetry does not yet appear.

Thus the echo effect depends on the parameters defining
the form of the billiard. After the occurrence of asymmetry
in the reflection indicatrix, the preservation of asymmetrical
character is typical with a further increase in the entrance
window size. This allows us to attribute a certain kind of
asymmetry to defining the billiard form from the parameters
(h/1,r/1) and the angle of incidence ¢, and also to investigate
its dependence on the billiard parameters. These dependencies
have been calculated for two types of microscopic billiards and
certain angles of incidence and shown in Fig. 14. The plane of
the billiard parameters has appeared divided into zones with
reasonably smooth boundaries. In a sense these are bifurcation
diagrams of asymmetry indicatrixes of the dispersion of open
billiards.

The removal of the lateral walls in a billiard leads to an
essential change in reflection asymmetry. As shown in gray,
the “mirror” reflection type becomes prevalent. In both cases
it is possible to notice a semblance of periodic behavior with
a change in the height of the billiard /4. In the case of a
billiard without lateral walls in Fig. 14 it is clearly visible
that the quasiperiod is equal to 2/, and significantly less for
a billiard with walls in the range of small r. The presence
of such quasiperiodic behavior can be understood, having
recalled that asymmetry is created by the beams of trajectories
leaving the billiard after a small number of collisions with
its boundary. Clearly, if one such beam leaves a billiard of
height # under a certain angle to the horizontal «, then with
an increase of the billiard height to 7 4 2/ tan ¢ it will again
get to the entrance window and leave on the same angle.
Certainly, if the angle of incidence of the falling beams is
not equal to 5 — «, the initial falling bunch will not get on the
same disseminating part of the boundary. However, despite
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FIG. 14. The plane of billiard parameters (/,r) is shown. Above:
A billiard without lateral walls. Below: With walls. Considering that
the initial beams falls from the right, parameters corresponding to
mainly leftward exit from billiard are shown in gray. For parameters in
black: To the right (echo). In white: Reflection occurs symmetrically,
and there is no dominating exit direction. Angle of incidence ¢ =
1.15,1 =100, and a = 45.

this, as we see in Fig. 14, some periodicity of asymmetry
still remains. Another simple explanation of the quasiperiod
structure of the zones of reflection can be obtained considering
open rectangular billiards (corresponding » — 00). For this
billiard the periodic structure of the zones of “mirror” and
return reflection asymmetry can be obtained analytically. With
the advent of curvature these zones “are washed away,” become
wider, but do not totally disappear.
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VI. CONCLUSION

In this paper, the indicatrix of reflection of open billiards
was studied, i.e., the distribution of exit directions of trajec-
tories. It is shown that this indicatrix consists of two parts:
the directed reflection and the diffuse part. Short, quickly
exiting trajectories form the directed part of indicatrix, and
reasonably long trajectories form the diffuse part. The criterion
for the number of collisions with the scattering part of the
billiards boundary, after which it is possible to consider the
trajectory belonging to the diffuse part, was obtained. This
part of the indicatrix corresponds to a universal distribution
which does not depend on the parameters of an open billiard
or the angle of incidence of beams and completely coincides
with the Lambert indicatrix of reflection from an ideally matte
surface. The dependence of the part of the diffuse component
in reflection from the parameters of an open billiard and the
angle of incidence was studied. The most significant influence
on it is the size of billiard entrance window. For small entrance
windows, the reflection indicatrix appears completely diffuse,
which allows to model a macroscopic ideally matte boundary
by superimposing many microscopic billiards.

The directed part of the reflection can, in principle, be
constructed analytically. The simple part of the directed
indicatrix component, retaining the direction of the specular
reflection, was constructed. It is similarly possible to consider
beams of trajectories leaving after a greater number of
collisions with the scattering part of the boundary, until an n,
number of collisions. All other trajectories belong to the diffuse
part and have a corresponding distribution. Thus, we show that
an indicatrix can be constructed completely analytically.

The asymmetry of the reflection indicatrix was considered.
The space of the billiard parameters appears to be divided
into smooth, quasiperiodic zones with different prevailing
reflection types. The transition to a billiard on a cylinder
without lateral walls significantly changes these zones, and
the portion of the “mirror” reflection areas increases.
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