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Dynamical and statistical behavior of discrete combustion waves: A theoretical and numerical study
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We present a detailed theoretical and numerical study of combustion waves in a discrete one-dimensional
disordered system. The distances between neighboring reaction cells were modeled with a gamma distribution.
The results show that the random structure of the microheterogeneous system plays a crucial role in the dynamical
and statistical behavior of the system. This is a consequence of the nonlinear interaction of the random structure
of the system with the thermal wave. An analysis of the experimental data on the combustion of a gasless
system (Ti + xSi) and a wide range of thermite systems was performed in view of the developed model. We
have shown that the burning rate of the powder system sensitively depends on its internal structure. The present
model allows for reproducing theoretically the experimental data for a wide range of pyrotechnic mixtures. We
show that Arrhenius’ macrokinetics at combustion of disperse systems can take place even in the absence of
Arrhenius’ microkinetics; it can have a purely thermal nature and be related to their heterogeneity and to the
existence of threshold temperature. It is also observed that the combustion of disperse systems always occurs in
the microheterogeneous mode according to the relay-race mechanism.
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I. INTRODUCTION

A combustion wave represents a self-organized process in
which a chemical reaction, localized in a relatively narrow
layer (the so-called the reaction front), propagates throughout
the reaction media, converting initial reactants into combustion
products. Depending on the nature of the reaction media, the
process can be either homogeneous, such as in premixed gas
flames or the combustion of double-based energetic materials,
or heterogeneous, in the case of a medium consisting of
several phases. The phenomenon of heterogeneous combustion
is observed in a variety of processes including combustion
synthesis of materials [1–9], burning of solid propellants
[10–14], coals and biomass [15–17], forest fires [18–20],
reaction propagation in fluidized beds [21–23], and in clouds
of solid particles or spray combustion [24–27]. The simplest
heterogeneous systems are the powder mixtures in which a
so-called gasless combustion is realized. Gasless combus-
tion waves commonly occur in heterogeneous mixtures of
powder reactants such as Ta + xC, Ni + xAl, Ti + xSi,
and so on [1–9]. A locally initiated exothermic reaction
can propagate through the mixture in the form of a bright
glowing combustion front, without notable gasification. The
absence of a gaseous flame and solid state of the combus-
tion products allow us to term the process as solid-flame
combustion [28]. Self-sustained combustion can be realized
within some concentration limits for a given binary mixture.
Since the combustion products consist of valued refractory
compounds, gasless combustion makes a basis of combustion
synthesis technology [1–9,28], the so-called self-propagating
high-temperature synthesis (SHS). Therefore, the behavior of
the combustion wave at different concentrations is of interest
not only from the academic point of view, but also for the
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practical synthesis of materials and products with a tailored
chemical composition. Despite extensive investigations, the
mechanisms of reaction propagation in heterogeneous media
are not completely understood. The powdered combustible
systems are characterized by random (disordered) spatial
distribution of different kinds of particles. The structure of
heterogeneous condensed mixtures is one of the major factors
affecting the combustion wave characteristics as well as the
properties of the products. An important role of the sample
structure in such processes became especially evident after
experimental studies using in situ high-resolution microscopic
video recording [5–9]. Such microscopic studies have shown
that at small time scales the behavior of self-propagating
high-temperature reaction waves can become complex [5–9].
High-speed microscopic video recording has revealed [5–9]
a microheterogeneous mechanism of steady-state combustion
in this system: The combustion front was found to consist of
microscopic hot spots caused by flash burning of individual
particles in the mixture.

In homogeneous systems, the combustion process, in-
cluding its stability, is defined by only thermophysical and
chemical-kinetic properties of the system. It is well known
[29,30] that in homogeneous systems under certain conditions
a stationary process of combustion can be replaced by a more
complex, oscillating, mode of combustion, and under certain
other conditions the combustion becomes impossible. This is
connected with the nonlinearity of the system considered, in
which instability occurs under certain conditions: The system
undergoes a Hopf bifurcation, resulting in a combustion front
that moves with a pulsating speed. In homogeneous systems,
this instability has a thermal nature. Such a behavior is
characterized for a wide class of nonlinear phenomena from
physics to life sciences [31]. Under certain conditions, it is
associated with the development of complex behaviors such
as multiple states, abrupt transitions, periodic or chaotic oscil-
lations, waves, and spatial patterns [32,33]. In the combustion
of heterogeneous systems, a propagation of the thermal wave
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is complicated by the heterogeneous structure of the system.
This results in micro-oscillations of the combustion wave
even at stable stationary modes. As a result, the combustion
of microheterogeneous systems is always a random process,
in which the nonlinear interaction of the combustion wave
with random structure of the system occurs. The extensive
investigations in the field of heterogeneous combustion have
been carried out in the last decade; however, most of the works
were devoted to the experimental investigation of different
aspects of the combustion of heterogeneous systems. Only
very few reports were devoted to the theoretical analysis of
the combustion of heterogeneous systems [34–39] and there
were only a few attempts in the literature to take into account
the system randomness and its effect on the combustion of
heterogeneous systems. A random process of the propagation
of the combustion wave in a heterogeneous system, stimulated
by the interaction of the combustion wave with a random
structure of the system, has, first of all, a fundamental interest
since it is the simple example of such kind of processes. Of
special interest is the investigation of the influence of variations
of the system structure on combustion process. These problems
remain uninvestigated till now.

The present work attempts to investigate these problems.
In this work, we have studied the dynamical, structural, and
statistical properties of the combustion of a one-dimensional
disordered heterogeneous system. The use of gamma distri-
bution for the distances between the adjacent cells allows us
to study the wide variations in the structure of the system,
ranging from clusters to completely disordered systems and
further up to regular periodic systems. We consider the model
of discrete combustion waves (percolate combustion) [35,38],
which has very interesting behavior, similar to the behavior of
the combustion of actual heterogeneous systems.

II. MODEL OF THE SYSTEM

A. Discrete combustion waves

The traditional description of solid-phase combustion is
based on the heat equation with a source term representing
an exothermic reaction [40]. In experimental situations, the
reacting sample usually has a cylindrical geometry and in
many circumstances the variation of the temperature field
along the transversal direction is small and can be ignored.
Upon neglecting transversal heat losses, the one-dimensional
macroscopic equation can be used for the description of
the evolution of the temperature of such a system. A one-
dimensional system, consisting of reaction cells (particles),
the point heat sources, distributed along an axis x, similar to
our earlier reports on the combustion of a system with periodic
and uniform random distribution, have been considered here
[35,38]. However, in this study, we have introduced a gamma
distribution among the distances between the adjacent cells.
The medium filling the space between the reaction cells is
characterized by thermal conductivity κ , density ρ, and heat
capacity c. The cells are considered to be immobile and
are characterized by an ignition temperature Tign. When the
temperature of an unburnt cell reaches the value Tign, the
ignition and instantaneous burning away of the cell occurs
with the release of heat Qi . The model under consideration

simplifies essentially the kinetics of an actual combustion
process and reduces it to two parameters: ignition temperature
Tign and amount of heat release Qi . If we consider this
model as applied to the gasless combustion of heterogeneous
systems [1–9,28], the sense of ignition temperature becomes
apparent. The gasless combustion systems represents a mixture
of powders, each of which is chemically inert by itself.
However, as a result of interaction, they are capable of releasing
a large amount of heat, which is enough for self-sustained
combustion. The initial particles of the powder components
constituting the systems of gasless combustion are in the solid
state. In this state they are unable to enter into a chemical
reaction with each other because the reaction can proceed
only after the mixing of components. Thus, the melting of
components is a necessary condition for the beginning of the
chemical reaction in such systems. Experimental data [5–9]
show that the chemical reaction between the components starts
practically immediately after the appearance of the liquid
phase in the system and the burn-out time for the active
particles is always essentially less (at least on order) than
the characteristic time of the heating of the particles from the
initial temperature up to ignition temperature. This allows us
to consider the process of the burn-out of the active elements
(reaction cells) of the system as instantaneous and the instant of
reaching of some threshold temperature Tign, at which a liquid
phase (e.g., molten materials or eutectic) appears in the system,
can be considered as an instant of the ignition of the cells.

The problem under consideration is described by a one-
dimensional equation of thermal conductivity with delta
sources which has the solution (see [38])

T (t,x) = Tin +
∑
i(t)

�Ti(t − ti ,x − xi); �Ti(t,x)

= (Qi/cρ)
1

2
√

πκt
exp

(
− x2

4κt

)
,

where Tin is the initial temperature of the system; ti is the
instant of ignition of the ith cell, located at xi .

For a system of identical heat sources Qi = Q0. The analy-
sis is conveniently carried out in nondimensional variables [38]

t = t
(
κ
/
l2
0

)
, x = x/l0, θ = T − Tin

Tad − Tin
, ε = Tign − Tin

Tad − Tin
,

(1)

where Tad = Tin + Q0
ρcl0

is the so-called adiabatic tem-
perature or burning temperature of the system; l0 =
limN→∞ ((xN − x0)/N) is the mean distance between neigh-
boring heat sources in the system. In nondimensional variables
the governing equation between the ignition temperature and
time is given by [35,38]

2
√

πε =
k−1∑

i=−∞

1√
tk − ti

exp

(
− (xk − xi)2

4(tk − ti)

)
. (2)

For a given ignition temperature, this relationship enables
the finding of the ignition moment of the kth cell, tk , if
all ti (for i < k) are known. In general Eq. (2) has a set
of solutions, however, the ignition moment tk corresponds
only to the minimal solution of all such possibilities. Thus,
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Eq. (2) allows the calculation of the sequence of the times of
ignition of all heat sources in the system, and, by doing so,
to determine the dynamics of combustion. We note that the
system under consideration is single-parametric: All solutions
for this system depend on the system structure and on the single
parameter ε, the nondimensional ignition temperature of the
sources. Using the solution of Eq. (2) for a specific system,
it is possible to find the burning rate both of the system as a
whole and in its different parts. For example, a mean burning
rate for the section between the cells i and k > i is equal to

ω = (xk − xi)
/

(tk − ti). (3)

In particular, for a periodic system, consisting of identical hot
spots, the steady-state burning rate Eq. (3) will be the same for
all i and k, and Eq. (2) becomes [35]

ε = εp(ω), (4)

where we introduced the function

εp(ω) =
√

ω

2
√

π

∞∑
k=1

1√
k

exp (−ωk/4). (5)

The calculation of the nonsteady burning rate, which always
takes place in disordered systems and even in periodic systems
at the initial period of combustion immediately after the
initiation of the system and also beyond the stability threshold
[35], is necessary to solve the nonlinear algebraic equation
(2). The exothermic reaction is commonly initiated by heating
one end of the cylindrical sample. From a theoretical point
of view, this is equivalent to setting the temperature at one of
the boundaries, say x = 0, to a specific value Ti > Tign, and
the rest of the sample at the ambient temperature Tin at t = 0.
To achieve a stable ignition of the sample in our calculations,
we considered, as an initial condition, that the 1000 of first
heat sources are inflamed compulsorily and consistently with
time intervals τ = 200; after that the system was left to itself,
and the process developed in accordance with Eq. (2). For a
given ε, tk was varied in small steps until the summation in
Eq. (2) reached the values of ε. Basically, once the reaction was
initiated, one observed the formation of a heat front that, after
a short delay, started to propagate with a constant speed up to
the vicinity of the outer boundary x = L. However, under some
particular circumstances, this “stationary regime” may become
unstable. The system under consideration is a nonlinear one
and it posses the complex and interesting behavior depending
on its structure and ignition temperature ε [35,38].

B. Characterization of system structure

Combustion of the systems with two different structures
has been considered in [35,38]: (i) with periodic spacing of
the reaction cells and (ii) with random uniform distribution
of the reaction cells along the axis x. At the same time, the
analysis of experimental data [9] shows, that the structure of
the actual system changes with a change in the concentrations
of powder components; this results in changing in the burning
rate of the system even if all other the parameters remain
constant (e.g., at the constant burning temperature). For this
reason it is interesting to investigate the model system with
wide variations in structure which allows studying the effect
of system structure on its combustion.

A one-dimensional system in which the distances L

between neighboring reaction cells are random ones adhering
to the gamma distribution which is an extension for Eq. (12)
in [38]

p(L) = aa


(a)
La−1 exp(−aL), (6)

where a is a shaping parameter has been considered in this
study. The case a = 1 corresponds to the random uniform
distribution of the cells in the system considered in [38].
The mean distance between cells is always equal to unity
in nondimensional variables. The presence of an additional
parameter a in the distribution Eq. (6) allows varying the
system structure in the wide ranges and investigating the
effect of the structure on the propagation of the combustion
wave. Probability density for gamma distribution, calculated
by using the expression Eq. (6) and obtained numerically
by the Monte Carlo method, are shown in Fig. 1. One of
the most important characteristics of random structure is
a pair distribution function g(r), which is defined for the
one-dimensional system as follows

g(r) = N (r,dr)

2〈n〉dr
, (7)

where N (r,dr) is the number of reaction cells on the segment
[r,r + dr], located on the distance r from a given cell, averaged
throughout the cells of the system; 〈n〉 is the mean density of
the reaction cells on the axis x, in nondimensional variables
〈n〉 = 1. The pair distribution function (7) is shown in Fig. 2,
calculated for different values of shaping parameter a.

From Figs. 1 and 2 it can be seen that the formation of
long-range order in the system occurs with an increase in
parameter a in the range a > 1 and at a = ∞ the system
becomes a periodic one. On the contrary, the probability of very
closely spaced reaction cells increases for a < 1. We can say
that the clusterization of the reaction cells occurs in the system
for a < 1: The cells are collected in dense groups (clusters).
The distance between cells in the cluster can be very small
(r � 1), resulting in the practically simultaneous ignition of all
cells in the cluster. This means that the cluster can participate in
combustion as a unified reaction cell with a bigger heat release,
which is equal to the sum of heat released by all elementary
reaction cells incorporated into the cluster. It is necessary to
note that the number of elementary reaction cells in the cluster
will be random and the total heat release is quantized: Q0n,
where Q0 is the heat release of single elementary reaction
cell, n = 1,2, . . ., is the random integer, equal to the number
of elementary reaction cells incorporated in the cluster. Thus,
the system with a gamma distribution of distances between
neighboring reaction cells (6) allows modeling the systems
with wide-range variations in its structure: From clusters (a <

1) to completely disordered (a = 1) and further up to regular
periodic systems (a = ∞).

III. BURNING FRONT PROPAGATION

A. Results of simulation

Propagation diagrams of a discrete burning front, obtained
by the solution of Eq. (2) for different values of shaping
parameter a and different ignition temperatures ε, are shown
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(a)
(b)

(c) (d)

FIG. 1. Distribution of the distances between neighboring hot spots. The polygonal lines are the histogram of specific realization, smooth
lines are theoretical probability density Eq. (6). (a) a = 0.7; (b) a = 1; (c) a = 5; (d) a = 20.

in Fig. 3. All lines in Fig. 3 for single parameter a, but for
different values ε, correspond to the same realization of the
random structure of the system. A comparison of the data in
Fig. 3 with the experimental data [5–9] on the combustion of
powder gasless mixtures shows their similarity. Combustion
occurs in the form of consequent jumps: Relatively long
periods of front stopping (induction periods) are followed
by the fast burning-out of some part of the sample with
a practically constant burning rate, and followed by a new
induction period again. The duration of induction periods
and periods of “continuous” combustion are random and it
is connected with the random structure of the system [5–9].
In experiments [9], the change of mixture parameters and in
concentrations of powder components (e.g., a changing in
stoichiometric coefficient x in mixture Ti + xSi) results
in either the regularization or stochastization of the combustion
process. The former resulting from the fluctuations of the
duration of the induction periods decrease and the process
becomes more stable, and the latter when combustion becomes
more a random one with long and random induction periods. A
similar behavior of the burning front is observed in the model
under consideration. It follows from Fig. 3 that a stability of
the combustion process decreases with a decrease in parameter
a: the lesser the parameter a the more pronounced a discrete
and random nature of the process. For the same values of
parameter a, the process is more regular at smaller ε; the
more ε the more random is the process, the stronger effect of
the fluctuation of the random structure of the system on the
burning front propagation. Calculations show that for ε > 0.45
it is impossible to have a stable combustion process for any
initial conditions: The system is extinguished after burning-out

of some number of reaction cells. Theoretically, this appears as
follows: Due to the system’s random structure there are always
neighboring pairs of reaction cells with an extremely long
distance between them. The induction period for these pairs is
also extremely long. The ignition delay time increases with an
increase in nondimensional ignition temperature ε for all pairs
of reaction cells but more rapidly for pairs with long distances.
This is clearly seen in Fig. 3 [especially in Figs. 3(a) and 3(b)].
At ε ∼ 0.45 the induction period for one of the pairs of hot
spots having a long distance becomes so much bigger that the
temperature field in the system has enough time to level off
due to thermal conductivity. As a result, the temperature of the
next unburned hot spot does not reach the ignition temperature
and its ignition does not occur. This immediately results in the
stopping of the combustion of the system as a whole.

The theory of inflammability limits was developed by
Zel’dovich [42] and Spalding [43] for the steady propagation
of flat premixed gas flames. According to this theory, an
inflammability limit is a direct result of heat losses. Roughly
speaking, the propagation of the combustion wave becomes
impossible when the rate of heat losses into an ambient
environment grows faster than the rate of heat release from
an exothermic combustion reaction. The dilution of the initial
mixture with an inert compound as well as the deviation from
the optimal (Stoichiometric) ratio decreases the heat release,
therefore, an inflammability limit can be reached in this way.
This approach does not look so evident in the case when heat
losses from the sample surface are negligible compared to heat
release inside the sample (e.g., in the case of large samples).
The classical theory suggests that, in the latter case, the
inflammability limit is determined by radiative heat losses [44].
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(a) (b)

(d)(c)

FIG. 2. Pair distribution function for cells in the system for different values of the shaping parameter. (a) a = 0.7; (b) a = 1; (c) a = 5; (d)
a = 20.

This cannot be directly applied to gasless mixtures because
they are opaque and, therefore, radiation cannot escape from
the inner regions of the sample. The model under consideration
shows that the inflammability limit can be reached due to a
changing of the kinetic parameters of the system (e.g., the
ignition temperature) even at the absence of heat losses. The
analysis of Fig. 3 shows that a decrease in the nondimensional
ignition temperature of hot spots ε and an increase in shaping
parameter a results in the regularization of the combustion
process. On the contrary, an increase in nondimensional
ignition temperature ε and a decrease in shaping parameter
a results in the stochastization of the combustion process
with strong induction periods corresponding to the horizontal
segments in Fig. 3. Because the combustion of the system
under consideration represents the sequence of ignition of
discrete hot spots, the burning rate is actually determined by the
sum of ignition delay periods between neighboring hot spots.
Therefore it is of interest to analyze a correlation of the ignition
delay time between neighboring hot spots and the distances
between them. From the definition of the nondimensional
steady-state burning rate for a periodic system we can write

τ = ω−1
p L2, (8)

where τ is the time interval between the ignition of neighboring
sources; L is the nondimensional distance between neighbor-
ing sources; ωp(ε) is the nondimensional burning rate for a pe-
riodic system with unit distances between neighboring sources
[35,38]. Figure 4 shows the correlations between τ and L, ob-
tained in calculations of the combustion of disordered system
with gamma distribution (6) for different values of shaping
parameters a and nondimensional ignition temperature ε.

A treatment of the results of calculations (Fig. 4) shows that
the upper and lower boundaries of the interval of tolerance can

be described by the expression

τ = b±(ε,a)Lm, (9)

where m(ε,a) and b±(ε,a) are the parameters which depend
on ε and a; parameters b±(ε,a) characterize the upper and
lower boundaries of the interval of tolerance. As mentioned
above, for a → ∞ the system under consideration turns into
a periodic system for which, in accordance with Eq. (8), m =
2. The correlation analysis of the results of the numerical
calculations of Eq. (2) for the system under consideration in a
wide-range of parameters a ∈ [0.7 . . . 20] and ε � 0.45 results
in the following expression for the power m(ε,a):

m = 2 + 0.2 exp (3.18ε0.66 + (0.1 + 0.029 ln ε)a

− (0.0012 + 0.003ε)a2) (10)

having the correct limit m → 2 as a → ∞ and for ε → 0. Let
us note that in the limiting range a ∈ [0.7 . . . 20] one can use
the more simple expression

m = 2.2 − 0.01a + 2.23a0.27ε (11)

which has the same degree of accuracy but has not the correct
limit m → 2 at a → ∞ and ε → 0.The calculations show
(Fig. 4) that a line

τ = ϕω−1
p Lm (12)

can be used for the fitting of the correlation under considera-
tion, where ϕ is the fitting parameter of the order of unit.

B. Theoretical considerations

In this section a theoretical dependence of burn rates
normalized to burn rates of a periodic is obtained and compared
with numerical results. As it is shown in the Appendix a
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(a) (b)

(d)(c)

FIG. 3. Numerical propagation diagrams of discrete burning front for different ignition temperatures ε. The ignition temperatures are
indicated over each line. (a) a = 0.7; (b) a = 1; (c) a = 5; (d) a = 20.

mean burning rate of a disordered system is described by the
expression

ωr/ωp = 1

ϕ
am 
(a)


(a + m)
. (13)

In the limit a → ∞ the system becomes periodic; this means
that ωr → ωp(ε), moreover in accordance with Eqs. (8) and (9)
m → 2 in this limit. Taking into account this result we obtain
lima→∞ am
(a)


(a+m) = 1; thus one concludes that ϕ → 1 in this
limit. Figure 5 shows both the burning rates, obtained by direct
numerical solution of Eq. (2) and the theoretical dependencies,
calculated by using Eqs. (13) and (10) with ϕ = 1. It can
be observed that theoretical dependence Eqs. (13) and (10)
with ϕ = 1 correctly describes the results of direct numerical
simulations in the whole range of parameters a and ε. For
this reason, the dependence Eq. (12) with the condition ϕ = 1
will be used in further analysis of the combustion process
in the system under consideration. Equation (13) generalizes

the results [38] on the case of the arbitrary value of shaping
parameter a. In particular,

lim
ε→0

{ωr (ε,a)/ωp(ε)} = a

a + 1
. (14)

Thus, the burning rate of a disordered system is always
less than a burning rate of the periodic system with the
same adiabatic burning temperature and the same ignition
temperature Tign.

The mathematical models with periodic structures are
used very often for the simulation of the real heterogeneous
systems [8,34,35]; In doing so, the periodic models have the
same average characteristics as those for the real systems. It
is usually assumed that the mean burning rate obtained in
simulations of such a periodic model should be equal to a
mean burning rate of a real disordered system. The results
above show that this is not the case: A real system (e.g.,
aerosol, SHS-system, composite solid propellant, etc.), which

FIG. 4. Correlation of time between ignition of neighbor heat sources and distance between them for a = 1 (left) and a = 15 (right). Dots
are results of numerical solution of Eq. (2), solid lines are correlation Eqs. (10) and (12) for ϕ = 1: line 1, ε = 0.05; line 2, ε = 0.4.
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FIG. 5. Dependence of burning rate on ignition temperature ε

for different values of shaping parameter a. Markers are the results
of direct numerical solution of Eq. (2); lines are the theoretical
expression Eqs. (13) and (10) with ϕ = 1.

has a disordered structure, cannot be substituted by a periodic
system in simulations because their burning rate can differ by
many times.

C. Self-similarity in burning front propagation

An analysis of the dependencies of the ignition time of
hot spots on their coordinates t(x) for the same random
realization of the system structure but for different ε (Fig. 3)
shows that they share a number of traits with each other. It
is seen from Fig. 3 that the same features of function t(x)
present in dependencies t(x) for all ε: At the same points x

on all curves there are the similar heterogeneity; they differ
by only a scale, which increases with ε. Thus, dependencies
t(x), corresponding to different ε, reproduce the same features
of combustion wave propagation, reflecting the peculiarities
in the internal structure of the system. The scale of these
peculiarities on the curves t(x) is different for different ε:
The less the ε the less manifestation of the system structure
in the process of the propagation of the combustion wave and,
on the contrary, the more the ε the stronger the manifestation
of the peculiarities of the system structure in combustion. This
is a result of the nonlinearity of the system, which amplifies the
fluctuations of the combustion process induced by the random
structure of the system. For an analysis of these features, the
dependencies t(x) were processed in coordinates

η(xi) = 1

A
(t(xi) − (xi + x0)/ωr ) ,

where ωr is the burning rate of the system at a given (ε,a);
parameters A(ε) and x0(ε) were selected to give the best
match of dependencies η(x) at all ε for a given structure of
the system. The results of such calculations for a = 1 are
shown in Fig. 6. Similar dependencies η(x) take place also for
other values of parameter a. It can be seen that in the whole
range of ε an almost identical dependence η(x) is obtained, the
differences exist only in fine details. The deviation from unified
dependence in the initial period is connected, apparently,
with the transient process, however, one can see even in this
period all the dependencies η(x) have the same features and
repeat each other. Thus, one can say that the propagation of a
combustion front over a given system of hot spots is described

FIG. 6. Dependencies η(x) for a = 1 and ε = 0.05, . . . ,0.4 with
step 0.05.

by the unified dependence for all ε

t(xi) = (xi + x0)/ωr + Aη(xi), (15)

reproducing all the main features in the behavior of the
combustion front; in doing so the function η(x) does not
depend on ε and it is determined only by the system structure,
i.e., by the distribution of reaction cells in the system. This
means that function η(x) is different for different random
realizations of the system structure. This allows one to say that
the propagation of the combustion front in a one-dimensional
system with a random distribution of hot spots is self-
similar and function η(x) is some structure function which
characterizes mainly the structure of the system and weakly
depends on its kinetic characteristics, in particular on ε. This
means that function η(x) will be the same both at relatively
large values of ε and at ε � 1.

IV. STATISTICAL PROPERTIES OF COMBUSTION

A. Standard deviation of burning time

This section illustrates the relation between the relative
standard deviation of the burning rate with the relative standard
deviation of the burning time of a sample. Experimental data on
combustion of powder mixtures [5–9] show that the process
of the propagation of a discrete combustion wave in actual
systems is random and it is accompanied with the essential
fluctuations of both instantaneous and local parameters of
the combustion wave and burning rate of the system as a
whole. The results of modeling confirm these facts (Figs. 3
and 4). Fluctuations observed in the calculations are connected
with both the random structure of the system and nonlinearity
of the system as a whole: the nonlinearity of the system in
combination with its random structure at certain conditions
can amplify a nonuniformity of the combustion process up
to its total termination. These results in the dependence of the
parameters of a combustion wave (primarily the burning rate of
the system) on a specific realization of the random structure of
the system and have the essential fluctuation from experiment
to experiment.

As it is shown in the Appendix a relative standard deviation
of the system’s burning time is described by the expression

σt

〈tN 〉 = 1√
N

√

(a)
(a + 2m)


2(a + m)
− 1, (16)
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FIG. 7. Dependence of relative standard deviation of burning time on number of particles for different ignition temperatures ε. a = 1 (left),
a = 15 (right). Markers are direct calculations; lines are theoretical dependence (16).

where the parameter m is determined by the correlation
Eq. (10). Figure 7 shows the calculated dependencies of the
relative standard deviation on the number of hot spots in the
system for different values of ignition temperature ε for a = 1
and a = 15. The markers in Fig. 7 indicate the results of direct
calculations using the dependenceis x(t) obtained by a solution
of the Eq. (2). In the later case, the time of burn-out of different
segments with N hot spots for the same sample were analyzed.
These segments were considered as separate samples (different
realizations of the random structure), consisting of N hot
spots. Such an analysis was carried out for different random
realizations of the system for the same value of parameter a, in
so doing the parameter a was varied in the range [0.7,. . .,20].
As a consequence of this analysis, the mean value and standard
deviation of the burning time were determined. The relative
standard deviation of the burning rate approximately equals
to the relative standard deviation of the burning time for the
same sample. The dependence of fluctuations of the burning
time on the number of hot spots in the system Eq. (16) is the
standard one for Markov random processes [45].

B. Kinetic equation

Using the correlation Eq. (12) with ϕ = 1 and gamma
distribution Eq. (6) for distances between adjacent cells, it
is easy to find the distribution function of the ignition delay
between adjacent cells

Pτ (τ ) = ωp

m

aa


(a)
(ωpτ )(a−m)/m exp(−a(ωpτ )1/m). (17)

A comparison of the distributions of the ignition delay obtained
by the numerical solution of Eq. (2) and calculated according
to Eqs. (17) and (10) is shown in Figs. 8 and 9. It can be
seen that the dependence Eq. (17), obtained from correlation
Eqs. (12) and (10), satisfactorily describes the distribution of
the ignition delay for a wide range of parameters a and ε.
The best agreement is reached for small values of parameters
a and ε. The curves in Figs. 8 and 9 are similar to the
experimental dependencies obtained in [6,9] for the ignition
delay of the individual particles in actual heterogeneous
mixtures. The above results tell us that the propagation of a
discrete combustion wave in the systems under consideration
with sufficient accuracy can be considered as a Markov random
process.

The analysis shows that the controlling factor in the
propagation of the combustion front in the systems under
consideration is not the dispersion of the coordinates of
hot spots, but the dispersion of the ignition delay between
adjacent reaction cells: If we replace the random system by
a periodic one (x = k), retaining the actual ignition delays
between the cells, the dependence x(t) will be a little different
from the exact one. This means that the dependence t(k) (where
the number of a cell k is considered as its coordinate) is
more convenient to analyze than the dependence x(t). Let
us introduce a probability density p(k,t) that a hot spot k

ignites at instant t . Considering the process as a Markovian
one, for probability density p(k,t) one can write the Chapman-
Kolmogorov equation [46]

p(k,t) =
∫ ∞

0
p(k − 1,t − τ )Pτ (τ )dτ , (18)

where Pτ (τ ) is the probability density that the ignition delay
for hot spot k equal to τ ; it is determined by the expression
Eq. (17). Note that equation (18) in general cannot be reduced
to the diffusion equation (Fokker-Planck-like equation) since
the solutions of the later give finite probability for “negative
jumps”: there will be a finite probability that the combustion
front will come into the point x2 earlier than into the point
x1 < x2, that is unacceptable. Therefore, Eq. (18) has no simple
differential forms and should be solved in a general way.

Equation (18) can be easily solved by using the characteris-
tic function. Let us introduce the characteristic function for the
distribution of the burning-out time of the kth hot spot p(k,t)

�(k,λ) = 〈exp(−λt)〉 =
∫ ∞

0
p(k,t) exp(−λt)dt.

Using Eq. (18), we can write

�(k,λ) =
〈

exp(−λ

k∑
i=1

τi)

〉

For a Markov process, the random variables τi at different i

are independent and identically distributed ones; because of
this

�(k,λ) =
k∏

i=1

〈exp(−λτi)〉
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(a) (b)

(d)(c)

FIG. 8. Distribution of ignition delay between adjacent cells for ε = 0.05. Polygonal lines are the specific realizations obtained by numerical
solution of the equation (2), smooth lines are the theoretical probability density Eqs. (17) and (10). (a) a = 0.7; (b) a = 1; (c) a = 5; (d) a = 20.

or

�(k,λ) = ϕk(λ), (19)

where

ϕ(λ) = 〈exp(−λτ )〉 =
∫ ∞

0
Pτ (τ ) exp(−λτ )dτ (20)

is the characteristic function for the distribution of the ignition
delay between adjacent hot spots.

Taking into account the correlation expression Eq. (12) the
expression Eq. (20) one can rewrite in the form

ϕ(λ) =
∫ ∞

0
p(L) exp

( − λω−1
p Lm

)
dL,

where function p(L) is determined by the expression
Eq. (6).Taking into account the distribution Eq. (17) one
obtains

ϕ(λ) = 1


(a)

∫ ∞

0
ξa−1 exp

(
−ξ − λ

ωpam
ξm

)
dξ, (21)

where ξ = aL.
The expressions in Eqs. (19) and (21) formally define the

solution of the kinetic equation (18), which can be obtained
by inverse Laplace transform of the function Eq. (19). For
a 
 1 (the system is close to a periodic one, weakly disordered
system) the random process t(x) can be approximately
considered as a diffusive one with “drift” ω−1

r and “diffusion
coefficient” D. According to the definition [46]

D = 1

2

σ 2
t

N
.

Taking into account Eq. (20) one obtains

D = 1
2σ 2

z , (22)

where σ 2
z is determined by the expression in Eq. (31).

Thus in the limiting case a 
 1, the kinetic equation (18)
turns into a Fokker-Plank equation

∂p

∂x
+ ω−1

r

∂p

∂t
= D

∂2p

∂t2
, (23)

where p(x,t) is the probability density that the combustion
front will reach a given point x at random instant t . Equa-
tion (27) is solved at the initial condition

p(x,t) = δ(t),

where δ(t) is the Dirac’s delta function, and it has the well-
known solution [46]

p(x,t) = 1√
4πDx

exp

(
− (t − ω−1

r x)2

4Dx

)
(24)

with a simple physical meaning.

V. COMPARISON WITH EXPERIMENTAL DATA

A. Ti-Si system

Here we demonstrate a possibility of the application of the
developed theory for the description of actual heterogeneous
mixtures. A solid phase reaction involving a mixture of silicon
and titanium powders, known as the “Ti-Si system,” has been
investigated experimentally in [9]. This can be considered
as gasless combustion as the amount of gas released during
the reaction turns out to be relatively small. This makes
the Ti-Si system a very popular object of investigation of
self-propagating high temperature synthesis [8,9]. The reactive
process is commonly represented in the form Ti + xSi,
where the stoichiometric coefficient x can be considered as
the bifurcation parameter. The dependence of the measured
average burning rate r on the stoichiometric coefficient is
shown in Fig. 10, together with the calculated adiabatic burning
temperature TB . The markers in Fig. 10 correspond to the
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(a) (b)

(d)(c)

FIG. 9. Distribution of ignition delay between adjacent cells for ε = 0.4. Polygonal lines are the specific realizations obtained by numerical
solution of Eq. (2), smooth lines are the theoretical probability density Eqs. (17) and (10). (a) a = 0.7; (b) a = 1; (c) a = 5; (d) a = 20.

data [9]. It was established that the combustion of Ti + xSi
systems occurs only in the range x = [0.3, 1.5]. The existence
of combustion limits is well known in the literature. The
maximum velocity (about 38 mm/s) coincides with the highest
value of TB for x = 0.6. The value x = 0.6 corresponds
to the synthesis 5Ti + 3Si→Si3Ti5. The formation of this
alloy releases the largest amount of heat which contributes
to an increase of the corresponding burning temperature. The
changing of the burning rate correlates with the changing
of the burning temperature in the range x = [0.3, 1]: The
more burning temperature the more burning rate. These results
are in agreement with the theory [40,44], which predicted a

FIG. 10. Burning temperature TB (squares: scale in K, on the left)
and burning rate r (bullets: scale in mm/s, on the right) as a function
of the stoichiometry x of the initial sample. Markers are data of [9],
solid line r(x) is the theoretical dependence (25) and (26) for gamma
distribution. Inserting shows the dependence of shaping parameter
a on the stoichiometry x used in calculation; dashed lines are the
combustion limits.

monotonic dependence of the burning rate on burning temper-
ature. However, the behavior of the burning rate in the range
x = [1, 1.4] differs essentially from this trend: The burning
rate decreases in this although the adiabatic temperature is
constant. This means that the adiabatic temperature is not the
only governing parameter for the burning rate. Such a situation
occurs in the combustion of heterogeneous mixtures such as
Ti + xSi for which combustion is accompanied by complex
microstructural and phase transformations. At present there
are no combustion models that could quantitatively describe
the change of the burning rate of heterogeneous systems at a
constant burning temperature. The developed model above
for the combustion of a system with randomly distributed
reaction cell allows giving such a description. According to
the developed model, the dimensionless burning rate depends
on the dimensionless ignition temperature of reaction cells and
the structure of the mixture, which is described by the shaping
parameter a. Thus, the shaping parameter a is an additional
“degree of freedom” for the burning rate of heterogeneous
systems: A change of the shaping parameter can result in
changing in the burning rate, even at a constant nondimensional
ignition temperature ε. This allows explaining a change of
burning rate of heterogeneous mixtures Ti + xSi in the range
x = [1, 1.4], where its adiabatic temperature is constant. It is
enough to assume that the shaping parameter a depends on
the stoichiometry x. Calculations of the burning rate of the
mixture Ti + xSi were carried out by using dependencies

r = r0ωr (ε,a), (25)

ε = Tign − Tin

TB − Tin
, (26)

where Tign, r0 are the constants; ωr (ε,a) was calculated
according to Eqs. (13) and (10) with ϕ = 1; ωp(ε) was
calculated according to Eqs. (4) and (5), obtained in [35] for
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a periodic system; TB(x) was determined by using data [9]
(Fig. 10); Tin = 300 K. As described above, in the developed
model it is impossible to organize a stable combustion process
at ε > 0.45 under any initial conditions for the whole range of
parameter a. This should be seen as a natural inflammability
limit for the combustion model under consideration. In
the experiments [9], the inflammability limits x = 0.3 and
x = 1.5 were obtained for heterogeneous mixtures Ti + xSi.
The developed model allows explaining these inflammability
limits, if we assume that ε > 0.45 outside the range x =
[0.3, 1.5]. Thus, our calculations assumed that ε = 0.45 on
the both inflammability limits, obtained in the experiments;
this allowed the determined the value of Tign = 950 K. The
dependence of the shaping parameter on the stoichiometry x,
a(x) was matched to obtain the best fit with the experimental
data on burning rate. For definiteness, it is assumed that a = 1
at the inflammability limits. The matched dependence a(x) is
shown in the inset of Fig. 10. The calculated dependence of the
burning rate on the stoichiometry x for Ti + xSi is also shown
in Fig. 10 by the solid line. We assumed in the calculations
r0 = 12 mm/s. Thus, the variations in shaping parameter a

can completely describe the dependence of the burning rate
on the stoichiometry x at a constant burning temperature. An
analysis of dependence a(x) (Fig. 10) shows that the shaping
parameter a reaches a maximum value a ≈ 94 at x = 0.8. As
shown above, the more a 
 1 the more ordered is the system:
as a → ∞ the system tends to be periodic. The obtained
dependence a(x) (Fig. 10) shows that the Ti + xSi mixture
becomes more ordered at x → 0.8, while, by contrast, the
mixture becomes disordered if it moves away from x = 0.8.
Such a behavior of the structure of the mixture can be
connected with the peculiarities of the packing of Ti and
Si particles in the volume of the mixture during the mixing
process at different concentrations of the components.

B. Thermite systems

Here we compare the experimental data for dilute thermite
systems [47], which consist of powder components capable
of exothermic transformation, mixed with some inert diluter,
with the theoretical model developed in the earlier sections.
The burning temperature of the system and its burning rate can
be changed over a wide range by changing the amount of the
inert diluter; in doing so the mechanism of heat release in com-
bustion is not changed. In such systems, the groups of active
particles, which are capable of chemical transformations, play
the role of heat sources, while the Tign is either the melting point
of a powder component or a temperature of eutectic [8,28] at
which the initial solid components are capable of chemical
reactions with one another. The values of the burning rate
and burning temperature of several thermite systems which
contain different amounts of the inert diluter are collected in
the work of the authors of [47]. Neglecting the heat losses, the
measured burning temperature of the system will be identified
with the adiabatic temperature of the system Tad. Figure 10
contains the data of the authors of [47], processed in the
coordinates of the burning rate versus a burning temperature.
The amount of inert diluter n in these systems is equivalent to
the change in the range from 0 to 70%, in doing so the burning
rate could be reduced by a factor of 20 within one system

FIG. 11. Correlation of burning rate and burning temperature for
several thermite systems, based on data of the authors of [47]. The
arrows show the critical points, which correspond to the beginning of
oscillatory combustion modes.

while a reduction of a burning temperature can be reached by
1000 K. It is necessary to note that starting systems without a
diluter are distinguished by the levels of the burning rate and
burning temperature: the burning rate of the systems without
an inert diluter are different by a factor of 30 while their
burning temperatures are different by 700 K. At a relatively low
concentration of inert diluter the combustion of the thermite
systems [47] occurs in steady-state mode without oscillations.
At a certain concentration of the inert diluter a steady-state
combustion loses its stability and the combustion of the system
is accompanied by oscillations of the burning rate (pulsating
regime of combustion) or by periodic flashes of separated hot
spots (hot-spot regime of combustion); further increasing in the
concentration of the diluter intensifies these oscillations and at
some limited concentrations of the diluter the combustion of
the system becomes impossible: extinguishing occurs for any
condition of initial inflammation of the system. The mean
burning rate during the whole time of the combustion of
several systems has been determined by the authors of [47]
for steady-state and pulsating combustion regimes; this one
can correspond to the theoretical mean burning rate Eq. (13)
(Fig. 5). The arrows in Fig. 11 show the dots corresponding to
a beginning of the pulsating regimes of combustion of different
systems. The treatment of the data [47] has been carried out
in the coordinates ε − ω. In doing so it is considered that a
beginning of the pulsating regime of combustion, observed in
the experiments, corresponds to the theoretical critical values
of the parameters εcr and ωcr. As we have established above
the detectable oscillations in such a system begin at εcr = 0.4;
these parameters we consider as the critical parameters for
disordered systems. Assume that burning rate rcr and burning
temperature Tadcr , determined in the experiments, correspond
to the beginning of the pulsating regime of combustion for a
real system. Then we can define the ignition temperature of
heat sources for this system, using the recommendations of
the theory above as Tign = Tin + εcr(Tadcr − Tin). Hereafter we
assume that the ignition temperature, defined in such a manner,
is a constant characteristic of the system and does not depend
on the dilution degree of the system by inert diluters. Then

ε = εcr
Tadcr − Tin

Tad − Tin
. (27)
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FIG. 12. Comparing of experimental and theoretical dependen-
cies ω(ε). Dots are the treated experimental data [47] (see the text
for details; the designations correspond to those for Fig. 11); solid
lines 1 to 4 are the theoretical dependence (10) and (13) for gamma
distribution: line 1 corresponds to calculation for variable a(ε); lines
2 to 4 correspond to calculations for a = const: (2) a = 0.7; (3) a =
2; (4) a = 20. Line 5 is the dependence of shaping parameter a on
nondimensional ignition temperature ε used in calculation for line 1.

In accordance with Fig. 5, critical nondimensional burning rate
ωcr = ω(εcr) depends on the shaping parameter a; this means
that ωcr depends on the system’s internal structure. Taking
into account that ω = rl0/κ , a nondimensional burning rate of
thermite systems satisfies the expression

ω/ωcr = (r/rcr)(l0/l0cr ), (28)

where r is the burning rate of the system; index “cr” marks
the parameters of a dilute system, which corresponds to a
beginning of the pulsating regime of the combustion in the
system. Assuming that the quantity of heat sources in the
system does not depend on the amount of diluter, we can write(

l0

l0cr

)3

= 1 − ncr

1 − n
, (29)

where n is the mass fraction of inert diluter in the system.
Experimental data [47] treated by using expressions (27) to
(29) are shown in Fig. 11. Lines 2-4 (Fig. 12) show the
theoretical dependence (13) and (10), with ϕ = 1 for different
values a = const. In these cases we assumed ωcr = ωr (εcr)
for each a. One can see that theoretical dependencies ωr (ε)
for a = const give only a qualitative agreement with the
experimental data, but not a quantitative one: the theoretical
sensitivity K = − ∂ ln ω

∂ε
is less essential than the experimental

one. To explain this difference we made the natural assumption
that the dilution of the thermite system results in the changing
of its structure. We assume that the changing of ε in the
dilution of the system is accompanied with the changing
of the shaping parameter a, which describes the system’s
structure. Moreover we consider that all thermite systems
under consideration can be described by the same dependence
a(ε). The dependence a(ε) is matched from the condition
of coincidence of theoretical dependence ω(ε) with the
experimental data [47] (Fig. 12). Such a dependence a(ε)
is shown in Fig. 12 (line 5). Theoretical dependence ω(ε),
calculated by using expressions Eqs. (10) and (13), taking into
account the matched dependence a(ε), is shown in Fig. 12

(line 1); it describes correctly the experimental data [47] for
a wide class of thermite systems. The value ωcr = 0.25 was
used in these calculations. The experimental data [47] allows
estimating a limiting value of parameter ε for each system,
above which a self-sustained combustion is impossible. The
data [47], processed in variables ε − ω, show that combustion
becomes impossible at ε = 0.45...0.5; this fact correlates well
with the theoretical results obtained above.

VI. DISCUISSION

A. Effect of system structure

The obtained agreement of the theoretical and experimental
dependencies ω(ε) (Figs. 10 and 12) augurs well for the
discrete combustion model of heterogeneous systems under
consideration. We have shown that the random structure of
the powder system can play a crucial role in the combustion
process and should be taken into account in the modeling
of the combustion of microheterogeneous systems. This is
a consequence of the nonlinear interaction of the system
structure and the thermal wave, which creates the features in
the propagation of the combustion wave. This is an important
result of this study. We concluded that the structure of the
system cannot be considered as an unchanged one, and it can
vary with changes in the size of the particles of dispersed
components or their concentrations, which results in the
changing in the nature of the combustion process and in the
burning rate, even at a constant burning temperature. This
is confirmed by the experimental data [9]. We found that
some features of the combustion of actual powder systems
can be described by the regularization or stochastization of
the system when the structure of the system becomes more
ordered, or, on the contrary, disordered due to the changing of
concentration of disperse components. The limiting case of the
stochastization of the mixture is its clustering when individual
hot spots are collected into the compact groups (clusters)
and act as the larger hot spots in the combustion process.
Thus, the results of experiments with the Ti-xSi system [9]
can be explained by assuming that a relative regularization
of the system occurs (a → 94) at x → 0.8 while the system
approaches the concentration inflammability limits x = 0.3
and x = 1.5 the stochastization of the system (a → 1) occurs.
Experimental data on the combustion of a wide class of
thermite systems with inert diluters [47] can also be explained
with a change in the structure of the powder mixture due to the
change of the concentration of the diluter. Thus, in the range
ε = 0.25, . . . ,0.35 the system should have a random structure
with an almost uniform random distribution of hot spots
(a = 1, . . . ,3), while a weak clustering of hot spots (a = 0.75)
should occur near the concentration inflammability limit.
These results are of fundamental importance because earlier
the effect of the structure of system on the combustion process
either was neglected, or assumed that the structure of the
system does not change with the changing in the concentration
and dispersion of the components [9]. The analysis of Fig. 3
shows that the combustion process becomes very sensitive
to the structure of the system at high ignition temperatures:
The higher the ignition temperature, the higher the sensitivity.
Thus, the presence of random heterogeneities in the system can
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have a weak affect on the combustion process at low ignition
temperatures, but can result in significant fluctuations of the
burning rate and even long periods of stopping of the burning
front (big ignition delays) at high ignition temperatures. We
can say that the heterogeneities of the system are precisely
that obstacle on which a termination of combustion occurs at
suprathreshold ignition temperatures.

B. Quasi-Arrhenius’ macrokinetics

The experimental data for all termite systems considered
[47] (Fig. 12) can be approximated (fitted) by the single
dependence

ω = 67.6 exp (−14ε) , (30)

although these systems essentially differ not only from one
another by their properties, but also they are different by the
contents of the diluter within a system. Taking into account
that, usually, Tad 
 Tin, the dependence Eq. (30) can be
considered as the Arrhenius’ one, that is, ω ∼ e−Eef/RTad ,
with an effective activation energy of macroprocess Eef ≈
9.08R(Tign − Tin), where R is the universal gas constant.
A similar dependence of the macroscopic burning rate on
burning temperature can be obtained theoretically in a ho-
mogeneous combustion model with Arrhenius’ microkinetics
[40,44]. Note that the obtained Arrhenius’ dependence of
the macroscopic burning rate of the system on its adiabatic
temperature is not connected with Arrhenius’ microkinetics of
chemical reactions in heat sources. The obtained result shows
that Arrhenius’ macrokinetics, which is usually detected in
experiments, can be connected with an existence of threshold
temperature Tign and a heterogeneous nature of the system
under consideration and it can have purely a thermal nature.

C. Relay-race mode versus quasihomogeneous mode

For a long time there has been a discussion in the
literature [1–9,28] on what is the mode in which the com-
bustion of disperse (powder) systems, in particular gasless
combustion, occurs: in a quasihomogeneous mode or in a
microheterogeneous (relay-race) mode. This question is of
fundamental importance for the simulation of the combustion
of such systems because the well-mastered and widely used
quasihomogeneous combustion model [48,49], which histor-
ically goes back to the founders of the combustion theory
(Zeldovich, Frank-Kamenetsky, Schwab et al.), are based on
the assumption about smooth and continuous distribution of
temperature and other parameters in the combustion wave,
and they need a justification as applied to combustion of
microheterogeneous systems. It is easy to introduce a criterion
of the “homogeneity” of the combustion wave as applied
to disperse systems. Let the characteristic thickness of the
thermal layer in the combustion wave be λ. According to
the combustion theory of homogeneous systems [40–44], this
thickness is connected with the burning rate r by expression

λ = κ

r
. (31)

Obviously, the combustion wave in the powder system can be
considered as a quasihomogeneous one, if the condition

λ 
 d (32)

is satisfied or

λ 
 l0, (33)

where d is the characteristic size of the particles. The criterion
in Eq. (32) is applicable to the combustion models that take
into account the finite size of the particles. In our model of
point hot spots one should use the criterion Eq. (33), which,
with taking into account Eq. (31), takes the form

rl0

κ
� 1, (34)

or, by the definition of the nondimensional burning rate ω

ω � 1. (35)

Thus, only if the nondimensional burning rate is much less
than unity, one can consider that the combustion of micro-
heterogeneous system occurs in a quasihomogeneous mode.
In practice, one can speak about a quasihomogeneous mode
when at least the condition ω < 0.1 is satisfied. According to
the theory under consideration, the less the shaping parameter
a the less the burning rate at the same nondimensional ignition
temperature ε. Using the expression Eqs. (13) and (10) (Fig. 5),
we find that the nondimensional burning rate ω > 0.2 even for
a = 0.7 at ε < 0.45 while the nondimensional burning rate
ω > 0.5 for ε < 0.3. Thus, we conclude that the combustion of
disperse systems occurs always in microheterogeneous mode
according to the relay-race mechanism and the application of
quasihomogeneous combustion models for such systems is
unfounded. This conclusion is also confirmed by experimental
observations [5–9].

VII. CONCLUDING REMARKS

The results show that the use of the gamma distribution
for the modeling of microheterogeneous systems allows
describing the peculiarities of the combustion of solid mixtures
with wide variations in their internal structure, from periodic,
which correspond to a = ∞ (they were separately investigated
in detail in [35,38]) to random homogeneous disordered
systems, which correspond to a = 1 (they were separately
investigated in detail in [38]), and ending with clustered
systems which correspond to 0.5 < a < 1. The burnfront
moves linearly for a system with larger a and acquires a jump
hesitate for lower a. The generalized theoretical dependence
obtained for random system burn rates normalized to a periodic
system show a complete agreement with the numerical results.
Self-similarity in burning front propagation is observed for
different ignition temperatures for the same random realization
of system structures. The relative standard deviation of burning
rates was found to be approximately equal to the relative
standard deviation of the burning time of same sample. An
aalysis shows that the controlling factor affecting burn front
propagation is the dispersion of the ignition delay between
adjacent reaction cells. An additional “degree of freedom,”
the shaping parameter a, introduced in the model allowed
reproducing theoretically the experimental data for a wide
range of pyrotechnic mixtures, as well as explained the
previously unexplained from the point of view of the theory
of the combustion of homogeneous systems the experimental
data on combustion of Ti + xSi mixtures. Only the assumption
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that the burning rate depends on the structure of the mixture
and can change with the changing of the structure of mixture
even at a constant burning temperature allowed describing the
dependence of the burning rate on stoichiometry x, including,
in the range with a constant burning temperature.

Of course, we understand that the one-dimensional model
and the gamma distribution is an approximation describing
the combustion of actual microheterogeneous systems. The
actual powder systems are the three-dimensional ones, the
particles in them have finite sizes, and the internal structure
of the mixtures is automatically formed in the process of
their preparation, depending on the sizes and concentrations
of the components. Accordingly, if the regularization or a
clusterization of the system occurs, it must be a result of the
system composition, but not specified as an input data. For
this reason, a more natural way is the direct simulation of the
structure of the system, based on one of the methods of packing
of particles, e.g., [50,51], and the subsequent direct calculation
of the combustion process [37,39], which automatically takes
into account the actual structure of the system, including its
possible regularization or clustering. As applied to actual
powder mixtures this work is planned in the next stage of
this research. In addition, the undoubted theoretical interest is
the investigation of non-Markovian random process (2). This
problem belongs to the fundamental problems of the theory of
random processes.
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APPENDIX

Let us calculate a mean burning rate of a disordered system
when the time intervals between the ignition of neighboring
sources and the distances between them are related by Eq. (12).
Consider some time interval, during which some number of
heat sources N 
 1 are burned away. The duration of this time
interval is

tN =
N∑

i=1

τi . (A1)

Taking into account Eq. (12), we obtain

tN = ϕω−1
p

N∑
i=1

Lm
i ,

or

tN = ϕω−1
p N〈Lm〉, (A2)

where

〈Lm〉 = 1

N

N∑
i=1

Lm
i

is the mean value of the parameter Lm. Because

〈Lm〉 =
∫ ∞

0
LmP (L)dL

one can easily obtain while taking into account Eq. (6)

〈Lm〉 = 
(a + m)

am
(a)
, (A3)

where


(m + 1) =
∫ ∞

0
zme−zdz

is the gamma function.
The mean burning rate of the system under consideration

as a whole

ωr = N

tN

or with taking into account Eq. (A2)

ωr = ωp(ε)
1

ϕ〈Lm〉 .

Taking into account Eq. (A3), we obtain

ωr/ωp = 1

ϕ
am 
(a)


(a + m)
. (A4)

Let us estimate the fluctuations of the burning rate of the
system as a whole. Consider the burning time of the system,
consisting of N reaction cells (A1). The ignition delay times
τi depend on the location of the hot spots in the system
and for the system under consideration they are random. The
discrete random process Li , i = . . . ,1,2,3, . . ., by definition,
is a Markovian one. Let us calculate a standard deviation of
the system’s burning time Eq. (A1) based on the assumption
that discrete random process τi is also Markovian, that is, the
ignition delay times τi relating to different hot spots are the
statistically independent random quantities. In this case the
burning time of the system consisting of N hot spots has the
mean value

〈tN 〉 = N〈τ 〉 (A5)

and standard deviation

σt =
√〈

t2
N

〉 − 〈tN 〉2 =
√

N
√

〈τ 2〉 − 〈τ 〉2. (A6)

The relative standard deviation of the system’s burning time
together with Eq. (A5) is

σt

〈tN 〉 = 1√
N

√
〈τ 2〉
〈τ 〉2

− 1. (A7)

Using the correlation Eq. (12) with ϕ = 1, we can write

〈τ 〉 = ω−1
p 〈Lm〉, 〈τ 2〉 = ω−2

p 〈L2m〉, (A8)

where 〈Lm〉 is determined by the expression Eq. (A3) for
any m. Using Eqs. (A8) and (A3), for the relative standard
deviation of the system’s burning time Eq. (A7) one obtains
the expression

σt

〈tN 〉 = 1√
N

√

(a)
(a + 2m)


2(a + m)
− 1, (A9)

where the parameter m is determined by the correlation
Eq. (10).
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