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Reexamination of explosive synchronization in scale-free networks: The effect of disassortativity
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Previous work [J. Gómez-Gardeñes, S. Gómez, A. Arenas, and Y. Moreno, Phys. Rev. Lett. 106, 128701 (2011)]
has reported that explosive synchronization can be achieved in heterogeneous networks with a microscopic
correlation between the structural and dynamical properties of the networks. This phenomenon, however, cannot
be observed in all heterogeneous networks even if this structure-dynamics correlation is preserved. It is therefore
of particular interest to identify the general topological factors that can induce the first order synchronization
transition and to understand the underlying mechanisms. Here we investigate this issue using the scenario of the
smooth transformation from homogeneous Erdös-Rènyi networks to heterogeneous Barabàsi-Albert networks.
Specifically, we scrutinize how local and global properties of the network change during this process, and
how these properties are associated with the emergence of explosive synchronization. We find that the local
degree-degree correlation in the network contributes primarily to explosive synchronization, other than the
global topological property or starlike subgraphs. We furthermore demonstrate that the degree of disassortative
mixing also has a great effect in the presence of explosive synchronization.
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I. INTRODUCTION

A network is an abstraction of a set of interconnected units
which is extensively used to describe diverse systems in the
context of sociology, biology, economy, physiology, engineer-
ing, and others. Certain structural features have been found to
be ubiquitous for various kinds of networks in the real world.
One of the most fundamental of such properties is captured by
the power law degree distribution, which can be reproduced
with the so-called scale-free network model proposed in the
seminal work of Barabási and Albert [1]. A scale-free network
with power law degree distribution necessarily implies that a
few nodes possess a large number of connections while most
of the nodes usually have a low degree. The presence of highly
connected nodes (i.e., hubs) is the most prominent feature of
scale-free networks, indicating that scale-free networks are
heterogeneous. It has been shown that this heterogeneity has a
significant impact on the dynamical processes taking place in
the networked systems. For instance, heterogeneous networks
typically exhibit the robust-yet-fragile property in the face of
node failures [2,3]. Other networked processes like synchro-
nization in networks have also been found to be significantly
affected by the topological heterogeneity of the underlying
network. In particular, it is much harder for heterogeneous net-
works to synchronize than for homogeneous ones, even though
the average network distance of the former is smaller. [4].

More interestingly, it is known that a weakly coupled
network with strongly heterogeneous natural frequency does
not display any coherent behavior. However, recent work [5]
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has shown that an explosive synchronization transition (the
first order transition to synchronization being quantified by
an order parameter) occurs in the heterogeneous scale-free
networks when the natural frequency is positively correlated
with the degree of the nodes. Accordingly, the emergence of
this first order synchronization transition is claimed to be the
result of heterogeneity and the above mentioned correlation.
To fully understand the relationship between the emergence of
the explosive synchronization and the topological properties
that lead to this phenomenon, we revisited explosive synchro-
nization in the scenario where the network topology changes
progressively from Erdös-Rènyi (ER) networks [6] to
Barabàsi-Albert (BA) scale-free networks, and the network
heterogeneity increases with the smooth transition from an
ER to a BA network.

We find, however, that explosive synchronization is not
present in all heterogeneous networks. More specifically,
the degree of heterogeneity under which explosive synchro-
nization can arise still remains unclear. In other words, is
there a critical heterogeneity for the networks to bring about
explosive synchronization? This leads to the relevant question
of whether there are other topological properties responsible
for this abrupt synchronization transition, apart from network
heterogeneity. In this paper, we address these questions by
exploring the interplay between synchronization transition
and the characteristics of network topology from both a
macroscopic and a microscopic level.

II. THE MODEL

A widely adopted model for studying synchronization of
oscillating systems is the well-known Kuramoto model [7].
Considering a network consisting of N phase oscillators with
reciprocal interactions, the motion of the ith oscillator can be
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formulated as follows:

θ̇i(t) = ωi + λ

N∑
j=1

Aij sin (θj (t) − θi(t)) (1)

for all 1 � i � N , where ωi represents the intrinsic frequency
of the oscillator. The coupling matrix (Aij )N×N describes
the corresponding network connections; thus if there is a
link between oscillator i and j then Aij = 1, and otherwise,
Aij = 0. In addition, the parameter λ represents the coupling
strength associated with all links. We follow the definition of
the synchronized state given in Ref. [5]: A synchronization
state is one for which all oscillators evolve with the identical
frequency, i.e., θ̇i(t) = θ̇j (t) for all i �= j . In this paper,
the dynamics of the N oscillators are studied by solving
Eq. (1) using the Runge-Kutta method, where ωi are set to
be the degree of node i. Since discontinuous synchronization
transitions have been observed when the natural frequency
positively correlates with the node degree, we continue to
use this correlation to study the effects of local connection
patterns on explosive behavior. To quantify the degree of
synchronization of the whole network, the following measure
of synchronization has been proposed [8]:

r =
〈

1

N

∣∣∣∣∣
N∑

j=1

eiθj

∣∣∣∣∣
〉
, (2)

where 〈·〉 denotes the average over time. The relationship
between structural properties and synchronization transition
then can be explored by investigating the behavior of the order
parameter under different network topologies.

We employ the network model proposed in Ref. [9] to
generate a series of networks, on top of which the oscillators
interact with each other and evolve in time. The advantage of
this network model is to allow us to construct networks ranging
from homogeneous networks (ER networks) to heterogeneous
networks(BA networks) while keeping the average degree
〈k〉 unchanged, by tuning a single parameter α(0 � α � 1).
Although, intuitively, the heterogeneity is increased during the
transition from ER networks to BA networks, it is necessary to
characterize this change in a quantitative manner. In this light,
we use the heterogeneity index given by Ref. [10], which
is measured according to the difference of every two degree
values in a degree sequence, i.e.,

H =
∑

i

∑
j |di − dj |

2N2d̄
. (3)

III. THE ROLE OF DEGREE-DEGREE CORRELATION

First, we consider a set of oscillators organized with a BA
scale-free topology corresponding to the network model for
α = 0. We randomly choose one realization of the network
model for α = 0 and shuffle the connections among the
nodes. The order parameter r is then averaged on 100
time steps for each λ after the transient period of phase
oscillation and λ is increased progressively with step δλ =
0.02 in the process of synchronization. For a desynchronizing
process, the simulation is performed by decreasing λ from
the maximal value with δλ = 0.02 to the starting point where
the synchronization process begins. Unsurprisingly, the first
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FIG. 1. (Color online) Synchronization diagrams for a BA net-
work with ra = −0.078 and its corresponding assortative mixing
network with ra = 0.45, respectively. Network size is N = 1000 and
〈k〉 = 6 throughout this paper. (a) Hysteresis of the order parameter
in the BA network and (b) the second order phase transition.

order phase synchronization transition is observed when the
coupling strength λ is increased progressively, as is evidenced
by the order parameter shown in Fig. 1(a). In contrast, by
assortatively mixing the BA networks [11,12] (i.e., keeping
the node degree unchanged while favoring nodes with similar
degrees to be interconnected through random rewiring), we
get a continuous synchronization transition; see Fig. 1(b). It
should be pointed out that the reason λ used in Fig. 1(b) is larger
than those in Fig. 1(a) is that the positive degree correlation
has been proved to hinder the synchronization of a networked
system [13], and thus a much stronger coupling strength is
required to achieve an ordered state. The shuffling operations
keep the degree sequence, and thus the heterogeneity of the
network remains unchanged. Therefore this result indicates
that not all heterogeneous BA networks are subject to explosive
synchronization. Note that the assortative mixing here has
changed the local patterns of connectivity. It is then natural
to conjecture that the alteration in local topological properties
may play an important role in the synchronization process.
Following this line of thought, we focus on how the change
in the local property of the network, i.e., degree-degree
correlation, can affect explosive synchronization. The degree-
degree correlation, also known as “assortativity in degree”,
has been extensively studied in recent years [14–16]. The
degree-degree correlation or assortativity is the tendency for
nodes with similar degree to connect with each other. Formally,
the assortativity of a network refers to the linear correlation
coefficient defined in terms of the network degree distribution,
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FIG. 2. (Color online) Heterogeneity and assortativity coeffi-
cients for different networks by tuning the model parameter α from
0 to 1. The solid squared line indicates parameter range in which
explosive synchronization can occur. Note in all cases the same
correlation between the natural frequency and the degree of the nodes
is maintained.

its remaining degree distribution, and its link distribution. In
practice, this quantity is evaluated by [14]

ra = M−1 ∑
i jiki − [

M−1 ∑
i

1
2 (ji + ki)

]2

M−1
∑

i
1
2

(
j 2
i + k2

i

) − [
M−1

∑
i

1
2 (ji + ki)

]2 , (4)

where ji and ki are the degrees of two end points of the
ith link and M is the total number of links in the network.
ra > 0 implies that the network is assortative, while ra <

0 means a disassortative mixing pattern of the network.
Figure 2 is obtained by computing the heterogeneity index and
assortativity simultaneously in the network series mentioned
above, and the result is averaged over 20 realizations.

In Fig. 2 we can see that the heterogeneity decreases
smoothly when the network topology transits from BA scale-
free networks to ER random networks by tuning α from 0 to 1.
It is therefore hard to associate the heterogeneity (or the change
in it) of the network with the onset of explosive synchronization
at this stage, or to conclude that the heterogeneity results in
explosive synchronization, as the heterogeneous BA network
is found to demonstrate a second order synchronization
transition when assortatively mixed (illustrated in Fig. 1).
However, when looking at the curve of assortativity versus
α, one can easily spot that the assortativity value undergoes a
transition from negative to positive, implying a topological
transition from disassortative mixing to assortative mixing
for the networks. What is of particular interest here is that
the assortativity transition point coincides with the critical
point corresponding to the onset of explosive synchronization,
shown in Fig. 3, as well as the transition from solid-square to
hollow-square lines in Fig. 2. For lack of a well-established
quantity to indicate the first order transition, we define an
error at this stage to measure the existence of the first order
transition by comparing the difference between the maximal
order parameter error and the average of all order parameter
errors except the maximal one, in which the order parameter
error δr is the variation of two successive order parameters, r ,
corresponding respectively to coupling strengths λ and λ + δλ.
The reason is that we find that δr is very small for a continuous
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FIG. 3. (Color online) Synchronization errors under different
heterogeneity parameters. The inset plot shows the transition of the
assortativity property with heterogeneity parameter changing.

phase transition, while for a discontinuous phase transition
there will be a big δr , and hence the difference between
these two types of δr should be large in the case of explosive
synchronization.

As shown in Fig. 3, the critical coupling strength is around
0.26. We have searched the critical point of explosive synchro-
nization and an assortativity transition point using small steps
(0.02) near α = 0.26. Although the correspondence between
these two critical points may not be exact, they appear to be
close to each other, and most importantly we can find the strong
association between the onset of explosive synchronization
and the assortativity transition point. We also investigate
the parameter space to manifest the role of assortativity in
the emergence of explosive synchronization. High errors in
Fig. 4 indicate the occurrence of the first order transition. It
should be noted that due to the suppressing effect of positive
degree correlation [13], the errors in homogeneous assortative
networks are higher in a sense than disassortative networks
for the same α. Additionally, in contrast to Ref. [12], the
assortativity coefficient cannot approach two extrema, limited
by the degree sequences. Further work will be required to
systematically study this issue by fully exploring the parameter
space. From these results, we can see that the explosive
synchronization cannot be attributed only to heterogeneity, but
is also intimately associated with the assortativity property of
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FIG. 4. (Color online) Synchronization errors under various
topological parameters, namely, hetergeneity parameter α and as-
sortativity coefficient ra . As with the errors in Fig. 3, here the
error is also measured by comparing the difference between the
maximal synchronization error and the mean value of the rest of
the synchronization errors.
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FIG. 5. Critical coupling strength λc changes under different
assortativity coefficients. The error bars are computed by many
realizations of explosive synchronization for each assortativity
coefficient.

the network structures, on the condition that there is a positive
correlation between the degree and the natural frequency of
the oscillator. In other words, heterogeneity cannot solely
determine the emergence of explosive synchronization.

Now we study how the extent of assortativity (measured
by assortativity coefficient ra) can affect the first order
synchronization transition. We calculate ra for each value
of α and average it over many realizations of the network
model. As is shown in Fig. 5, the critical coupling strength
at which the synchronization phase curve has a takeoff (i.e.,
where the order parameter changes abruptly) decreases with
ra . That is, the more disassortative a network is, the more
easily explosive synchronization can occur. However, our
findings also indicate that too large of a disassortativity (for
example, ra < −0.35, as is shown in Fig. 6) will impede the
occurrence of the first order synchronization transition. In this
case, second order synchronization transitions are more likely
occur. It should be pointed out that assortativity is also not
uniquely sufficient to determine the emergence of explosive
synchronization transition. Namely, one cannot expect to
observe the explosive phase transition in a disassortative
network with a low heterogeneity index (corresponding to
homogeneous networks), as shown in Fig. 4.

The effects of disassortativity in a mixing pattern also man-
ifest themselves in another aspect. Note that in the processes
of synchronization (by a forward increase in the coupling
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FIG. 6. (Color online) Synchronization errors under different
assortativities with the same degree sequence for α = 0.
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FIG. 7. (Color online) The synchronization transitions in two
scale-free networks with different assortativity coefficients. (a) A
BA network with ra = −0.0647; (b) its corresponding reshuffled
configuration, whose assortativity coefficient is −0.23. The blue line
with star symbols corresponds to the synchronizing process, and the
red line with plus signs corresponds to the desynchronizing process
for both panels.

strength) and desynchronization (by a backward decrease in
the coupling strength), a hysteresis loop is formed. As the
networks become more disassortative, the synchronization is
enhanced, and therefore the critical point (r,λ) corresponding
to λc on the curve which we call takeoff point in panel (b) is
higher than that in panel (a), also showing a better synchrony
of disassortative networks than the BA networks [13]. As a
result, the size of the hysteresis loop is observed to be smaller
than that of less disassortative networks (Fig. 7).

At the same time, degree assortativity has been revealed
to be associated with other topological measures such as the
clustering coefficient [17]. It has been reported in Ref. [18]
that the clustering coefficient of a network affects the synchro-
nization processes in small-world networks. Therefore, we
also study the correlation between the emergence of explosive
synchronization and the clustering coefficient. As shown in
Fig. 8, the clustering coefficient remains almost unchanged
for heterogeneous networks (i.e., α < 0.5) and increases
significantly as the networks become more homogeneous.
Nevertheless, it is hard to associate this characteristic change
with the occurrence of explosive synchronization, compared
with the corresponding change of the assortativity coefficient.
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FIG. 8. (Color online) Clustering coefficient for the networks
corresponding to variation of α.
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In addition, the network model used in this work has a very
low clustering coefficient for all values of α. Therefore, it is
difficult to conclude with certainty the effect of this measure
on explosive synchronization using this model. Future work
will include more extensive investigation of the function of the
transitivity property using more suitable models.

IV. SUMMARY

Heterogeneity is a global feature of network structure,
reflecting the uniformity of the overall degree distribution,
while the assortativity characterizes local connectivity patterns
of network structure, i.e., how nodes are locally connected. In
the presence of a positive correlation between the degree and
the natural frequency of a node, the difference between a node
and its neighbors in terms of their degrees can dramatically
influence the corresponding synchronization process. A large
difference in node degree implies a significant difference in
intrinsic frequencies of the nodes, which in turn holds back
the neighboring nodes from reaching a uniform frequency (and

hence global synchronization) unless a high enough coupling
strength is achieved. From this analysis we can see that
assortativity plays a crucial role in the emergence of explosive
synchronization on the premise of positive correlation between
the structure and the dynamics of the system. Meanwhile, for
explosive synchronization to take place, the level of hetero-
geneity of the network cannot be too low to ensure the existence
of the difference in the intrinsic frequencies of the nodes.
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