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Nonaffine displacements in crystalline solids in the harmonic limit
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A systematic coarse graining of microscopic atomic displacements generates a local elastic deformation tensor
D as well as a positive definite scalar χ measuring nonaffinity, i.e., the extent to which the displacements are not
representable as affine deformations of a reference crystal. We perform an exact calculation of the statistics of
χ and D and their spatial correlations for solids at low temperatures, within a harmonic approximation and in
one and two dimensions. We obtain the joint distribution P (χ,D) and the two-point spatial correlation functions
for χ and D. We show that nonaffine and affine deformations are coupled even in a harmonic solid, with a
strength that depends on the size of the coarse-graining volume � and dimensionality. As a corollary to our
work, we identify the field hχ conjugate to χ and show that this field may be tuned to produce a transition to a
state where the ensemble average 〈χ〉 and the correlation length of χ diverge. Our work should be useful as a
template for understanding nonaffine displacements in realistic systems with or without disorder and as a means
for developing computational tools for studying the effects of nonaffine displacements in melting, plastic flow,
and the glass transition.
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I. INTRODUCTION

Understanding the mechanical response of soft and disor-
dered solids [1] such as polymer gels [2], fabric [3], foams
[4], colloids [5], granular matter [6], and glasses [7,8] is
challenging because one is often led to questions that lie
on the boundaries of classical elasticity theory [9–11]. For
example, under external stress, particles i within a solid
undergo displacements ui = ri − Ri away from some chosen
reference configuration Ri to their displaced positions ri . In
a conventional homogeneous solid, such displacements are
affine, in the sense that they can be expressed as ui = DRi ,
where D = K−1σ is the deformation tensor related to the
external stress σ via the tensor of elastic constants K. This
is not true if the solid is disordered at a microscopic level.

One of the principal sources of nonaffinity is a space (and
possibly even time) dependent elastic constant [12]. The local
environment in a disordered solid varies in space, depending
crucially on local connectivity or coordination such that the
local displacement ui may not be simply related to the applied
stress σ . Such nonaffine displacements are present even at
zero temperature, are material dependent, and vanish only for
homogeneous crystalline media without defects.

In this paper we explore another, perhaps complementary,
source of nonaffinity, namely, that which arises due to thermal
fluctuations and coarse graining. Elastic properties of materials
emerge upon coarse graining microscopic particle displace-
ments [13–19] over a coarse-graining volume �. A systematic
finite size scaling analysis of the � dependent elastic constants
then yields the material properties in the thermodynamic limit
[17,18]. Such a coarse-graining procedure has been used to
obtain elastic constants of soft colloidal crystals from video
microscopy [16,17,19] as well as in model solids [13,18]. For
distances smaller than the size of �, particle displacements,
in d dimensions, are necessarily nonaffine since the local

distortion D of � is obtained by projecting the displacements
of all N particles in � into the d × d-dimensional space of
affine distortions which, in general, is smaller than the full
Nd-dimensional configuration space available. The generation
of nonaffinity χ , defined as the sum of squares of all the particle
displacements which do not belong to the projected space
of affine distortions, is therefore a necessary consequence
of the coarse-graining procedure. Here we take a detailed
look at this process and present an exact calculation for the
probability distributions and correlation functions for χ and D
for harmonic solids in d = 1 and 2 in the canonical ensemble.
Our work allows us to identify the field conjugate to χ , viz.,
hχ , and we show that by tuning this hχ one may enhance
nonaffine fluctuations and cause a transition. At this transition
all the moments of the probability distribution of χ diverge,
thereby disordering the solid isothermally.

There are several reasons why we believe that our work
may be useful. First, the harmonic crystal is often the starting
point for more realistic calculations of the elastic properties of
solids and constitutes an ideal system to which simulation and
experimental results [20] can be compared in order to quantify
purely anharmonic effects. Secondly, a coarse-grained theory
for the mechanical properties of soft solids should contain both
the elastic and nonelastic fields D and χ : Our work may provide
a hint on how such a theory may be constructed. Thirdly, we
believe that it may be possible to extend our calculations to
systems with isolated defects or randomness, thus extending
the analysis of Ref. [12] to nonzero temperatures. Finally, our
calculations may be used to devise new simulational strategies
for understanding the influence of nonaffine fluctuations on
the mechanical properties of both crystals and glasses and, per-
haps, shed more light on the nature of the glass transition itself.

The paper is organized as follows. In Sec. II we set up the
calculation and define χ , D, and the coarse-graining process.
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In Sec. III we present our calculation for the single-point
probability distributions for χ and D for d = 1 harmonic
chains and the d = 2 triangular harmonic lattices. Approxi-
mate experimental realizations of these systems correspond
to mercury chain salts [21] and the spectrin network in red
blood corpuscles [22], respectively. In Sec. IV, we evaluate
the spatial correlation functions for D and χ . This is followed
by a calculation of linear response and identification of the
nonaffine field in Sec. V. Finally we discuss our results
and conclude by giving indications of future directions in
Sec. VI.

II. COARSE GRAINING AND THE NONAFFINE
PARAMETER

Consider a neighborhood � in a d-dimensional lattice
consisting of N particles i arranged around the central particle
0 within a cut-off distance R�. Mostly we set R� equal to
the nearest neighbor distance so that � contains all nearest
neighbours of particle 0, but in Sec. VI we also consider larger
R�. The zero temperature lattice positions that we choose as
our reference are Ri and R0 and the fluctuating atom positions
will be denoted ri and r0 [23]. Define the particle displace-
ments ui = ri − Ri and �i = ui − u0 = ri − r0 − (Ri − R0)
as the displacement of particle i relative to particle 0. We will
often use the Fourier transform of the particle displacement,
uq, which is defined such that the real-space displacements
are �i = ui − u0 = l v−1

BZ

∫
dq uq(eiq·Ri − eiq·R0 ). Here l is the

lattice parameter and vBZ is the volume of the Brillouin zone
over which the q integral is performed.

If the local particle displacements are fully affine, then
one has ui = DRi , and hence �i = D(Ri − R0). Generically
the displacements will contain a nonaffine component and the
coarse-grained local deformation tensor D can then be defined
[8,24] as the one that minimizes

∑
i[�i − D(Ri − R0)]2.

The minimal value of this quantity is the nonaffinity para-
meter χ .

To simplify the notation we arrange the Nd relative
displacement components �iα , where the index α = 1, . . . ,d

labels the spatial components, into an Nd-dimensional vector
�. We similarly define a vector e whose components are the
d2 elements of the local deformation tensor Dαγ arranged as
a linear array [viz., e = (D11,D12, . . . ,D1d ,D21, . . . ,DNd )],
and a matrix R of size Nd × d2 with elements Riα,γ γ ′ =
δαγ (Riγ ′ − R0γ ′ ) where the Riγ ′ and R0,γ ′ are the components
of the lattice positions Ri and Ri , respectively. Below we use
the notations e and D for the deformation tensor interchange-
ably, as convenient in the context.

As explained above, we will define the nonaffinity param-
eter χ as the residual sum of squares of all the displacements
of the particles in � after fitting the best affine deformation,
measured with respect to the reference configuration [8]. The
local deformation e is thus obtained by minimizing the positive
definite quantity (� − Re)2 with respect to e:

χ = mine (� − Re)2

= mine(�t� − �tRe − etRt� + etRtRe). (1)

Here the superscript t denotes the transpose operation. The
coarse-grained local deformation, i.e., the value of e where the

minimum is obtained, can then be written as

e = Q�, (2)

where

Q = (RtR)−1Rt . (3)

The resulting nonaffinity χ from (1) is

χ = [� − R(RtR)−1Rt�]2 = �tP�, (4)

where

P = I − RQ = I − R(RtR)−1Rt (5)

projects onto the space of � that cannot be expressed as an
affine deformation. Note that in arriving at (4) we have used
the fact that P is symmetric, i.e., Pt = P and

P2 = [I − R(RtR)−1Rt ]2

= I2 − 2 R(RtR)−1Rt

+ R(RtR)−1[(RtR)(RtR)−1]Rt

= P. (6)

As usual this means that all eigenvalues of P are either zero or
one.

Having found explicit expressions for e and χ we now
proceed to obtain their statistics at low temperature, where
a harmonic approximation will be valid. Specifically we
consider the canonical distribution of displacements ui and
momenta pi at inverse temperature β = 1/kBT :

P (pi ,ui) = 1

Z
exp[−βH (pi ,ui)] (7)

with the harmonic Hamiltonian

H =
∑

i

p2
i

2mi

+ K

2

∑
(ij )

(ui − uj )2, (8)

where mi is the mass of particle i. The sum in the second term
in (8) runs over all bonds in a harmonic network with spring
constants K . This is the Hamiltonian for the examples we
consider in this paper. However, the general expressions that
we derive apply directly also to generic quadratic Hamiltonians
of the form

H =
∑

i

p2
i

2mi

+ 1

2βl2

∑
iαjγ

uiαDiα,jγ ujγ . (9)

Here Diα,jγ is the dynamical matrix; we have made this
dimensionless by extracting a factor of 1/(βl2).

Integrating out the momenta from the canonical distribution
shows that the particle displacements have a Gaussian distri-
bution. Their covariances can be expressed compactly in terms
of the Fourier transform of the dynamical matrix [25,26]

D̃αγ (q) =
∑

i

Diα,jγ e−iq·(Ri−Rj ), (10)

where because of translational invariance the choice of
reference particle j is arbitrary. This matrix determines the
variances of the Fourier components according to〈

uqut
−q′
〉 = D̃−1(q) vBZδ(q − q′), (11)
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where the angle brackets indicate a thermal average. The
covariances of the displacements are, accordingly,

〈
uiut

j

〉 = l2
∫

dq
vBZ

D̃−1(q) eiq·(Ri−Rj ). (12)

For the particle displacements in our coarse-graining volume
� of interest, �i = ui − u0, we thus find also a Gaussian
distribution with covariance matrix 〈�iα�jγ 〉 given by

Ciα,jγ = l2
∫

dq
vBZ

D̃−1
αγ (q)(eiq·Rj − eiq·R0 )

×(e−iq·Ri − e−iq·R0 ). (13)

Note that the matrix C defined in this way has the symmetry
of the lattice. The thermal average of any observable A(�) is
then given by

〈A〉 = 1

Z�

∫ ∏
iα

d�iα A(�) exp

(
−1

2
�tC−1�

)
(14)

with normalization constant Z� = (2π )Nd/2
√

det C. In the
next section we use (14) to obtain the probability distribution
functions for χ and e.

III. SINGLE-POINT PROBABILITY DISTRIBUTIONS

In this section we derive the single-point (local) joint
probability distribution P (χ,e) for nonaffinity χ and strains e.
As before we consider lattices at nonzero but low temperatures
where a harmonic approximation to particle interactions
remains valid. To obtain P (χ,e), we begin with

Φ(k,κ) =
∫

dχ de P (χ,e) exp(ikχ + iκ te)

= 〈eikχ+iκ t e〉, (15)

which is the characteristic function for the joint probability
distribution P (χ,e) as measured within �. Substituting the
general expressions from Sec. II, χ = �tP� and e = Q�,
into (15) we obtain

Φ(k,κ) = 1

Z�

∫ ∏
iα

d�iα

× exp

[
−1

2
�tC−1� + ik�tP� + iκ tQ�

]
. (16)

Completing the squares in the argument of the exponential
in (16) and carrying out the resulting Gaussian integrals yields

Φ(k,κ) = exp

(
−1

2
κ tQC(I − 2ikPC)−1Qtκ

)
×[det(I − 2ikPCP)]−1/2. (17)

Setting κ = 0 and k = 0 gives the characteristic functions of
χ and e, respectively, as

Φχ (k) = [det(I − 2ikPCP)]−1/2, (18)

Φe(κ) = exp
(− 1

2κ tQCQtκ
)
. (19)

Extracting these factors from the joint characteristic function
shows that it can be written as

Φ(k,κ) = Φχ (k)Φe(κ)

× exp[−ikκ tQC(I − 2ikPC)−1PCQtκ]. (20)

The term in the second line expresses the fact that χ and
e are generally coupled to each other, rather than varying
independently. A special case where this does not happen
occurs when P and C commute. Then one can write PCQt =
CPQt . But this vanishes because from the definitions of P and
Q one has PQt = 0. The coupling term in (20) then becomes
unity and χ and e are uncorrelated. This is the situation we will
encounter in the one-dimensional example below, when coarse
graining on the smallest length scale where � only contains
the nearest neighbors of particle 0.

In the case where P and C have a nonzero commutator
[P,C] = PC − CP, one can put the expansion for small k

of the coupling factor in (20) into a form that emphasizes
the role of this commutator. Specifically, by writing PC =
CP − [P,C] and exploiting the property PQt = 0 one finds

Φ(k,κ) = Φχ (k)Φe(κ) exp(−iκ tQC[[P,C] k

+ 2i([CP,[P,C]] + [P,C]2) k2 + · · · ]Qtκ). (21)

From the general form (20) of the characteristic function, or
its expanded version (21), we can then obtain the desired joint
probability distribution P (χ,e) by inverse Fourier transform,
either analytically or numerically.

Before proceeding to apply the above general results to two
simple example systems, we comment briefly on the marginal
distributions of χ and e whose characteristic functions are
given in (18) and (19) above. From the second of these
equations, the distribution P (e) of the local strain is a zero
mean Gaussian distribution with covariance matrix QCQt .
For the local nonaffinity χ , if we call σj the eigenvalues of
the matrix PCP, then the characteristic function (18) has the
explicit form

Φχ (k) = 1∏
j

√
1 − 2ikσj

. (22)

This shows that χ has a generalized chi-square distribution
P (χ ): It is a sum of squares of Gaussian random variables,
each with zero mean and variance σj . Only the nonzero σj

contribute here, and there are Nd − d2 of these. This follows
from the fact that P eliminates from the space of all relative
displacements in � the d2-dimensional subspace of affine
displacements.

A. The one-dimensional harmonic chain

Consider a one-dimensional chain of particles of equal
mass connected by harmonic springs with spring constant
K and equilibrium length l as shown in Fig. 1. We choose
as the coarse-graining neighborhood � a central particle 0
at R0 ≡ x0 = 0 and its two nearest neighbors at x±1 = ±l.
Fluctuating particle positions Ri ≡ xi produce displacements
ui = xi − il and the vector of relative displacements is �t =
(u1 − u0 , u−1 − u0). The matrices defined in Sec. II can be
easily evaluated for this system and are given by

R =
(

l

−l

)
, Q = (RtR)−1Rt = ( 1

2l
− 1

2l

)
,
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(a)

(b)

(c)

· · ·· · ·
|| Ω

0 i = 1i = −1

· · · · · ·

· · · · · ·

FIG. 1. (a) A portion of a one-dimensional harmonic chain
showing the neighborhood � consisting of particle 0 and its two
nearest neighbors i = ±1. The affine (b) and the nonaffine (c) modes
are also shown.

and

P = I − R(RtR)−1Rt =
(

1
2

1
2

1
2

1
2

)
.

The two eigenvectors of P corresponding to the eigenvalues
zero and one are (l, − l) and (l,l), respectively. The mode
with the nonzero eigenvalue corresponds to the nonaffine
deformation χ = (u1 + u−1 − 2u0)2/2, while the one cor-
responding to the null space of P gives the only affine
mode e = ε = (u1 − u−1)/2l of the lattice. The affine and the
nonaffine modes with respect to � are shown in Figs. 1(b)
and 1(c), respectively. The dynamical “matrix” in Fourier
space is D̃(q) = 2 βKl2 [1 − cos(ql)]; in the following we use
energy units such that Kl2 = 1. The displacement covariance
matrix (13) then becomes

Cij = l2

2β

l

2π

∫ 2π/l

0
dq

(eiq xi − eiq x0 )(e−iqxj − e−iqx0 )

1 − cos(ql)
,

(23)
which is simply l2β−1 times the identity matrix and so

PCPt = l2β−1

(
1
2

1
2

1
2

1
2

)

with eigenvalues σ = l2β−1 and 0, while QCQt = 〈ε2〉 =
β−1/2.

The fact that Cij = l2β−1δij as found above means that
the relative particle displacements are uncorrelated. This is
easy to see intuitively as the potential energy of the sys-
tem is (K/2)

∑∞
n=−∞(xn+1 − xn − l)2. Relative displacements

xn+1 − xn − l of nearest neighbors therefore have independent
fluctuations, and the relative displacements u1 − u0 = x1 −
x0 − l and u−1 − u0 = −(x0 − x−1 − l) in our coarse-graining
neighborhood � are exactly of this form. If we were to
enlarge �, say to include next-nearest neighbors, then this
would no longer hold as, e.g., u2 − u0 = x2 − 2l − x0 =
(x2 − x1 − l) + (x1 − x0 − l) is correlated with u1 − u0.

Carrying out the matrix manipulations in (17) after spe-
cializing to the d = 1 case, we find that the k dependence
of the first factor cancels out since [P,C] = 0, in line with
the general discussion after (21). This yields the characteristic
function for the joint probability distribution as the product of
the individual characteristic functions:

Φ(k,κ) =
[

1√
1 − 2ikσ

] [
exp

(
−1

2
〈ε2〉κ2

)]
= Φχ (k)Φε(κ). (24)

R0 Ri

rir0

Ω 12

3

4 5

60

FIG. 2. A typical neighborhood � around a central particle 0
in a triangular lattice, containing the six nearest neighbor particles
i = 1, . . . ,6. The reference positions R0 and Ri are shown by open
circles, while the instantaneous positions r0 and ri are indicated by
filled gray circles.

The joint probability distribution is then obtained by inverse
Fourier transforming the characteristic function:

P (χ,ε) =
[

1√
2π σ

χ−1/2 exp
(
− χ

2 σ

)]

×
[

1√
2π〈ε2〉

exp

(
− ε2

2〈ε2〉
)]

= P (χ )P (ε). (25)

This has a simple form, namely, a product of the chi-square
distribution of a single Gaussian random variable and a
Gaussian. We can obtain immediately, for example, the nth
moments of χ , 〈χn〉 = (2σ )n�(n + 1

2 )/�( 1
2 ), which are all

finite. In Sec. V we show that one can define an external field
hχ that couples to χ and, for a specific value, can cause all the
moments to diverge so that P (χ ) crosses over to a distribution
with a power-law tail.

B. The two-dimensional harmonic triangular net

The joint probability distribution of local coarse-grained
strain e and nonaffinity χ for a two-dimensional triangular
lattice can be obtained in a similar manner. We choose again
a nearest neighbor (hexagonal) coarse-graining neighborhood
� as shown in Fig. 2. To simplify the notation we also assume,
without loss of generality, R0 = 0 in what follows, and take the
lattice constant as our length unit so that l = 1. Following the
lines of the one-dimensional calculation, we begin by obtaining
the matrices R and P.

1. R and P

The matrix R is a 12 × 4 matrix encoding the position
vectors of the six neighbors of the particle at the origin (see
Fig. 2). Explicitly one has

R =

⎛
⎜⎜⎜⎜⎜⎜⎝

R11 R12 0 0

0 0 R11 R12

...
...

...
...

R61 R62 0 0

0 0 R61 R62

⎞
⎟⎟⎟⎟⎟⎟⎠

. (26)

Here the index α = 1,2 indicates the x and y components of
the lattice positions Ri , respectively.
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To find the projection matrix P = I − R(RtR)−1Rt , we
substitute the above form of R into the matrix R(RtR)−1Rt .
One finds that this consists of 6 × 6 blocks, each of which is a
2 × 2 diagonal matrix of the form

1

3
(Ri1Rj1 + Ri2Rj2)

(
1 0
0 1

)
= Ri · Rj

3

(
1 0
0 1

)
.

The resulting P has four zero eigenvalues corresponding
to the affine transformations. The eight unit eigenvalues
correspond to nonaffine distortions within �. To identify
a convenient basis for the nonaffine (eight-dimensional)
eigenspace, we choose below the eigenvectors of PCP with
nonzero eigenvalues. Similarly, a physically meaningful basis

for the affine (four-dimensional) eigenspace is formed by the
nonzero eigenvectors of (I − P)C(I − P).

2. C and PCP

In order to obtain the statistics of χ = �tP� and e =
Q� we need to calculate, as before, the eigenvectors and
eigenvalues of the matrices PCP and QCQt . As discussed
above, these are the matrices determining the characteristic
functions (18) and (19) and hence the marginal distributions.
We thus require the displacement correlation matrix C, which
in turn is calculated from the Fourier-transformed dynamical
matrix D̃(q). For the Hamiltonian (8) of a regular harmonic
triangular net of particles with spring constant K and lattice
constant l this is

D̃(q) = β

(
3 − 2 cos(qx) − cos

(
1
2qx

)
cos
(√

3
2 qy

) √
3 sin

(
1
2qx

)
sin
(√

3
2 qy

)
√

3 sin
(

1
2qx

)
sin
(√

3
2 qy

)
3
[
1 − cos

(
1
2qx

)
cos
(√

3
2 qy

)]
)

. (27)

Here we have again chosen energy units such that Kl2 = 1.
We also use the more intuitive notation qx ≡ q1 and qy ≡ q2

for the wave vector components.
The elements of the real symmetric matrix C are obtained

by evaluating the integral (13) over the Brillouin zone of
the triangular lattice. It can be shown, by utilizing lattice
symmetries, that the integral can be transformed to one over a
rectangular region:

Ciα,jγ = 1

2vBZ

∫ 4π

0
dqx

∫ 4π/
√

3

0
dqy D̃−1

αγ (qx,qy)

×(eiq·Ri − eiq·R0 )(e−iq·Rj − e−iq·R0 ) (28)

We compute both the real and the imaginary parts of this
two-dimensional integral numerically, using 256-point Gauss-
Legendre quadrature. The imaginary parts of the elements of
C vanish and provide an estimate for the accuracy of our
numerics. The normalizing volume of the unit cell in the
reciprocal lattice is vBZ = 8π2√

3
. C is a 6 × 6 block matrix, with

each block of size 2 × 2 as before. Of course not all of these
36 blocks need to be calculated independently, because of the
overall symmetry C = Ct . Using also the additional symmetry
relations (see Fig. 2)

C1α1γ = C4α4γ , C2α2γ = C5α5γ , C3α3γ = C6α6γ ,

C1α2γ = C4α5γ , C2α3γ = C5α6γ , C3α4γ = C6α1γ , (29)

C1α3γ = C4α6γ , C2α4γ = C5α1γ , C3α5γ = C6α2γ ,

one finds that only 12 blocks of C are distinct.
With P and C in hand one can construct and diagonalize

PCP. This has 12 eigenvalues σj (j = 1, . . . ,12), four of
which are zero. The eight nonzero eigenvalues, which corre-
spond to the nonaffine distortions within � shown in Fig. 3, are

βσ1 = 2.454 = βσ2, βσ3 = 0.482,
(30)

βσ4 = 0.312 = βσ5, βσ6 = 0.283 = βσ7 = βσ8.

The structure of the four-dimensional null space of PCP
can be understood by looking at the nonzero eigenvectors of

the matrix obtained by the complementary projection, viz.,
(I − P)C(I − P). These eigenvectors correspond to the affine
eigendisplacements shown in Fig. 4.

The independently fluctuating “directions” of the local
deformation tensor e can be worked out from the covariance
matrix QCQt of the Gaussian distribution of e [see (19)]. The
projections of e onto these directions then have familiar forms
and map (see below) to the affine eigendistortions in Fig. 4.
Explicitly we find for these projections: (a) volume change
(dilation), ev = e1 + e4 = D11 + D22, (b) uniaxial strain, eu =
e1 − e4 = D11 − D22, (c) shear strain, es = e2 + e3 = D12 +
D21, and (d) local rotation, ω = e2 − e3 = D12 − D21. The
associated eigenvalues give the relevant compliances for our
coarse-graining volume �:

β
〈
e2
v

〉 = 0.261, β
〈
e2
u

〉 = 0.481 = β
〈
e2
s

〉
, β〈ω2〉 = 0.699.

(31)

The statistics of the local deformation tensor P (e) therefore
consists of independent Gaussian fluctuations of these four
deformation modes, as illustrated in Fig. 5(b).

(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 3. Configurations showing the nonzero eigenvectors of
PCP, which represent nonaffine displacements, corresponding to
eigenvalues in descending order: (a) and (b) σ1 = σ2; (c) σ3; (d)
and (e) σ4 = σ5; (f)–(h) σ6 = σ7 = σ8.
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(a) (b) (c) (d)

FIG. 4. Particle displacements for the nonzero eigenvectors
of the matrix (I − P)C(I − P), showing affine eigendisplacements
(a) dilation, (b) uniaxial strain, (c) shear, and (d) rotation. The
reference lattice positions are shown by filled circles. The central
atom has been deleted for clarity.

To finish our discussion of the affine displacements we
comment briefly on the relation between the eigenvectors
of (I − P)C(I − P), which give the independently fluctuating
displacement patterns in the affine subspace (“affine eigendis-
placements”), and the eigenvectors of QCQt , which are the
independently fluctuating components of the local deformation
tensor (“eigendistortions”). The two matrices are related
via

(I − P)C(I − P) = R(QCQt )Rt . (32)

In the discussion above we treated their eigenvectors on
the same footing, and indeed each eigendistortion ê as an
eigenvector of QCQt is related to an affine eigendisplacement
given by �̂ = Rê. This works, i.e., Rê is indeed an eigenvector
of (32), because RtR is a multiple of the identity matrix in
the two-dimensional triangular net. This simplification will
hold in all lattices with sufficiently high symmetry. Indeed,
one can check that RtR has a d × d block structure where
the off-diagonal blocks are zero and the diagonal blocks are
all equal to

∑
i RiRt

i . This diagonal block is a matrix that
commutes with the entire symmetry group of the lattice so
by Schur’s lemma [27] will be proportional to the identity
matrix, unless the symmetry group of the lattice is too
small.

Next we look at the statistics of the nonaffinity parameter χ .
The characteristic function (18) can be written out explicitly
as in (22) where the σj ’s are the eigenvalues of PCP. As
we saw above, this matrix has eight nonzero eigenvalues

P (χ)

χ

P (e1)

e1

(a) (b)

 0

 10

 20

 30

 0  0.05  0.1  0.15  0.2
 0

 5

 10

 15

-0.15 -0.1 -0.05  0  0.05  0.1  0.15

FIG. 5. (a) P (χ ) from the exact calculation (line) compared
with that obtained from molecular dynamics simulations (points)
of a 400 × 400 site harmonic lattice with unit particle masses at
reduced inverse temperature β = 200. The system was allowed to
equilibrate for 2 × 105 MD steps with a time step of 10−3, after
which configurations were collected for 7 × 105 MD steps. (b) Plot
of P (e1) for the same system as in (a).

σ1, . . . ,σ8 and four zero eigenvalues σ9 = · · · = σ12 = 0 that
do not contribute to (22) as they correspond to purely affine
distortions within �. The eigenvectors associated with the
eight nonaffine displacements are shown in Fig. 3. Thus, as
discussed above in general terms, P (χ ) is the distribution of
the sum of the squares of Nd − d2 = 8 uncorrelated Gaussian
random variables, with the variances of these Gaussians
given by the eigenvalues σ1, . . . ,σ8. A numerical Fourier
transform of (22) then gives P (χ ). The result is shown in
Fig. 5(a), where we also compare with data from molecular
dynamics (MD) simulations; the agreement is evidently very
good.

The first and the second moments of χ may be obtained
from successive derivatives of Φχ (k) with respect to its
argument so that 〈χ〉 = i−1[dΦχ (k)/dk]k=0 =∑8

j=1 σj =
6.865β−1 and

〈χ2〉 − 〈χ〉2 = −
(

d2

dk2
Φχ (k)

)
k=0

− 〈χ〉2

= 2
8∑

j=1

σ 2
j

= 25.426 β−2. (33)

The values for the corresponding quantities obtained from our
MD simulations of 160 000 particles and 7000 independent
configurations are (6.869 ± 0.005)β−1 and (25.51 ± 0.1)β−2.
These are in excellent agreement with our theoretical results;
the agreement in all other quantities shown below is of similar
quality. Finally, the nth cumulant of χ is given by (1/2)(n −
1)!
∑

j (2σj )n.
Having looked at the distributions of local strain e and

nonaffinity χ separately, we finally ask about their correlations.
One can verify that, though small, the commutator [P,C] is
nonvanishing, in contrast to the one-dimensional harmonic
chain case. Indeed, measuring matrix sizes by the Euclidean
norm ‖A‖ = √

Tr AAt , we obtain for the chosen nearest-
neighbor coarse-graining volume �

β‖C‖ = 3.875, β‖[P,C]‖ = 0.124,
(34)

β‖[CP,[P,C]]‖ = 3.591 × 10−2.

Neglecting the commutator to first approximation gives a joint
distribution of χ and e that factorizes into P (χ ) and P (e)
without any correlation. The result of this calculation for the
joint probability P (χ,e1) is shown in Fig. 6(a). In actual fact,
however, correlations are present. This means that the effective
compliance of the solid depends on the value of χ (and vice
versa). The effect is quantitatively rather small for our example
system, as is clear from Fig. 6(b) where we plot the first
correction to the factorized approximation. More simply, the
coupling between χ and e can be assessed by looking at cross
correlations like

〈χeet 〉 − 〈χ〉〈eet 〉 = 2QC[P,C]Qt . (35)

This result follows from the fact that the left-hand side is a
third-order cumulant because 〈e〉 = 0, and so is proportional
to the coefficient of the O(kκ2) term in the expansion (21)
of ln Φ(k,κ). The commutator [P,C] only appears linearly
here; higher orders would be needed to express correlations
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FIG. 6. (Color online) (a) Plot of P (χ,e1) ≈ P (χ )P (e1) as
obtained from our calculations neglecting cross correlations and (b)
the correction term P (χ,e1) − P (χ )P (e1), both at β = 200. Note
that the correction term is nonzero though small. The results from our
simulations for P (χ,e1) are indistinguishable from (a). The plots for
other components of e are similar.

involving higher moments such as 〈(χ − 〈χ〉)neet )〉. Using the
numerically calculated [P,C] in (35) we obtain the following
third-order cross correlation of χ with the eigendistortions:〈

χe2
v

〉− 〈χ〉〈e2
v

〉 = 〈χω2〉 − 〈χ〉〈ω2〉 = 0, (36)〈
χe2

u

〉− 〈χ〉〈e2
u

〉 = 〈χe2
s

〉− 〈χ〉〈e2
s

〉 = 5.108 × 10−3β−2.

(37)

One reads off that nonaffinity is coupled with uniaxial strain
and shear strain, while local volume strain and rotational
distortions do not generate nonaffinity. (This remains true also
for correlations involving higher orders of χ .) The correlations
of χ with eu and es are positive, so that a large affine
strain locally is generally accompanied by a large nonaffinity
χ . Conversely, a large value of χ makes the local region
more elastically compliant, i.e., typically leads to larger affine
strains e. More explicitly, the affine displacements (I − P)�
conditional on the nonaffine ones P� can be written as a
linear function of P� plus Gaussian fluctuations that do
not depend on P�. Thus one can find the distribution of
the affine displacements, and hence of e, conditional on
χ from the distribution of the first contribution across all
nonaffine displacements satisfying (P�)2 = χ . Because the
first contribution is linear in �, one deduces that e is a sum of
a random contribution proportional to χ1/2, and an independent
Gaussian contribution. From this it follows, for example, that
〈χneet 〉 = 〈χn+1〉M1 + 〈χn〉M2, where M1 and M2 are two
n-independent matrices related to C.

The strength of the coupling between χ and e will of
course depend on the chosen coarse-graining region �, and
in particular, on its radius R�; we return to this topic in
Sec. VI. But we believe that the positive correlation between
the strengths of local affine and nonaffine deformations is not
specific to the harmonic system considered here and should
hold generally for all solids.

IV. TWO-POINT DISTRIBUTIONS AND
CORRELATION FUNCTIONS

We now turn our attention to the spatial correlations of χ and
e. This requires us to consider simultaneously the displacement
differences in two neighborhoods � and �̄ centered on lattice

Ω Ω

R0

r0 ri

Ri
R0

Ri

rir0

FIG. 7. Typical neighborhoods � and �̄ around particles 0 and
0̄ in the d = 2 triangular lattice, illustrating the definitions used for
obtaining the two-point correlation functions. The labels have the
same meanings as in Fig. 2.

positions R0 and R̄0, respectively. The vector � is defined as
above, with an analogous definition for �̄. The geometry and
notation for the d = 2 triangular lattice are given in Fig. 7; the
d = 1 case is straightforward. The local affine strain e = Q�

and nonaffinity χ = �tP� around R0 are then as before for
�, whereas for �̄ we have the corresponding quantities ē =
Q̄�̄ and χ̄ = �̄

t P̄�̄. Note that since the reference �̄ is just a
translated copy of �, one has Q̄ = Q and P̄ = P.

To obtain the joint distribution of χ , e, χ̄ , and ē we need
the joint Gaussian distribution of the displacements � and �̄.
These have covariances

Ciα,jγ = 〈�iα�jγ 〉, ¯̄Ciα,jγ = 〈�̄iα�̄jγ 〉,
(38)

C̄iα,jγ = 〈�iα�̄jγ 〉.
While the first two averages are identical, corresponding to two
different but equivalent lattice sites, the third quantity encodes
the displacement correlations between the two different sites.
It may be obtained from an expression similar to (13),

C̄iα,jγ = l2
∫

dq
vBZ

D̃−1
αγ (q)(eiq·Ri − eiq·R0 )(e−iq·R̄j − e−iq·R̄0 ).

(39)

Note that C̄iα,jγ is not symmetric with respect to interchanging
R0 and R̄0, although the correlation functions obtained from
it below are, as they must be.

We could now proceed as for the local distribution P (χ,e)
and derive the characteristic function Φ(k,κ,k̄,κ̄) of the
joint distribution P (χ,e,χ̄ ,ē). This contains rather too much
information to present in a concise manner, however, so we
focus directly on the correlation functions. The simplest one
of these is the strain-strain correlator

〈eēt 〉 = 〈Q��̄
tQt 〉 = QC̄Qt (40)

In order to obtain space dependent correlation functions, this
quantity needs to be evaluated for all choices of R̄0 for fixed
R0 (which may again be taken as the origin).

Alternatively, one may obtain the correlation functions
in q space. As a side effect, this avoids the Brillouin zone
integration in (39). To see this, write

C̄iα,jγ = l2
∫

dq
vBZ

D̃−1
αγ (q)(eiq·(Ri−R0) − 1)

×(e−iq·(R̄j −R̄0) − 1)eiq·(R0−R̄0). (41)
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Now because the reference positions in � and �̄ are just
translated copies of each other, one has R̄j − R̄0 = Rj −
R0, so that the only R̄0 dependence resides in the last
factor. Defining the Fourier transform of C̄iα,jγ via C̄iα,jγ =
l2v−1

BZ

∫
dq C̄iα,jγ (q)eiq·(R0−R̄0) one thus reads off

C̄iα,jγ (q) = D̃−1
αγ (q)(eiq·(Ri−R0) − 1)(e−iq·(R̄j −R̄0) − 1).

(42)

The Fourier transform of the strain correlation functions is
then simply

〈eēt 〉(q) = QC̄(q)Qt (43)

and can be written down in closed form provided the dynamical
matrix D̃(q) for the lattice is known.

Next we consider the spatial correlation functions of the
nonaffinity, 〈χχ̄〉 − 〈χ〉〈χ̄〉. It is convenient, at this stage, to
define the vectors Y = P� and Ȳ = P�̄ with components
yj and ȳj , where j = 1, . . . ,Nd. Thus χ =∑Nd

j=1 y2
j and

χχ̄ =∑Nd
i,j=1 y2

i ȳ
2
j . Hence the correlation between χ and χ̄ is

given by

〈χχ̄〉 − 〈χ〉〈χ̄〉 =
Nd∑

i,j=1

(〈
y2

i ȳ
2
j

〉− 〈y2
i

〉〈
ȳ2

j

〉)

= 2
Nd∑

i,j=1

〈yi ȳj 〉2 = 2
Nd∑

i,j=1

(PC̄P)2
ij

= 2 Tr(PC̄P)(PC̄P)t (44)

using Wick’s theorem. If in line with our earlier notation we use
σ̄ 2

j to denote the Nd eigenvalues of the matrix (PC̄P)(PC̄P)t ,
then the last expression can be simplified to

〈χχ̄〉 − 〈χ〉2 = 2
Nd∑
j=1

σ̄ 2
j . (45)

Note that if PC̄P itself happens to be symmetric, then the σ̄ 2
j

can be obtained as the squares of the eigenvalues of this matrix.
As for the real-space strain correlator, one has to evaluate (45)
for different choices of R̄0 to obtain spatial profiles of the
nonaffinity correlator.

Finally one could ask about spatial cross correlations like
〈χ ēēt 〉 − 〈χ〉〈ēēt 〉. We do not pursue this here: As we saw
above, these correlations are already rather weak (at least for
coarse graining across nearest neighbors) locally, i.e., when
R0 = R̄0.

A. The one-dimensional harmonic chain

We now apply the above framework to the one-dimensional
harmonic chain introduced in Sec. III A. We choose as the first
reference location x0 = 0 and as the second x̄0 = ml. Coarse
graining will be across the nearest neighbors x±1 in � and
x̄±1 = (m ± 1)l in �̄. The matrix C̄jk is then given by

C̄jk = l2
∫ 2π/l

0

dq

2π/l

F (q)

D̃(q)
, (46)

where

F (q) = (eiq xj − 1)(e−iq x̄k − e−iq x̄0 )

= e−iqx̄0 (eiq(j−k)l − eiqjl − e−iqkl + 1). (47)

There are now two possibilities. If j = k then, bearing in
mind that D̃(q) = 2β[1 − cos(ql)], one has F (q)/D̃(q) =
β−1e−iqx̄0 so that C̄jk = 0 except when x̄0 = 0. Otherwise, if
j = −k, then F (q)/D(q) = −β−1eiq(j l−x̄0) so that now C̄jk =
0 unless x̄0 = j l. For all other cases, C̄jk vanishes identically.
Summarizing, C̄ equals C from (23) when x̄0 = 0 = x0; for
x̄0 = l it is given by

C̄ = l2β−1

(
0 −1
0 0

)
, (48)

while for x̄0 = −l one obtains the transpose. For all larger
distances |x̄0| � 2l, C̄ = 0, indicating that χ and ε are
uncorrelated beyond nearest neighbors. The intuition here is as
discussed after (23), namely that the relative particle displace-
ments of all nearest neighbor pairs fluctuate independently
from each other. Accordingly, the single nonzero entry in (48)
comes from the correlation of the displacements u1 = x1 − x0

and ū−1 = x̄−1 − x̄0 = x0 − x1, and so is simply the negative
variance of u1.

To obtain the correlation functions we need the matrices
PC̄Pt and QC̄Qt , where we can focus directly on the only
nonzero correlations at x̄0 = ±l. Even though C̄ is then not
symmetric, PC̄Pt is, and has eigenvalues σ̄ = 1

2 l2β−1 and 0.
On the other hand, the scalar QC̄Qt equals 1

4β−1. Using (45),
the correlation functions 〈χ (0)χ (ml)〉 − 〈χ〉2 and 〈ε(0)ε(ml)〉
can then be written as follows:

〈χ (0)χ (ml)〉 − 〈χ〉2 = 2σ 2 = 2l4β−2, m = 0

= 2σ̄ 2 = 1
2 l4β−2, m = ±1

= 0, |m| � 2,

〈ε(0)ε(m l)〉 = 1
2β−1, m = 0

= 1
4β−1, m = ±1

= 0, |m| � 2.

As expected the correlation functions, being symmetric,
depend only on the magnitude and not on the direction of
x̄0 = ml.

Summarizing, the correlation functions for χ and ε in
d = 1 are always short ranged, vanishing identically be-
yond the nearest neighbor. Correlation functions in the two-
dimensional lattice have much more structure as we will see
next.

B. The two-dimensional harmonic triangular net

The calculation of the correlation function for the two-
dimensional triangular lattice follows along lines similar to that
of the single-point distribution functions, except that results
now have to be obtained for each lattice position R̄0. For
the χ correlations, we calculate the trace of (PC̄P)(PC̄P)t

as the sum of the 12 eigenvalues σ̄ 2
j and use (45) to find

〈χ (0)χ (R)〉 − 〈χ〉2, where R = R̄0 − R0. The results obtained
using this calculation are compared with simulations in Fig. 8,
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FIG. 8. (Color online) (a) Surface plot of β2(〈χ (0)χ (R)〉 − 〈χ〉2)
over the two-dimensional triangular lattice from our exact calcu-
lation. (b) Quantitative comparison for the orientation averaged
β2(〈χ (0)χ (R)〉 − 〈χ〉2), where R = |R̄0 − R0|. Open circles show
the values obtained from our exact calculation and filled circles those
from simulations of a 100 × 100 particle system. The solid lines are
guides to the eye.

showing that this function is isotropic and decays within about
two to three lattice spacings, similar to the results obtained in
Refs. [17,18].

Similarly the spatial correlation function for the strain may
be obtained by evaluating 〈eēt 〉 = 〈Q��̄

tQt 〉 = QC̄Qt for a
range of spatial separations R. The results are shown in Fig. 9.
The correlation functions of ev and ω decay rapidly to zero and
are nearly isotropic. We take advantage of this approximate
symmetry by averaging over all pairs (R0,R̄0) related by
symmetry to produce angle-averaged correlation functions
that are functions of R = |R̄0 − R0| alone. Results for these
functions are compared with those obtained from simulations
in Fig. 10(a). Correlations involving the uniaxial (eu) and shear
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FIG. 9. (Color online) Density plot of the correlation functions
as obtained from our calculations showing the shape of the cor-
relation functions in the two-dimensional plane (a) β〈ev(0)ev(R)〉,
(b) β〈eu(0)eu(R)〉, (c) β〈es(0)es(R)〉, and (d) β〈ω(0)ω(R)〉. Note that
the volume and rotational correlations are nearly isotropic, while the
uniaxial and shear strain correlations show fourfold anisotropy. The
colors vary from dark blue (dark gray) (−0.1) to white (0.2) for all
the plots. To keep a uniform scale for all graphs we have a cut off for
the large values at the origin.
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FIG. 10. (a) Quantitative comparison for the (orientation aver-
aged) volume and rotational deformation correlations β〈ev(0)ev(R)〉
(squares) and β〈ω(0)ω(R)〉 (circles). The open symbols are from our
exact calculations and the filled ones are from our simulations of
the 100 × 100 particle system. The solid lines are guides to the eye.
The agreement in the numerical values for the correlations for other
components of the distortion tensor are similar. (b) The large length
scale behavior of β〈eu(0,0)eu(R/

√
2,R/

√
2)〉 (open circles) and

β〈es(0,0)es(0,R)〉 (filled circles) showing the slow decay along these
directions. The dotted line shows the ∼R−2 behavior for comparison.

(es) strains exhibit a pronounced fourfold anisotropy at large
distances, with prominent lobes at 0, π , ±π/2, ±π/4, and
±3π/4. Furthermore, 〈eu(0)eu(R)〉 and 〈es(0)es(R)〉 appear to
be rotated by π/4 with respect to one another [see Figs. 9(b)
and 9(c)] for large |R|. At small distances, of course, this
correspondence is not exactly satisfied because the underlying
triangular lattice does not have this π/4 rotational symmetry.

An identical π/4 anisotropy is also observed in momentum
space (Fig. 11) where one can obtain closed form expressions
for the correlation functions, in particular, in the q → 0 limit as
we show below. We begin by writing down explicit expressions
for the strain correlation functions in component form. With

qx

qy

qx

qy

qx

qy

qx

qy

(a) (b)

(c) (d)

FIG. 11. (Color online) Plot of the correlation functions in q
space obtained from (42). (a) 〈e2

v〉(q), (b) 〈e2
u〉(q), (c) 〈e2

s 〉(q), and
(d) 〈ω2〉(q). The key to the color values is given beside each plot.
Note the fourfold symmetry of the uniaxial and shear correlations
similar to the real-space plots shown in Fig. 9.
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the abbreviation E = QC̄(q)Qt one has〈
e2
v

〉
(q) = E1111 + E2222 + 2E1122,〈

e2
u

〉
(q) = E1111 + E2222 − 2E1122,

(49)〈
e2
s

〉
(q) = E1212 + E2121 + 2E1221,

〈ω2〉(q) = E1212 + E2121 − 2E1221.

The notation used here is the same as in (43), so that,
e.g., 〈e2

v〉(q) is the Fourier transform of the strain correlator
〈evēv〉 ≡ 〈ev(R0)ev(R̄0)〉 = v−1

BZ

∫
dq 〈e2

v(q)〉eiq·(R0−R̄0). After
substituting in for C̄(q) from (42) one gets, using also that
for the triangular lattice RtR is three times the identity
matrix,

Eαα′γ γ ′ = 1

9

6∑
i,j=1

f ijRiα′Rjγ ′D̃−1
αγ (q) (50)

with

f ij = f
ij

R + if
ij

I ,

f
ij

R = cos[q · (Ri − Rj )] − cos(q · Ri) − cos(q · Rj ) + 1,

f
ij

I = sin[q · (Rm − Rn)] − sin(q · Ri) + sin(q · Rj ). (51)

Noting that the imaginary contributions to E sum to zero and
expanding f

ij

R in Eq. (50) yields for small q,

Eαα′γ γ ′ = 1

9

6∑
i,j=1

∑
μν

qμqνRiμRjνRiα′Rjγ ′D̃−1
αγ (q)

= qα′qγ ′D̃−1
αγ (q), (52)

where we have used again that
∑

i RiαRiγ = 3δαγ . To examine
the leading order behavior at small q for the strain correlators,
we expand D−1(q) about q = 0 in (52) and substitute into (49)
to obtain 〈

e2
v

〉
(q) ≈ 8

9
, (53)

〈
e2
u

〉
(q) ≈ 8

9
+ 64

9

q2
x q2

y(
q2

x + q2
y

)2 , (54)

〈
e2
s

〉
(q) ≈ 8

3
− 64

9

q2
x q2

y(
q2

x + q2
y

)2 , (55)

〈ω2〉(q) ≈ 8

3
(56)

consistent with the results plotted in Fig. 11. The fact that the
correlators of uniaxial strain eu and shear strain es are related
by a rotation becomes clearer if one rewrites (55) as

〈
e2
s (q)
〉 ≈ 8

9
+ 64

9
(
q2

x + q2
y

)2
[(

qx + qy√
2

)2(
qx − qy√

2

)2]
.

(57)

This evidently maps to (54) under a rotation by π/4, as
claimed. We note that the large distance (small q) anisotropies
of 〈e2

u(q)〉 and 〈e2
s (q)〉 are also consistent with a mean field,

continuum theory calculation shown in detail in Ref. [18].

Interestingly, that calculation restricted attention to fluctuating
strain fields that satisfy force balance, so one concludes that
it is indeed these configurations that dominate the scaling for
large distances.

The q-space structure of the uniaxial and the shear cor-
relation functions as implied by (56), Figs. 11(b) and 11(c),
and further supported by continuum theory [18], shows that
these correlation functions have singularities at q = 0, with
the second terms in (54) and (57) vanishing along specific
directions (qx = 0, qy = 0 in eu and qx = ±qy in es). These
singularities lead to slow (∼1/R2) decay of the correlation
functions in real space [see Fig. 10(b)], with the prefactor
alternating in sign according to cos(4θ ) or sin(4θ ) with the
polar angle of R.

Before we end this section, we remark that the strain
correlation functions, by linear response, are proportional to
the strain field produced by a point, delta function stress at
the origin. Since the large R (or small q) structure of the
correlation functions is insensitive to crystal symmetry, it is
no surprise that similar quadrupolar displacement patterns [28]
have been observed in association with local rearrangements
in amorphous materials known as shear transformation zones
(STZ) [7,8,29], in both experiments [30] and computer
simulations [31,32] of granular or glassy materials under shear.

V. LINEAR RESPONSE AND THE NONAFFINE FIELD

The form of the characteristic function (15) offers a simple
way to calculate the response of the system to uniform fields
conjugate to χ and e. We analytically continue k and κ to the
complex plane by replacing κ → κ − i � and k → k − i hχ .
Here the vector �, once rearranged into a symmetric tensor,
is the stress [9], made dimensionless by multiplying by the
inverse temperature β and the size of a suitable local volume of
the order of Rd

�. On the other hand, hχ is a new field, conjugate
to χ . The introduction of a (small) stress merely shifts 〈e〉 away
from zero to a value proportional to � (Hooke’s law), i.e.,
〈ei〉� = 〈eiej 〉�=0�j . The proportionality constant here is the
zero field compliance calculated earlier. Furthermore, because
of the coupling between e and χ , external stress [mainly shear
and uniaxial; see Sec. III and Eq. (36)] will change P (χ ) for
lattices where [P,C] and higher commutators are nonzero. A
straightforward calculation, introducing � in (21) and Taylor
expanding, shows that for small values of �,

〈χ〉� = 〈χ〉�=0 + �tQC[P,C]Qt�, (58)

which always increases 〈χ〉 for the d = 2 triangular lattice;
higher moments of χ are similarly affected. A similar
dependence on external stress for nonaffinity arising from
quenched disorder has been discussed in Ref. [12]. Unlike
in Ref. [12], however, the contribution of (58) is, in addition,
proportional to T 2. At large �, of course, perturbations would
become so large that the effects of anharmonicities that we
have not modeled would become apparent causing, finally, the
nucleation of defects.

The effect of hχ is also intriguing. Below we illustrate this
explicitly for the one-dimensional case, though similar results
should hold in any dimension and for particles with arbitrary
interactions. The joint characteristic function for χ and e for
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FIG. 12. (a) The scaled, two-point χ -χ correlation function for
hχ = 0, 0.4, and 0.49 from Monte Carlo simulations of a 50 particle
harmonic chain at β = 100, showing a large increase in the correlation
length as the critical field is approached. (b) The first peak in the
structure factor S(q) = 〈ρqρ−q〉 for hχ = 0 (solid line), 0.4 (dashed
line), and 0.49 (dash-dotted line) for the same system as in (a). Note
that the amount of structure is reduced at constant temperature.

the d = 1 chain with hχ included is

Φ(k,κ) =
√

1 − 2σhχ

1 − 2σ ik − 2σhχ

exp

(
−1

2
〈ε2〉κ2

)
. (59)

Note that we have multiplied Φ(k,κ) by the factor
√

1 − 2σhχ

to ensure normalization, i.e., limk→0,κ→0Φ(k,κ) = 1. Now we
can obtain P (ε), P (χ ), and P (χ,ε) by inspection as

P (χ,ε) = P (χ )P (ε)

=
√

1 − 2σhχ

2πσ
χ−1/2 exp

[
− (1 − 2σhχ )χ

2σ

]

× 1√
2π〈ε2〉

exp

[
− ε2

2〈ε2〉
]

. (60)

As hχ → 1/(2σ ), P (χ ) becomes proportional to χ−1/2 and all
the moments

〈χn〉 =
(

2σ

1 − 2σhχ

)n �
(
n + 1

2

)
�
(

1
2

)
diverge as [hχ − 1/(2σ )]−n. Spatial correlations of nonaffinity
χ also become long ranged in this limit and the system
becomes disordered. Displacements acquire a nonaffine char-
acter over all length scales, as evidenced from the decrease
of the amplitude of the structure factor for a finite one-
dimensional chain of 50 particles [see Figs. 12(a) and 12(b)].

All of this suggests the presence of a critical line in the
(hχ,β) plane beyond which the system becomes globally
nonaffine so that χ defined by coarse graining over local
neighborhoods � is always infinite—a “maximally nonaffine”
solid (the presence of anharmonicities would, in practice, be
expected to limit χ to a finite value). For the d = 1 lattice, this
transition is identical to the celebrated Peierls transition [25] as
can be deduced from the nature of the nonaffine mode shown
in Fig. 1(c). In higher dimensions, the transition appears for
values of hχ equal to a critical h∗

χ close to half the reciprocal
of the largest eigenvalue of PCPt . Indeed, one finds easily
by writing down the general analog of (59), taking a log and
differentiating with respect to ik that

〈χ〉 = Tr(I − 2hχPCPt )−1, (61)

which diverges at h∗
χ = 1/(2 maxj σj ) if the σj are the

eigenvalues of PCPt as before. In the triangular net, the
largest eigenvalues are σ1 = σ2 and the displacement patterns
whose amplitudes would grow at the transition are shown in
Figs. 3(a) and 3(b). Locally, they correspond to an almost
uniform translation of the neighboring particles relative to the
central particle, though it is difficult to visualize what global
configuration is finally produced. We imagine that this leads to
destruction of the lattice structure and eventual amorphization.
Of course, as the transition is approached, we expect the
identity of the neighborhoods, �, itself to become ill defined
due to this loss of crystalline order, making many of our results
invalid in that limit.

In the harmonic lattice, the transition discussed above is
hidden because the only physically realizable value of the
nonaffine field hχ = 0 lies on the critical line at infinite
temperature β = 0. Nevertheless, there may be systems where
the critical line cuts the hχ = 0 axis at a nonzero value of β

(i.e., at finite temperature). In such a system one may obtain
a physical transition from an affine to a maximally nonaffine
state as the temperature is increased or a stiffness parameter is
reduced producing a going over to a “glass spinodal” [33]. We
speculate that this may also happen at or near the yield point
of a solid under external load where the bonds between atoms
become weak due to strong anharmonicities. However, for
such cases, the simple linear response calculations presented
above become invalid and the distributions of χ and e become
strongly coupled through the strain and nonaffinity dependence
of the dynamical matrix D̃(q). Implications of this transition
for the mechanical and phase behavior of solids in one,
two, and three dimensions are being worked out and will be
published elsewhere.

VI. SUMMARY AND CONCLUSIONS

In this paper we have shown that coarse graining of the
microscopic displacements of crystalline solid at nonzero
temperatures generates nonaffine as well as locally affine
distortions. The procedure effectively amounts to integrat-
ing out phonon modes with wavelengths comparable to or
smaller than the coarse-graining length. We have obtained
the probability distributions for the nonaffine parameter
and the affine distortions of a harmonic lattice at nonzero
temperatures. We have also obtained the spatial correlations of
the local distortions and nonaffinity. While 〈χ (0)χ (R)〉 decays
exponentially, the correlation functions corresponding to the
different elements of the distortion tensor decay differently.
Volume and rotation correlations, on the one hand, are short
ranged; uniaxial and shear strain components, on the other
hand, decay as a 1/R2 power law with prefactor depending
on the polar angle as sin(4θ ) or cos(4θ ), respectively. The
angular dependencies of the slow decay for uniaxial strain and
shear are rotated by π/4 with respect to each other. We noted
that this is consistent with an earlier continuum calculation
imposing the mechanical stability condition that the stress is
divergence free in the fluctuating strain field. Finally, we have
shown that it is possible to induce a transition from a solid
with a finite average nonaffinity 〈χ〉 to one where all moments
〈χn〉 diverge, by tuning a nonaffine field hχ .
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FIG. 13. Plot of 〈χ〉/Rd
� vs R� for d = 1 (filled circles) and d = 2

(open circles). Note that while the intensive (per unit coarse-graining
volume) χ increases linearly with R�, the size of the reference volume
�, in d = 1, it has a much slower logarithmic increase in d = 2.

How do our results vary with the size of the reference
volume � used to define the coarse-grained quantities? First,
χ depends on the number of sites within �, so we need
to consider the intensive quantity 〈χ〉/Rd

�, where R� is the
radius of the reference volume �. Furthermore, since χ

depends on the fluctuations of the displacements u, then
in d = 1 this quantity itself should diverge as ∼R� and in
d = 2 as ∼ log(R�) [10]. In Fig. 13 we show plots for this
normalized nonaffinity in d = 1 and d = 2, which confirm
these expectations. In higher dimensions the intensive variable
〈χ〉/Rd

� should for large R� approach a constant (proportional
to temperature, as for d = 1 and 2). Note that the probability
distribution of strains P (χ,ej ) is similarly � dependent and
so our calculation automatically incorporates exact finite size
scaling of the elastic compliances. Approximate finite size
scaling results based on continuum elasticity theory have been
used to obtain elastic constants of colloidal solids from video
microscopy data [16,17]. Our results may offer a better way to
analyze such data.

Secondly, as R� increases, χ and the distortion D may
get more and more coupled. This is best illustrated, for the
d = 1 harmonic chain, by computing the norms of the com-
mutators [P,C] and [CP,[P,C]], which we obtain as shown in
Table I.

TABLE I. Numerical values of the norm of the successive
commutators of P and C which contribute to the cross correlation
of nonaffinity and strain (see Sec. II). Note that the commutators
increase with the size R� of the reference volume.

R�/l ‖C‖ ‖[P,C]‖ ‖[CP,[P,C]]‖
1 1.414 0.000 0.000
2 3.741 0.282 0.126
3 7.211 0.654 0.534
4 11.832 1.148 1.516
5 17.606 1.766 3.448
6 24.535 2.507 6.803
7 32.619 3.371 12.145
8 41.856 4.358 20.132
9 52.249 5.469 31.520
10 63.796 6.704 47.154

For very large R� more and more terms are needed to
get good convergence of the Taylor expansion for P (χ,ej )
in powers of k, viz., Eq. (21), for given k. Accordingly χ

becomes inextricably linked with the strain, a phenomenon
related to the fluctuation-driven instability of ordered solids
in one dimension [10]. This effect should be weaker in
higher dimensions, though a full study of the influence of
dimensionality on nonaffinity for a variety of lattices and
interactions needs further work.

Our calculations may be easily extended to other lattices
and to higher dimensions without much difficulty, requiring
at most a calculation of the relevant dynamical matrix.
Similarly, local χ and displacement distributions can be
obtained for crystals with isolated, point or line defects
once the appropriate Hessians of the local potential energy
at defects are evaluated. The effect of external stress on
χ is another interesting problem which may be addressed
immediately in the limit of negligible anharmonicity; the effect
of anharmonic terms could be included perturbatively. Finally
the effect of disorder can be incorporated [12] at nonzero
temperatures.

Our results may also be used to construct new simulation
strategies for investigating the mechanical behavior of solids
under external stress. For instance, particle moves may be
designed which change χ without influencing the local
distortion within � by projecting particle displacements along
eigendirections of P.

Such calculations will be particularly useful for glasses
[7], where local potential energy Hessians may be used to
define an equivalent harmonic lattice at every instance of
time with χ being calculated dynamically from the reference
configurations at the previous time step. Calculations similar
to ours will be useful to understand the properties of STZ [29],
defined [7,8] as regions with a large value of χ ; these are the
dominant entities responsible for mechanical deformation of
glasses. STZ are thermally generated and respond to external
stress by rearrangements of local particle positions. Similar
localized nonaffine excitations have also been observed in
anharmonic, crystalline solids [34] where they have been
identified as droplet fluctuations from nearby glassy and
liquidlike minima of the free energy. Constrained simulations
like those outlined above may help in identifying the role
of χ in the processes involved in complex phenomena
such as anelasticity, yielding, and melting. The role of the
nonaffine field hχ in influencing glass transition and the
mechanical behavior of solids both crystalline and amorphous
is another direction that we intend to investigate in the
future.
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