
PHYSICAL REVIEW E 87, 042723 (2013)

Electrophoresis of a DNA coil near a nanopore
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Motivated by DNA electrophoresis near a nanopore, we consider the flow field around an “elongated jet,” a
long thin source which injects momentum into a liquid. This solution qualitatively describes the electro-osmotic
flow around a long rigid polymer, where due to electrohydrodynamic coupling, the solvent receives momentum
from the electric field. Based on the qualitative behavior of the elongated jet solution, we develop a coarse-grained
scheme which reproduces the known theoretical results regarding the electrophoretic behavior of a long rigid
polymer and a polymer coil in a uniform field, which we then exploit to analyze the electrophoresis of a polymer
coil in the nonuniform field near a nanopore.
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I. INTRODUCTION

Due to coupling between electric and hydrodynamic fields,
electrophoresis of a polymer molecule in a solvent is a complex
phenomenon. Although there are only a handful of rigorously
solvable models [1–4], some quite detailed knowledge has
been accumulated over the years on the electrophoretic motion
of either colloidal particles or polyelectrolyte molecules, such
as DNA, in a uniform electric field [5–8]. The difficulty arises
when one attempts to treat more complex geometries such
as, e.g., a DNA molecule driven electrophoretically into a
nanopore [9]. Due to the nonuniformity of the field [10] and
restricted conformational mobility near a membrane, such a
problem cannot undergo a rigorous analytical treatment and
extremely challenging for simulations. Therefore, develop-
ment of a scheme which provides reliable yet manageable
scaling estimates, which so far is missing, seems to be
necessary. In this work, we develop such a scheme by focusing
on a scaling characterization of the electro-osmotic flow; in
doing so, we draw an analogy between the electrically driven
charged layer of liquid around the DNA chain and a weak
“submerged jet” [11]. This analogy is a useful picture, which
allows us to consider the electro-osmotic flow as one created by
the superposition of the long-range fields of many sources of
externally injected momentum, or jets, and to use its properties
to develop mean-field models for more sophisticated cases
such as a nonuniform field.

We develop our scheme by first introducing an “elongated
jet,” a long source of external momentum, and revisiting the
cases of a finite rodlike DNA parallel to a uniform electric
field and a DNA coil in a uniform field. These considerations
reproduce the known results such as the size-independent
electrophoretic mobility for those cases. With this scheme at
hand, we then analyze the electrophoresis of a DNA molecule
in the nonuniform electric field near a nanopore and find a
local mean-field relation for the electrophoretic pull exerted
on each DNA segment. To motivate the connection between
this analysis and the theory of DNA capture into a nanopore
[10,12], we calculate the work of the stall force on a DNA
coil under electrophoretic pull brought quasistatically into the
pore; this work plays the role of a quasiequilibrium energy
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landscape, an important ingredient of the capture theory, as it
characterizes the attractive role of the electric field in drawing
the DNA toward the pore. The results obtained from this
consideration are then applied to the DNA capture into a
nanopore in a translocation experiment in an accompanying
work [13].

II. UNIFORM ELECTRIC FIELD

Let us begin by briefly reviewing the phenomenological
model of electrophoresis [7]. Assuming linearity and ne-
glecting the relaxation effect or the perturbation of the ion
distribution by the electric field (the same assumptions we
will make in our consideration below), the velocity of a DNA
molecule subject to a uniform field E and a mechanical force
Fext is written as

vDNA = μF Fext − μEE. (1)

The mechanical mobility μF in this relation satisfies the
fluctuation-dissipation relation D = μF T , where D is the
DNA diffusion constant and T is temperature. The electric
term, which includes the electrophoretic mobility μE , can be
written as (μE/Q)(QE) by including the DNA bare charge
Q; although μE/Q can be formally viewed as the mobility
of the DNA driven by an electric force QE, it is qualitatively
different from μF as the electric field inevitably drags the
surrounding ions and thus results in electrohydrodynamic
coupling. The stall force required to hold the DNA stationary
(vDNA = 0), Fst = QeffE, characterizes the strength of the
electrophoretic pull and is related to E through an effective
charge Qeff = μE/μF . In this section, we revisit the relations
for DNA velocity and the effective charge by considering the
flow of momentum via the electrohydrodynamic flow.

The electrophoretic mobility μE is known to be independent
of the DNA length [2,4,7,8]. This is because the balance of
momenta received by the negatively charged DNA chain from
the electric field and from its surrounding thin “sleeve” of
positively charged liquid is established and maintained locally
on a very small length scale. The momentum flowing away
from the DNA chain is smaller than what is received by the
DNA and equal to zero in the absence of a mechanical force.
Intuition about the charged sleeve is mostly due to Debye
theory, in which charged liquid exists in a layer of thickness
the Debye screening length rD , usually a few nanometers in
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size under relevant experimental conditions [5,6]. The mere
existence of this layer upon which we base our model, however,
is a generic property and therefore is not affected by the
applicability conditions of the Debye theory. Therefore, while
because of Manning condensation [14], non-mean-field and
nonlinear screening, and discrete DNA charge Debye theory
is not directly applicable to a dsDNA, we still symbolically
call the thickness of the charged layer rD and keep in mind
that the applicability of our consideration is not limited to that
of Debye theory.

Much insight about the flow field around a DNA moving
under the influence of an electric field E and a mechanical
force Fext can be obtained by looking at electro-osmosis,
a long-range flow field which delivers the net momentum
received from the field and the mechanical force. This flow
field is most simply characterized when the DNA is stalled
by a force Fst (or equivalently by sitting at the DNA frame),
which is where we begin. Electro-osmotic flow forms when
the momentum received from the electric field by the charged
sleeve is delivered partly to the far away liquid via viscous
transport (partly because some of it is delivered to the DNA
chain). Every point in the charged sleeve acts like a “submerged
jet” [11], a pointlike source which injects momentum into a
liquid and results in a long-range hydrodynamic field similar
to the one formed around a simple Stokes object, but with the
difference being that unlike a Stokes object, a jet is fixed in
space and therefore it readily matches the case of a stalled
DNA.

A. Long rigid DNA in a uniform field

We address a rigid DNA by first introducing a “submerged
jet” and considering the steady-state flow field around an
“elongated jet,” a long thin source of momentum built from
infinitely many submerged jets. This qualitatively describes the
electro-osmotic flow field around a long rigid DNA segment,
based on which we write down the momentum conservation
equations.

A submerged jet [Fig. 1(a)] is created at the tip of a very
long thin pipe which injects momentum at a rate δ� into a
liquid medium while injecting almost no liquid. The delivered
momentum moves the fluid around the pipe and creates a
pressure gradient between the points immediately ahead of and
behind the tip of the jet. Velocity and pressure fields around
a weak submerged jet (δ� � η2/�, where � and η are liquid
density and viscosity) are both linear in δ�:

vr = δ� cos θ

4πηr
, vθ = −δ� sin θ

8πηr
, (2)

P = δ�

4πr2
cos θ, (3)

where r and θ are the spherical coordinates with polar axis z

lying along the pipe and the jet at the origin.
Let us now build an elongated jet which extends from −�

to � along the z axis and supplies a total momentum flux �

[Fig. 1(b)]. Every small segment of length δz provides a weak
momentum flux δ� = (�/2�)δz, where −� < z < � is the
position along the jet. The smallness of δ� for small δz is
guaranteed by the finiteness of �; therefore, each element δz

can be viewed as a weak pointlike jet, and thus Eqs. (2) and

FIG. 1. (Color online) Velocity and pressure fields for (a) a
pointlike and (b) an elongated jet. Both jets drag the surrounding
liquid by delivering momentum to the liquid, and create a pressure
imbalance in the liquid. Pressure is positive in front of the jet and
negative behind it, and diverges at the tips for infinitely thin jets in
both cases. Pressure is measured in units of �/(8π�2), with � being
the momentum flux and 2� the length of the elongated jet. The overall
direction of the flow is the same as the jets, and in particular, close to
the elongated jet, it is almost parallel to the jet.

(3) represent the Green’s function (also known as Stokeslet)
of any extended jet, which could be integrated to obtain the
pressure and velocity fields around the elongated jet:

vρ = �ρ

16π�η

[
1√

ρ2 + (z − �)2
− 1√

ρ2 + (z + �)2

]
, (4)

vz = �

8π�η

[
ln

(√
ρ2 + (z − �)2 + (� − z)√
ρ2 + (z + �)2 − (� + z)

)

− 1

2

(
� − z√

ρ2 + (z − �)2
+ � + z√

ρ2 + (z + �)2

)]
, (5)

P (z,ρ) = �

8π�

[
1√

ρ2 + (z − �)2
− 1√

ρ2 + (z + �)2

]
, (6)

where ρ and z are the cylindrical coordinates, with the z

axis lying along the jet and the origin in the middle of the
elongated jet. Describing the flow field everywhere around a
stationary jet, Eqs. (4) and (5) coincide with the expressions
for the liquid velocity at the surface of a moving slender
cylindrical rod [15,16], a moving source of momentum. The
hydrodynamic fields of the elongated jet derived above are
linear in �. However, this linearity, preserved formally by the
smallness of the momentum flux of each small element δz,
remains valid only as long as the Reynolds number for the
elongated jet is small. Noting that the liquid velocity scale
around the elongated jet is v ∼ �/(�η), low Reynolds number
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occurs when � � η2/�, the same as the weakness criterion
for the Landau jet.

Pressure and velocity fields for both pointlike and elongated
jets are shown in Fig. 1. Pressure is larger in front of the jets
than behind them, and formally diverges at the tips of the jets.
The divergence is due to zero thickness but finite momentum
flux of the jets and is cut off by the finite width of a real jet.
The overall motion of the liquid is in the same direction as
the jet. Far from the elongated jet, at r � �, the elongated jet
is seen as a pointlike one, and therefore liquid velocity drops
like 1/r , which is the same decay as the long-range flow field
of a Stokes object. The resulting 1/r2 velocity gradient then
guarantees that the momentum transfer rate is the same over
any arbitrary closed surface, and thus all the jet momentum is
delivered to infinity.

We can qualitatively describe the elongated jet flow field
as follows. First, liquid on the sides of the jet is driven by the
viscous shear and its velocity drops by a significant factor at a
distance about � from the jet:

vz(z = 0,ρ � �) ≈ �

4π�η
ln

�

ρ
, (7a)

vz(z = 0,ρ ∼ �) ≈ �

8π�η
. (7b)

Second, there is a region in front of and behind the jet where
liquid is driven mostly by pressure, whose hourglass shape
(Fig. 2) is established from dρh/dz = vρ/vz and turns out to
be ρh(z) ∼ (d + rD)

√
z/� � z for |z| > �, which is consistent

with continuity and the 1/z drop of velocity [Eq. (5)] along the
ρ = 0 axis [strictly speaking, at the tips, or for 0 < z − � � �

and 0 < −(z + �) � �, the form of ρh is more complex, which
also results in a logarithmic correction to the relation above for
ρh; we ignore this correction as it will not affect our scaling
results].

Equipped with this qualitative insight, we go back to DNA
electrophoresis. Let us consider a long rigid DNA of length
�, radius d, and charge −q, surrounded by a thin charged
sleeve of outer radius ∼(d + rD) � � which acts similar to
an elongated jet, but with two complications that there is a
DNA of thickness d inside the jet, and that the DNA moves
with some velocity vDNA. The former results in the momentum
received by the sleeve being only partially delivered to infinity;
in fact, the momentum delivery rate is equal to Fext, as in the
absence of an external mechanical force, the total momentum
received from the electric field is zero and the resulting fast
decaying 1/r3 flow field [17,18] delivers no momentum to
infinity. Regarding the latter, we will justify at the end of this
section the use of a stationary jet for a moving DNA.

The velocity profile, based on which we write the momen-
tum conservation equations on different scales, is sketched
in Fig. 2: assuming a no-slip boundary condition on the DNA
surface, liquid velocity is equal to vDNA near the DNA, reaches
vliq over a distance of order rD from the DNA, and decays to
vout � vliq over a distance of order �. The DNA is pulled by
the electric field and mechanical force Fext, and is dragged by
the charged sleeve, thus

Fext − qE − η�

ln(1 + rD/d)
(vDNA − vliq) = 0, (8)

FIG. 2. (Color online) Flow field around a rigid DNA. A
positively charged sleeve surrounding the DNA drags the outer liquid
on the DNA sides through viscous shear force, and pushes (pulls)
an hourglass-shaped region above (below) the DNA. Liquid velocity
rapidly grows from the DNA velocity vDNA to vliq over a distance rD ,
the thickness of the charged sleeve, and significantly drops over a
distance of order the DNA length �.

where the last term is the force exerted via a viscous medium
by a cylinder of radius d + rD moving with velocity vliq on a
coaxial cylinder of radius d moving with velocity vDNA. The
charged sleeve feels the corresponding reaction force, is pulled
by the electric field, pushed from above and pulled from below
by the hourglass with a force FHG, and is subject to the friction
force exerted by the outside liquid; thus

qE − FHG − η�

ln(1 + rD/d)
(vliq − vDNA)

− η�

ln �
rD+d

(vliq − vout) = 0. (9)

The last term is the force exchanged between two coaxial
cylinders of radii ∼� and rD + d moving with velocities vout

and vliq, respectively.
The force FHG exerted on the hourglass is balanced by its

friction with the neighboring outside liquid. For the friction
force exerted on this infinite hourglass to remain finite, it has
to be dominated by the narrow parts of the hourglass near the
DNA tips. Therefore, the relevant scales which determine this
force are rD + d, the thickness at the narrow part, and vliq, the
velocity of liquid at those parts, and therefore

FHG − η(rD + d)vliq = 0. (10)

Extra logarithmic factors may be obtained by more carefully
considering the shape of the hourglass and the velocity field
near the DNA tips [Eqs. (4) and (5)]. These extra factors,
however, do not affect our scaling results, as in the case of a
rigid DNA, the term FHG is small compared to others, implying
that only a small fraction of momentum flows out through
the hourglass and momentum is dominantly transferred via a
viscous medium on the sides. This, as we will see, will not be
the case anymore for the case of a bucket, for which the two
contributions are comparable.

042723-3



PAYAM ROWGHANIAN AND ALEXANDER Y. GROSBERG PHYSICAL REVIEW E 87, 042723 (2013)

Finally, the outside liquid is dragged by the hourglass, the
charged liquid, and far away walls:

−Fext + η(rD + d)vliq − η�

ln �
rD+d

(vout − vliq) = 0. (11)

The first term in the equation above, which represents the drag
force exerted by the far away walls, is crucial in satisfying
Newton’s third law, because the momentum flux Fext is
transferred from the DNA via the outside liquid to the walls,
which exert a reaction force on the force apparatus.

As a closely related remark, although we are building
a scaling theory which is insensitive to numerical factors,
every pair of terms that represent reaction forces are bound
to be exactly equal, so that summing up all the equations
above produces an exact triviality 0 = 0, as mandated by
momentum conservation. This also implies that only three
out of four of the equations above are independent. We
close the problem with four unknowns—vDNA, vliq, vout, and
FHG—with reference to Eqs. (7a) and (7b), which suggest
that vout ∼ vliq/ ln[�/(rD + d)] � vliq, and therefore the terms
containing vout can be neglected. This yields

vDNA = ln(�/d)

η�
Fext − λ ln(1 + rD/d)

η
E, (12)

where λ = q/� is the DNA charge density and all numerical
factors of order unity have been dropped. The well-known
mechanical mobility of a long cylinder μF ∼ ln(�/d)/(η�) and
the electrophoretic mobility [7,8] μE ∼ λ ln(1 + rD/d)/η are
reproduced in Eq. (17). μE is independent of the DNA length
because the bare electric force and hydrodynamic drag force
both scale with �. Since rD decreases with salt concentration
c (as rD ∼ c−1/2 in the Debye-Hückel approximation), μE

vanishes at high enough salt concentration c when rD � d,
as all the momentum received by the charged sleeve is used
to fully suppress the motion of the DNA, which is tightly
bound by the counterions and is effectively neutral. At low
salt concentrations, rD � d and μE ∼ ln(rD/d), which is
observed experimentally as μE ∼ ln c [6].

B. DNA coil in a uniform field

Consider now a simple model of a DNA coil, in which
N long rigid DNA segments of length � (corresponding to
the DNA Kuhn length) and charge −q, each surrounded
by nonoverlapping charged sleeves of thickness rD , are
distributed uniformly and parallel to each other in a fictitious
bucket of size R � �. Upon the application of an electric
field, in the DNA frame, N driven sleeves move and create a
long-range electro-osmotic flow. Just like the case of Zimm
dynamics, where N mechanically pulled segments of a coil
drag the liquid within the coil, the N driven sleeves also
collectively drag the liquid inside the bucket with a velocity vliq

(it is known that the dominant contribution to the flow inside
the bucket comes from the segments around the surface, and
thus small-scale fluctuations of the segment density in a coil do
not affect this picture). Therefore, liquid drains freely [19,20]
through the bucket and its velocity decays only outside the
bucket, where it reaches a value vout over a distance of order
R, and at distances ∼rD and closer to each segment, where
it decays to the DNA velocity (assuming a no-slip boundary

FIG. 3. (Color online) Top left: flow field around a bucket of DNA
segments placed at the center. The liquid inside the bucket is driven
by the electric field, dragging the liquid on the sides through shear
friction, and pushing the hourglass through the excess of pressure
on the top and bottom of the bucket. Center and bottom right: liquid
velocity profile inside and outside the bucket. N DNA segments of
length � and charge −q, surrounded by a charged sleeve of liquid
of thickness rD each, are placed inside a bucket of size R. Inside
the bucket, liquid moves with a velocity vliq except at a distance
rD from each segment, where it changes to the DNA velocity vDNA.
Outside the bucket, the velocity significantly decays over a distance of
order R.

condition at the DNA surface). As in the case of a rigid DNA,
on the sides of the bucket, liquid is dragged by shear friction,
and an hourglass above and below the bucket (Fig. 3) is pushed
by the liquid driven inside the bucket.

Following the same approach as the one used in Sec. II A,
below we write down the analogs of Eqs. (8)–(11) for a bucket.
For the DNA, we have

Fext − NqE − N
η�

ln
(
1 + rD

d

) (vDNA − vliq) = 0, (13)

where in the last term the friction force exerted on N DNA
segments by the corresponding sleeves has been considered.
This term is indeed crucial in getting a length-independent
electrophoretic mobility, as it manifests the local balance of
the momenta received from the electric field. For the liquid
inside the bucket, we have

NqE − FHG − N
η�

ln
(
1 + rD

d

) (vliq − vDNA)

−ηR(vliq − vout) = 0. (14)

In the last term, friction force exerted on a body of size R is
found from a velocity gradient ∼(vliq − vout)/R and contact
area ∼R2. The force FHG exerted by the hourglass, just like
the case of a rigid DNA, is dominated by the narrow parts of
the hourglass and thus

FHG − ηR vliq = 0. (15)
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Finally, for the liquid outside the bucket we have

−Fext + ηR vliq − ηR(vout − vliq) = 0, (16)

where the first term represents the drag force exerted by the far
away walls. To conserve momentum, as pointed out before,
liquid velocity decays as v(r) ∼ vliq R/r , and thus vout is
smaller than vliq by a numerical factor. Therefore, from the
equations above we obtain

vDNA = 1

ηR
Fext − λ

η
ln

(
1 + rD

d

)
E, (17)

where all numerical factors of order unity and a term containing
R/(N�) � 1 have been dropped. The mechanical mobility
μF = 1/(ηR) and the electrophoretic mobility

μE ∼ λ

η
ln

(
1 + rD

d

)
(18)

are reproduced in Eq. (17); μE agrees with experiments [5,6],
in which, for low salt concentrations c at which rD � d, a
μE ∼ ln c is observed. The ostensibly equal electrophoretic
mobilities found for a DNA coil [from Eq. (17)] and a
rigid DNA [or N = 1, Eq. (12)] contain unknown numerical
factors which cannot be captured using our scaling approach.
Recent simulations [19] have produced the experimentally
observed [5] nonmonotonic behavior of μE as a function of
the polymerization degree M (=nKuhnN , where nKuhn is the
number of monomers in a Kuhn segment), which increases
with M when the coil is smaller than the electric screening
radius due to the overlap of ion clouds of different monomers,
and then slightly decreases due to Manning condensation
as M further increases and reaches its asymptotic value at
M ≈ 50 (Figure 1 in Ref. [19]). This nonmonotonic behavior
is not captured in our consideration because, on the one
hand, we have not included the change in λ caused by the
coil-size-dependent ion condensation, and, on the other hand,
even for a single rigid dsDNA segment considered in Sec. II A,
the polymerization degree M is already well above 50.

Letting vDNA = 0, the stall force is found to be

Fst =
[
λ ln

(
1 + rD

d

)
R

]
E, (19)

where the effective charge Qeff = λ ln(1 + rD/d)R scales with
the bucket size and is much smaller than the bare charge Nq

for N � 1, because of the local balance of the momentum
received from the electric field. In fact, only a small fraction
∼ ln(1 + rD/d)R/(N�) of the total momentum NqE received
by the coil from the field flows out of the surface of the bucket to
the outside liquid via shear friction and through the hourglass.
The system is in this sense analogous to an electric circuit
in which the battery has an internal resistance much larger
than the load, and thus energy dissipation and “voltage drop”
(balance of momentum) mostly occurs inside the battery rather
than inside the load (liquid flowing outside the bucket).

We have addressed the case in which the DNA segments are
parallel to E so far. Similar consideration for a DNA segment
perpendicular to E is possible (details not shown) by building
a “transverse jet,” a line of pointlike jets sitting side by side.
Conceivably, arbitrary orientation of the DNA between these
two cases will only change the mobility by a numerical factor,
as shown in previous works [21,22]. This then allows us to

assume a more realistic model of a DNA coil as well, in which
DNA segments take arbitrary orientations.

We end this section by recalling that we have approximated
the flow field around a DNA by the steady-state flow field
of some jets. For this to be justified, the steady-state flow
field of the jet must have enough time to build up around the
DNA as it moves. Since the liquid velocity drops significantly
over a distance of order DNA size (� for a rigid DNA and
R for a coil), DNA dynamics is only sensitive to the flow
field at distances smaller than the DNA size. Therefore,
the steady-state approximation is valid if the time th that it
takes hydrodynamic perturbations to propagate to a distance
comparable to the DNA size is shorter than the time tD it takes
the DNA to move a distance of its own size.

The time th is determined from dimensional analysis to
be th ∼ �2�/η for a rigid DNA and th ∼ R2�/η for a coil,
where � is the liquid density. Using Eqs. (12) and (17), we
find tD ∼ �η/(Eλ) for a rigid DNA and tD ∼ Rη/(Eλ) for a
coil [assuming ln(1 + rD/d) ∼ 1]. The condition th < tD then
yields λ�E� < η2 and λRE� < η2. Using λ ∼ 1e/nm, E ∼
103 V/m, � = 100 nm, R ∼ 104 nm, and considering water
as a solvent, we get λ�E�/η2 ∼ 10−5 and λRE�/η2 ∼ 10−3,
both strongly satisfying the steady-state criterion.

III. NONUNIFORM ELECTRIC FIELD NEAR A PORE

A. Derivation of the stall force

Let us now consider a DNA coil near the membrane with
one end held inside a pore on a membrane. The electro-osmotic
flow is driven by a nonuniform electric field E(r) = Qpore/r2

[10], where the pore effective charge Qpore depends on the
voltage �V across the apparatus and the width a and depth b

of the pore and is Qpore � �V a2/(8b) for b � a. In the case of
a DNA coil stalled in a uniform field, the electro-osmotic flow
depended linearly on the electric field, which, using Eqs. (16)
and (17), could be found to be

vst
liq = μEE. (20)

Equation (20) suggests that in a nonuniform electric field,
liquid is driven at different velocities in different places; a local
application of this equation, however, does not necessarily
produce the flow field correctly because the liquid flow must
also obey continuity.

It is an interesting coincidence that both the electric field
(which is proportional to the electric current density [10]) and
the velocity field in the case of a DNA coil with one end
held in the pore are dictated by the spherical geometry of the
apparatus, and both decrease like 1/r2 with the distance r from
the pore. Because of such a coincidence, in this particular case,
Eq. (20) can be readily applied as a local relation to determine
the electro-osmotic flow field vliq(r) as a function of E(r).
Directly from this local characterization of the electro-osmotic
flow follows also a local application of Eq. (19): conformation
of a DNA with one end in the pore is similar to that of a
polymer grafted from one end to a surface [23,24], for which
the local blob size is proportional to the distance r from the
pore. The stall force exerted on a blob of size r is proportional
to its size [Eq. (19)] and, therefore, the average stall force per
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DNA segment at a distance r can be found to be

fst(r) = qeff(r)E(r) ∼ μEη�

(
r

�

) ν−1
ν

E(r), (21)

in which we have used the fact that a blob of size r contains
∼(r/�)1/ν DNA segments, with ν the Flory exponent of the
coil. The effective charge per segment is qeff(r) = μE/μF (r),
where μE is the size-independent electrophoretic mobility and
μF (r) can be formally viewed as the mechanical mobility of
a single segment at r , inversely proportional to the friction
coefficient per segment ξ (r) ∼ η�(r/�)(ν−1)/ν in a blob of size
r . The relation above states that the segment effective charge
is larger closer to the pore, which means that the screening
effect is suppressed more effectively by the membrane closer
to the pore.

Below we describe the electro-osmotic flow through the
coil. Placing the DNA end inside the pore not only subjects the
coil to a nonuniform field, but also brings it near a membrane
which constrains the electro-osmotic flow around the DNA.
For a very short pore (drilled on a thin membrane such as
a graphene membrane), as we show in Sec. III C, the liquid
driven through the coil can be partly sucked from the other side
of the membrane through the pore. For a long pore, however,
friction of the liquid with the pore walls is very large, and
thus electro-osmotic flow cannot be maintained by sucking the
liquid through the pore. Instead, the flow lines are dominantly
closed only on one side of the membrane, where liquid circles
around the DNA by sliding along the membrane (see the sketch
in Fig. 4). Two comments regarding the circulation of the
electro-osmotic flow are in order.

First, the liquid circulation is well facilitated by the
conformation of the DNA with one end held in the pore (which
we show in Sec. III D to be not perturbed by the electric field
in the field range used in experiments). Any blob of size r

of a self-similar coil contains an empty region (or a void) of
size ∼r , and thus the electro-osmotically driven flow through
those parts of the blob occupied by the DNA segments can
circulate back through the voids. The circulation, of course,
does not occur in the highly dissipative form of many small
loops; instead, the liquid flows in one large loop away from
the pore through the regions occupied by the DNA and flows
back toward the pore through the empty parts. It is known
that on average, the segment density of a grafted polymer near
the membrane is much lower than near the axis normal to
the membrane at the grafting point (or the axis of the pore
in our case), and in this sense, on average, the liquid flows
through the coil close to the pore axis and circles back beside
the membrane, as shown schematically in Fig. 4. Both the
forward and backward branches of the loop pass through cross
sections whose areas scale as r2, and thus Eq. (21) remains
valid.

Second, the effect of the circulation on the stall force is
negligible. The DNA conformation is similar to a coil placed
inside a cone with an opening angle equal to π (a special case
of a polymer attached to the tip of a cone [25]), in which any
blob of size ∼r is confined by the membrane to a region of size
∼r . Away from a confining membrane, momentum would flow
out of the blob at a rate ∼ηrvliq(r), which will change only
by numerical factors when the coil is surrounded by a surface

FIG. 4. (Color online) Electro-osmotic flow around a DNA coil
held at the nonuniform electric field near the pore. Due to the large
hydraulic resistance of the pore, for the liquid to flow through the coil
it must be sucked from near the membrane, and therefore the field lines
are closed as liquid circles back around the DNA by sliding beside the
membrane. Constrained by mass conservation, liquid velocity drops
as 1/r2, showing the same dependence as the electric field on the
distance from the pore r . This allows us to obtain a local relation for
the electrophoretic pull per DNA segment as a function of r .

at a distance ∼r from the coil. The local momentum balance
rate ∼η�n(r)vliq(r) [where n(r) is the number of segments in
the blob], therefore, will continue to be the dominant factor in
determining the stall force and electro-osmotic flow.

B. DNA “energy” near the pore

Here we calculate the quasiequilibrium energy, or the work
of the stall force [12], of a DNA coil with one end captured
in the pore, which we use in the DNA capture model in our
accompanying work [13]. Attracted electrophoretically toward
the pore, it is “energetically” more favorable for a DNA
molecule to move downstream along the field lines toward
the pore. Given the nonequilibrium nature of electrophoresis,
this must be formulated using a quasiequilibrium energy gain,
which can be defined as the work of the stall force W as the
DNA is brought to the pore quasistatically [12]. Tentatively
assuming a strong suppression of electro-osmotic flow near
the pore, one of us [10] had proposed that W ∼ QV (R),
where Q = Nq was the bare charge of a coil of size R and
V (R) ∼ Qpore/R was the voltage at a distance R from the pore.
Here we show that due to the persistence of the electro-osmotic
flow as described above, W ∼ ln N and is in fact much smaller
than QV (R) ∼ N1−ν .

The work of the stall force is reversible and thus path-
independent. We use a convenient path in which capture of
one DNA end into the pore takes place in two steps. The coil
is first brought to the pore in such a way that every segment
is brought to an average distance R from the pore. During this
step, the field variations across the DNA are at most within
numerical factors, and thus Eq. (19) can be used to obtain

W (R) ∼
∫ R

∞
Fst(r)dr ∼ ημEQpore. (22)

After the coil has arrived at the pore, one of its ends must be
pulled from within the coil and brought to the pore. During
this motion, the coil is pulled in such a way that any segment
indexed g with respect to the captured end is brought to
a distance r ∼ �gν from the pore. Therefore, on average,
(r/�)(1−ν)/(ν)(dr/�) segments are brought from a distance ∼R
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to r from the pore and placed in a shell of thickness dr . The
electrophoretic pull during this step is determined by Eq. (21),
which performs a work

wseg(r) ∼
∫ r

R

fst(r
′)dr ′ ∼ ημEQpore

(
�

r

) 1
ν

(23)

on a segment brought to r . The first segment is brought to
the pore such that its near and far ends are at distances
∼a and ∼� from the pore, respectively, and thus the work
performed on each small piece of size dr of this segment
is ∼ημEQpore(dr)/r , with a < r < �. Summing over all the
segments, we obtain

Wcap ∼
∫ R

�

wseg(r)

(
r

�

) 1−ν
ν dr

�
+

∫ �

a

ημEQpore
dr

r

∼ ημEQpore ln
R

a
. (24)

The total energy W = W (R) + Wcap is dominated by Wcap,
the work performed for the DNA end to be captured while the
DNA is in the vicinity of the pore, which includes a term of
order ln N , significant for long and flexible coils, and a term
∼ ln (�/a), dominant for a rigid DNA. For a long DNA coil,
the overall energy is W ∼ ημEQpore ln N , much smaller than
the previously suggested value QV (R) ∼ λQporeN

1−ν [10].

C. Comparison between the hydrodynamic resistance
of the DNA and the pore

We mentioned earlier that the electro-osmotic flow lines
almost do not go through the pore at all even when the
DNA end is captured in the pore. This is due to the high
friction with the pore walls and membrane; the pore acts like
a narrow pipe with a hydrodynamic resistance �p ∼ ηb/a4,
and friction with the membrane results in an access resistance
�a ∼ η/a3 [28,29]. We can compare � = �p + �a to �DNA,
the hydrodynamic resistance of the DNA while placed at
the pore, by expressing the dissipation which occurs in the
DNA when a total liquid current I = vliq(a)a2 passes through
it. As we have emphasized before, the dominant portion of
dissipation occurs in the vicinity of the DNA segments and is

� = 1

2

[ ∫ R

�

�ηv2
liq(r)

ln
(
1 + rD

d

) N (r)

r
dr +

∫ �

a

ηv2
liq(r)

ln
(
1 + rD

d

)dr

]
,

(25)

where the dissipation rate near each segment at distance r

is ∼�ηv2
liq(r)/ln(1 + rD/d), and N (r)dr/r is the number of

segments in a half spherical shell of radius r and thickness dr ,
with N (r) ∼ (r/ l)1/ν . The second integral accounts for the dis-
sipation due to the first segment; every small piece of length dr

of this segment dissipates at a rate ∼ηv2
liq(r)dr/ln(1 + rD/d).

Using � = 1
2 �DNAI 2 and a � R, we obtain

�DNA ∼ η

a3

1

ln
(
1 + rD

d

) . (26)

For very short pores, such as those drilled on a graphene
membrane, the pore resistance �p is insignificant and the
access and DNA resistances are comparable. Thus, the electro-
osmotic flow is maintained by circulation around the DNA as

well as by sucking liquid through the pore. For long pores,
typical of regular solid-state nanopores, the pore resistance is
much larger than the DNA resistance and thus the electric field
drives the liquid through the coil by dominantly circulating it
around the DNA and almost sucking no liquid through the
pore.

D. DNA conformation near the pore

Bringing one DNA end into the pore, just like grafting
a polymer from one end to a solid surface, is entropically
unfavorable and causes a tension Fgr ∼ T/r along the coil at
a distance r from the pore [30,31]. This tension holds the coil
near the membrane by exerting a net force fgr on each DNA
segment, which for a segment indexed g at a distance r ∼ �gν

from the pore is equal to

fgr(r) ∼ dFgr

dg
∼ T

�

(
r

�

)− 1+ν
ν

. (27)

If we now turn on a weak electric field, an electrophoretic pull
[Eq. (21)] equal to

fst(r) ∼ ημEQpore

�

(
r

�

)− 1+ν
ν

(28)

attracts the coil toward the pore and helps hold the coil near
the membrane. The stall force scales with r the same way as
fgr does, and as a result, it partially relaxes the grafting tension
Fgr. The overall tension vanishes at ημEQpore ∼ T , where the
entropic tension is completely relaxed by the electrophoretic
pull. This occurs at a voltage

Vc ∼ T

ημE

b

a2
, (29)

at which the electric field crosses over from weak to strong.
At �V > Vc, the DNA gets compressed and forms con-

centration blobs of size ξc(r). The gradient of the resulting
nonuniform pressure Pc(r) created along the coil balances
the force exerted by the electric field on the coil. Assuming
that the coil remains dilute enough for the liquid to flow, a
spherical shell of radius r and thickness δr will be subject to
an electrophoretic pull,

δfst ∼ rημEE(r)
δr

r
, (30)

where we have used the fact that the stall force is determined by
the local “bucket size” r; this is likely to become less and less
valid as the electric field grows and the coil becomes denser.
We have included a factor δr/r to only consider the force on
the thin shell. The net force exerted on the shell due to entropic
pressure is

δfpr ∼ δ(Pc(r)r2) ∼ Pc(r)rδr, (31)

which holds because dPc/dr ∼ Pc/r . Using the relation
between the pressure and size of the concentration blobs
Pc ∼ T ξ−3

c and balancing the two forces, we obtain

ξc(r) ∼ T

ημEQpore
r, (32)

which is valid for strong fields. Since the concentration blobs
cannot be smaller than the segment size �, for strong fields
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and close to the pore, the DNA is fully compressed with
ξc ∼ �. Equation (32) for the concentration blob size therefore
applies only beyond a distance rc ∼ �ημEQpore/T , which is
obtained by letting ξc(rc) ∼ �. Thus, the electrophoretic pull
per segment for strong fields close to the pore is

fst(r) ∼ ημEQpore

�

(
�

r

)4

, r < rc, (33)

which is found by dividing the stall force Fst(r) ∼ ημErE(r)
of a dense blob of size r by the number of segments in that
blob, which is n(r) ∼ r3/�3. At rc, this crosses over to

fst(r) ∼ ημEQpore

�

(
�

rc

)4(
rc

r

) 1+ν
ν

, r > rc, (34)

which is similarly found by dividing the stall force Fst(r) ∼
ημErE(r) by the number n(r) of the segments which are
at a distance r or closer from the pore. The integral which
determines n(r) is dominated by its upper bound if r is
sufficiently larger than rc and thus n(r) is the volume ∼r3

multiplied by the segment number density ∼[ξc(r)/�]
1
ν /ξ 3

c (r).
Assuming the experimental conditions of the work [10],

namely λ ∼ 1e/nm, ln(1 + rD/d) ∼ 1, and pore dimensions
a = 5 nm and b = 25 nm, the crossover voltage is Vc ∼
100 mV. This implies that the coil deformation is negligible in
those experiments and the calculated value for W is valid. At
the crossover between weak and strong fields, as mentioned
above, the entropic tension due to holding the coil near
the membrane with one end captured is fully relaxed. One
way to interpret this is that all the entropic cost ∼T ln N

of bringing the coil near the membrane is compensated by
the electric field. Since at the crossover ημEQpore ∼ T , we
conclude that to capture the DNA end into the pore, the
electrophoretic pull must perform a work ∼ημEQpore ln N on
the coil, which confirms the logarithmic dependence of W , the
DNA’s quasiequilibrium energy at the pore, derived in Sec. III.

IV. CONCLUSION AND REMARKS

With the aim of formulating the electrophoresis of a
DNA molecule placed at the nonuniform electric field of a
nanopore on a membrane, we have developed a scaling scheme
which characterizes the DNA electrophoresis by describing
the electro-osmotic flow through and around the DNA.
This microscopic scheme is based on an analogy between
electrophoresis and the “submerged jet” problem, where the
charged liquid surrounding the DNA chain is considered as
a collection of jets which cause electro-osmotic flow by
receiving momentum from the electric field and injecting it

into the liquid. The scheme developed here reproduces the
well-known size-independent electrophoretic mobility of a
DNA coil [4,7] and the free drain of liquid [19,20] in a
uniform field, as well as the effective charge of the DNA
which scales with the size of the DNA coil and is much
smaller than the DNA bare charge. Using this scheme, we
then compute the electrophoretic pull (or stall force) in the
nonuniform field of a pore in a membrane, and demonstrate
that although the electro-osmotic flow through and around the
DNA coil is somewhat reduced near the membrane, it is not
completely suppressed and persists as liquid is pumped both
around and through the coil. This has to be compared to the
tentative picture of the previous work [10], in which an almost
complete suppression of the electro-osmotic flow near the pore
was assumed.

As another application of our model, we were able to
calculate the liquid and electric currents driven through a
polyelectrolyte gel by an external electric field and pressure
gradient. Electrohydrodynamic coupling in this system was
first pointed out by de Gennes et al. [26], who formulated
the system in terms of a linear-response theory with three
independent phenomenological coefficients. This included
two diagonal coefficients, namely electric resistance, which
described the electric current due to the applied voltage,
and hydraulic resistance, which determined Darcy’s liquid
flow driven by pressure, as well as two equal off-diagonal
coefficients which characterized the electric current due to
pressure gradient and liquid flow driven by electric voltage.
Based on our model presented here, we have developed
a microscopic theory to determine these coefficients. The
hallmark of our results, in contrast to the previous work [27], is
that we were able to explore the dependence on the screening
radius, or more generally, on the thickness rD of the charged
sleeve surrounding the chains, thus relaxing the unphysical
assumption implicit in the previous work that rD is much larger
than the network mesh size.
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