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Identifying dynamical systems with bifurcations from noisy partial observation
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We propose a statistical machine-learning approach to derive low-dimensional models by integrating noisy
time-series data from partial observation of high-dimensional systems, aiming to utilize quantitative data on
biological phenomena in the cell. In particular, the method estimates a model from data at different values of
a bifurcation parameter in order to characterize biological functions as bifurcation types that are insensitive to

system details and experimental errors. The method is tested using artificial data generated from two cell-cycle
control system models that exhibit different bifurcations and the learned systems are shown to robustly inherit

the bifurcation types.

DOI: 10.1103/PhysRevE.87.042716

I. INTRODUCTION

The relevance of dynamical systems to modeling biological
phenomena has been increasingly recognized [1,2]. Recent
advances in experimental techniques such as live-cell imaging
that clarifies molecular activities at high spatiotemporal resolu-
tion [3—5] have accompanied this recognition. However, noise,
partial observation, and low controllability are still challenges
for measuring biological systems in that both the system
dynamics and measurement processes are highly stochastic,
only a few components in a system are observable, and only a
small number of experimental conditions can be examined.
These difficulties have hindered model construction from
experimental observations on the molecular systems.

To model complex systems such as cellular processes, a full
description of all details of the systems is often impractical and
not informative. Instead, dynamics can be often captured by
simplified systems described by a small number of variables,
which are more useful for our comprehension. In the reduced
model, the type of bifurcation is a basic feature to be inherited
because the qualitative changes of the dynamics against
environmental and experimental perturbation are helpful to
characterize the underlying mechanism of biological functions
that is insensitive to molecular details and experimental errors
[6-8]. Thus identification of low-dimensional model systems
that inherit the original bifurcation type is an effective step in
understanding the dynamics.

Here we propose a statistical machine-learning approach
to derive models from time-series data obtained for different
conditions, i.e., bifurcation parameter values (Fig. 1). Various
techniques for learning nonlinear dynamical systems from
time-series data have been developed, especially in the case
of noiseless system dynamics [9—12]. Although learning from
stochastic dynamics has less theoretical ground, methods
considering stochasticity in dynamics have been investigated
recently in the framework of statistical theory [13-16].
However, at present it is not certain whether such a statistical
framework can be used to estimate a model with a bifurcation.
Thus we adopt statistical techniques to obtain the model
with the correct type of bifurcation rather than aim at fitting
the model parameters to the observations. The expectation-
maximization (EM) algorithm and particle smoother [17-19]
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are combined, as they were suggested to be applicable for
nonlinear and stochastic dynamical systems [20]. To obtain
models with bifurcations, the learning is conducted by simul-
taneously using all of the time-series data obtained at different
values of a bifurcation parameter. By taking advantage of
continuity, we do not need the data from many parameter
values; those from a few parameter values are sufficient to
predict the dynamics with correct bifurcation types.

Before application to experimental data, verification of the
statistical method by artificially generated data is warranted
since we can directly compare learned systems with true
ones. In particular, it is beneficial to confirm that the learned
systems with a small number of variables can approximate
the dynamics restricted to low-dimensional subspaces of orig-
inal high-dimensional systems. Below we test the proposed
approach on this point and evaluate the learned systems
in comparison with reduced equations of true systems by
adiabatic approximation.

II. METHODS

A. Nonlinear state space model

We introduce a nonlinear state space model composed
of state and observation equations that describe the sys-
tem dynamics and observation process, respectively. Let us
consider D-dimensional stochastic differential equations that
describe the system dynamics and d components in the system
that are observed simultaneously. The state equations are
discretized in time by the Euler-Maruyama scheme [21]. We
write the time evolution of the ith variable at a time point ¢,
xii=1,...,D),as

xth=xl 4 Atf,-({x;-},s) + 0iE!V AL, (1)

where At is an integration time, o; is the intensity of the system
noise, and s is a bifurcation parameter. The system noise &/ is
sampled from a standard normal distribution. To achieve effi-
cient learning, the function f; is considered to be expressed by
a summation of linearly independent functions as f; ({x}},s) =
ZnN "k} f"({x;},s), where N; is the number of parameters {k;'}
and functions { f/"}. Since our aim is to reproduce bifurcation
types of systems subjected to unknown equations, we adopt
polynomial basis for the {f'} rather than biochemically
realistic functions such as Michaelis-Menten equation.
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FIG. 1. (Color online) Schematic representation of the proposed
method. Time-series data of the molecular activities in individual cells
are obtained from measurements under a given input level s, which is
regarded as a bifurcation parameter of the system. System and obser-
vation equations are then trained to reproduce the time-series data.

The observation value of the ith component at a time point
T,y (i =1,...,d),is written as

yi = &i(x]) +midf, 2)

where n; is an observation noise intensity and ¢! is sampled
from a standard normal distribution. In general, a set of
observed time points is a part of the entire set of time points
in the numerical integration.

Let us consider a data set of Y ={Y,} (a=1,...,A),
where each Y, is a time-series sample obtained from an
independent measurement at the bifurcation parameter value
sq. The initial condition for the ith component in the
ath time-series sample is assumed to obey a Gaussian
distribution parametrized by the mean p;, and the vari-
ance V;,. Then the parameters to be estimated are 6 =
(k" {oi} {ni} (i o}, {Via)). In contrast, the bifurcation pa-
rameter values S = {s,} are assumed to be known.

B. Maximum likelihood estimation

The learning of dynamical systems is formulated as a max-
imum likelihood estimation, which is summarized below (fur-
ther details are given in the Appendix). The likelihood is given
by the conditional probability p(Y|0,S) =[], p(¥Y410.54).
However, a straightforward maximization of the likelihood
is difficult because it requires the untractable summation of
p(Y1X,0,5)p(X|0,S) with respect to the set of time series
of the state variables X = {X,}. Thus we employ the EM
algorithm to maximize the log-likelihood of a model by a
two-step iterative method that alternately estimates the states
and parameters [17]. In the first step, the expectation step, the
posterior distribution of the time series of a state p(X|Y,0,S)
is estimated based on the tentative parameter set 6,4. In the
second step, the maximization step, the expectation value of
In p(X,Y16,S) is calculated as

0(0,6510) = {In p(X,Y0,5)) p(x1Y,000.5) 3)

and the parameter estimation is updated as

Onew = argmax Q(Gveold)~ (4)
6
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In this step, the optimization problem is reduced to linear si-
multaneous equations and thus can be solved easily. However,
the problem in the expectation step is still analytically un-
solvable because the probability distribution of the time series
is necessary. This calculation requires a state estimation at all
time points including the points at which measurements are not
conducted. We therefore obtain a numerical approximation of
p(X1Y,0,S) using a particle smoother algorithm that performs
state estimations of nonlinear models using a Monte Carlo
method [18,19]. The particle smoother (a numerical exten-
sion of the Kalman smoother) approximates a general non-
Gaussian state distribution as a set of particles representing
samples from the distribution and evaluates the log-likelihood
of the models. Since the use of the particle smoother introduces
stochasticity into the learning algorithm, a slight modification
of the maximization step is required to ensure convergence
of the learning [22]. The optimization function in Eq. (4) is
replaced by Q}(0) = (1 —a;)Q;_,(0) + o1 Q(0,0414), Where
1 is the iteration index and {¢;} is a sequence of nonincreasing
positive numbers converging to zero.

C. Artificial data generation

To validate the method, we apply it to artificial data
generated from models of a eukaryotic cell-cycle control
system since this system provides an illustrative example of
cellular dynamics composed of many molecular components
[7,23-26]. The cell cycle is a fundamental biological process
characterized by repeated events underlying cell division and
growth in which key proteins, cyclin and cyclin-dependent
kinases, change their concentration periodically and activate
various cellular functions such as DNA synthesis.

Two molecular circuit models of the cell-cycle control
system in Xenopus embryos are adopted as the data generators:
that proposed by Tyson and co-workers (the Tyson model)
[23,24], and that proposed by Ferrell and co-workers (the
Ferrell model) [25,26] (see Sec. 1 in Ref. [27] for the model
equations and the parameter values). Both models show an
oscillation onset through an increase of synthesis rate of
cyclin, which is a bifurcation parameter as adopted in a
classic experiment [28]. In contrast, they differ in the type
of bifurcation at the onset: The Tyson model exhibits a
saddle-node bifurcation on an invariant circle (SNIC), while
the Ferrell model exhibits a supercritical Hopf bifurcation.
We investigate whether the proposed learning procedure
reproduces the correct bifurcation type of each model.

Both data generators are composed of nine variables
including cyclin, cell division control protein 2 (Cdc2), and
other regulatory proteins. We consider the active Cdc2 and
cyclin concentrations to be observable variables since their
levels have been observed in previous experiments [25].
The time-series data are generated by numerical calculations
of these models as nonlinear Langevin equations at a few
values of the cyclin synthesis rate s. Figure 2 exhibits all the
time-series data that are used for our estimation below. We
simulate noisy observation by adding Gaussian noise to each
observation value. Artificial data are prepared for three cyclin
synthesis rates across the bifurcation point and for each value
of the bifurcation parameter, three independent time-series
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FIG. 2. (Color online) Noisy time series generated from the (a)—(f) Tyson and (g)—(1) Ferrell models through the artificial measurement
process. The lines in each figure indicate samples from independent trials. The values of the bifurcation parameter are (a) and (d) s = 0.002,
(b) and (e) 0.005, (c) and (f) 0.008, (g) and (j) 0.0005, (h) and (k) 0.001, and (i) and (1) 0.0015, respectively. These figures include all the data

used for the estimation.

samples are prepared in which the oscillation exhibits large
fluctuations in amplitude and period among the samples.

III. RESULTS

Considering a polynomial of degree M, we write the system
equations to be learned as

®)

The observation equations are expressed simply as y; = x] +
ni¢; . Accordingly, y; (x1) and y, (x,) represent the observed
(true) concentrations of active Cdc2 and cyclin, respectively.
The other variables x; (i > 2) represent the true concentrations
of unobservable components. We take the constant term in the
equation for cyclin to be the bifurcation parameter, i.., ky = s.

The simplest polynomial form required for reproducing the
observed dynamics is determined by starting with linear equa-
tions composed of active Cdc2 and cyclin (system dimension
D = 2 and polynomial order M = 1) and increasing the D and
M by one. It turns out that D = 2 is sufficient for reproducing
a given time-series data set as shown below. The polynomial
order M is determined by minimizing the information criteria

Si(fxg)os) = K Rk e kY ()

through an optimization of the balance between the goodness
of fit and the model complexity [29,30]. The Akaike informa-
tion criterion (AIC) and Bayesian information criterion (BIC)
are evaluated from the log-likelihood, parameter number, and
data size for each model (Fig. 3). Both the AIC and BIC show
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(b) Ferrell model
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FIG. 3. (Color online) The AIC and BIC are plotted against
different polynomial orders M = 1,2,3,4 for the (a) Tyson and (b)
Ferrell models. For each evaluation, 20 different initial parameters are
sampled to avoid the local minima. After the learning, the average and
standard deviations are calculated from 100 evaluation trials based
on the particle smoother.
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TABLE I. Learned parameters of the third-order polynomial
systems for the Tyson and Ferrell models. The indices j in {k]}
(i = 1,2) are defined as f;(x;,x2,5) = k! + kZx; + k}xa + k}(x1)? +
Kxi1x0 4+ kS ()? + k] (1) + kE(x1)2x2 + kY x1(02)? + k/°(x2)*. The
parameters 4, , and V; 4, i.e., the mean and variance of the initial-state
distribution, take different values among the samples (not shown). The
estimated initial conditions are nearly identical to the observed ones.

Parameter Tyson model Ferrell model
kl 0.00064 —0.00032
K2 —0.334 —0.343

K} 0.0655 0.0657
kt —0.8 1.05

K 2.39 —-1.25

kS —0.639 0.107
k] —253 —47.3

4 31.1 47.8

k) —13.1 -3.97

kJ0 222 —0.157
K3 —-04 —0.57

K 0.0612 0.0637
k3 —4.62 -0.9

K 5.47 2.41

kS —0.805 0.000818
k] -9 61.4

kS 227 —61.3

K —15.3 18.3

k0 1.92 —2.73

o1 0.00646 0.00199
fop) 0.00703 0.00205
m 0.00334 0.00101
2 0.00621 0.00133

a decrease from M = 1 to 3, but an increase or insignificant
decrease at M = 4. Therefore, we analyze models with D = 2
and M = 3 (see Table I for the learned parameter values).

To check whether the learning procedure can capture the
bifurcation of the original data generator system, we compare
the bifurcation diagrams of the learned systems with those
of the data generators. Figures 4(a) and 4(b) show bifurcation
diagrams against cyclin synthesis rate s for the learned systems
(red lines) in the Tyson and Ferrell models, respectively.
The bifurcation diagrams for the corresponding noiseless data
generators are shown by the gray lines. Although the data
for the learning are given only at three bifurcation parameter
points (indicated by the dashed lines), the learned systems have
diagrams quantitatively similar to those of the corresponding
data generators. The sudden appearance of a limit cycle
with finite amplitude is reproduced for the Tyson model,
while the gradual increase in amplitude from the bifurcation
point is reproduced for the Ferrell model. These features are
characteristics of the SNIC and supercritical Hopf bifurcation.
Nullclines of the learned systems in the vicinity of the
bifurcation points are shown in Figs. 4(c) and 4(d) for the Tyson
model and in Figs. 4(e) and 4(f) for the Ferrell model. The
results confirm the SNIC and supercritical Hopf bifurcation
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FIG. 4. (Color) Bifurcation diagrams of the (a) Tyson and (b)
Ferrell models. The minimum and maximum active Cdc2 concen-
trations x; for the learned systems are plotted against the cyclin
synthesis rate s (red); the corresponding concentrations of the data
generators are also shown for comparison (gray). The dashed lines
indicate points at which the data are given. For the Tyson model,
there is another attractor with a tiny basin that is ignored. (c)—(f)
The nullclines of the learned systems around the bifurcation points
are shown. Purple and orange lines represent nullclines of x; (active
Cdc2) and x;, (cyclin), respectively, and the gray arrows indicate
the flow directions. (c) and (d) The learned system from the Tyson
model exhibits a SNIC and (e) and (f) that from the Ferrell model
exhibits a supercritical Hopf bifurcation. The values of the bifurcation
parameter are (c) s = 0.0038, (d) 0.0044, (e) 0.0005, and (f) 0.0012,
respectively. (g) and (h) Bifurcation diagrams using the data at two
of the three bifurcation parameter points. The learning that lacks data
at the lowest, intermediate, and highest bifurcation parameter values
are denoted by low™, middle™, and high™, respectively.

at the onsets, respectively. Thus each learned system inherits
the bifurcation type of the original model through the learning
procedure in spite of noisy and partial observations.

When the learning is conducted by using the data on two
of the three bifurcation parameter points, the learned systems
still exhibit the correct bifurcation types, although the points
of oscillation onset and amplitudes are biased [Figs. 4(g) and
4(h)]. Note that identification of bifurcation is possible even
by using the data only on one side of a bifurcation point
(as indicated by the green lines). These results indicate the
interesting possibility that the learning procedure can predict
the type of bifurcation that will occur from the data before the
bifurcation point only.

We also show here how the high-dimensional phase space
structures of the original data generators are mapped onto the
lower-dimensional surfaces in the learned systems. Reduced
two-variable models are derived by adiabatic elimination
following a similar procedure by Novak and Tyson [31] (see
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FIG. 5. (Color) Comparison of the learned systems and reduced
models for the (a) Tyson and (b) Ferrell models. The purple and orange
lines represent the nullclines of x; (active Cdc2) and x, (cyclin),
respectively, for the learned systems (solid lines) and reduced models
(dashed lines). A noisy time series from the data generators (blue dots)
and the orbits of the learned models (red lines) are also shown. The
blue arrows indicate the flow direction. The values of the bifurcation
parameter are (a) s = 0.005 and (b) 0.0015.

Sec. 2 in Ref. [27] for the detailed procedure and reduced
model equations). Like the learned systems, the reduced
models are composed of active Cdc2 and total cyclin. Figure
5 shows the nullclines of the learned systems (the solid orange
and purple lines) and the reduced models (the dashed lines).
In both the Tyson and Ferrell models, the learned system
and reduced model nullclines for active Cdc2 have a similar
N-shaped form (orange lines), indicating the existence of
positive feedback in the molecular circuits. In contrast, those
for the total cyclin disagree quite significantly. To check the
consistency of the nullclines and dynamics, Fig. 5 also shows
a noisy time series from the data generators (blue points) and
the orbit of the learned system (red lines). The nullclines of the
learned systems are consistent with the dynamics in the data,
but the reduced models are not. This failure arises because the
dynamics of a component mediating the inhibition from active
Cdc2 to cyclin is not fast enough to allow the adiabatic ap-
proximation. A higher-order contribution beyond the adiabatic
elimination performed here should be included, which requires
complicated technical work. Nevertheless, the learning process
automatically reproduces the appropriate low-dimensional dy-
namics and estimates the bifurcation types without knowledge
of the detailed high-dimensional model systems.

IV. SUMMARY AND DISCUSSION

Gathering biological data is complicated by intrinsic and
observation noises, partial observation, and a small number
of possible experimental conditions. We have outlined
here a machine-learning procedure based on likelihood
maximization that makes use of all the information in
the time-series data, including that in the noise. By using
synthetic data that share the difficulties found in actual
biological data, we demonstrated that the procedure could
derive low-dimensional model equations that reproduced the
obtained time-series data and captured the bifurcation types
of the original systems. These results support the conjecture
that the learning procedure will be able to construct reliable
low-dimensional models for real time-series data of active
Cdc2 and cyclin levels in future studies. Being able to identify

PHYSICAL REVIEW E 87, 042716 (2013)

the model systems and bifurcation types will provide a useful
method for elucidating both the molecular interactions in
the circuit and the biological functions of the dynamics.
Further, since the dynamics and bifurcation are found widely
among various biological processes, the method is expected
to be applicable to various cell systems with cell-imaging
data.

The present method can be used together with other
machine-learning techniques. For example, it was recently
shown that compressive sensing exhibits a high performance
for learning chaotic systems [12]. Incorporation of prior
distributions for model parameters achieves such a sparse
optimization in the statistical framework [32] and will enable
us to extract an appropriate submodel from an original complex
equation by eliminating unnecessary terms. It is advantageous
in the case that complex time-series data are obtained typically
from a chaotic system.

The systems to be learned are assumed to be reducible
to the effectively lower-dimensional ones, which limits the
applicability of the method. Careful evaluation of how exten-
sible the method is to higher-dimensional state spaces remains
an important future task. Notice that this does not exclude
application of the method to spatially extended systems such
as reaction-diffusion systems since description of the systems
is often simple and the number of parameters to be determined
is small. In summary, the proposed method will be an efficient
way to capture the essential features of the cellular dynamics
by mediating dynamical system modeling with experimental
observations.

ACKNOWLEDGMENTS

We would like to thank K. Kamino, N. Saito, and S. Sawai
for illuminating comments and stimulating discussions. This
work was supported by the Grant-in-Aid MEXT/JSPS (Grant
No. 24115503).

APPENDIX: ALGORITHM DESCRIPTION
1. The EM algorithm

Our aim is to find model parameters 6 by maximizing the
log-likelihood function

1nL(9)=lnp(Y|9,S)=lnf p(Y|X,0)p(X10,S), (Al)

X
where X, Y, and S are time series of states, data, and
bifurcation parameter values, respectively. We employ an EM
algorithm that maximizes In P(X,Y16,S) (the complete-data
log-likelihood function), which is equivalent to maximizing
the likelihood in Eq. (Al) [17]. By iterating two steps
known as the expectation and maximization steps, the states
X and parameters 6 are estimated alternately. Since our
implementation of the expectation step includes the Monte
Carlo method as described below, the stochastic approximation
EM (SAEM) algorithm is adopted [22]. The SAEM procedure
is described as follows.

(i) Initialize the parameter vector as 8 = 6y and set the
iteration number I to zero.

(ii) Calculate the posterior distribution of the entire time
series of state variable p(X|Y,0,S) (the expectation step).
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(iii) Rename 0 as 6,4 and update the parameter vector as (b) At each t =0,1,..., (i) for i=1,...,D and p =
1,...,P, calculate x”r1 P from x 7 by using the state equa-
Onew = argrenax Q:(), (A2) trons ifr=re T update the Werghts of the particles as
0,6 I=0
L { 0(0,001) ( ) (A3) S
(I —ap)Qr-1(0) + a; Q(0,0014) (I > 0), p_ _ __aoldd

W PP (A6)

where Zp We olala

0(8,6010) = (In p(X,Y160,5)) p(x17.004.5) (A4)  Wwhere

and {o;} is a nonincreasing sequence of positive values 7 = l_[ p( P (A7)

converging to zero (the maximization step).
(iv) Increment I by one and iterate steps (ii) and (iii) until o o )
the estimation of the parameter vector converges. and (iii) if P =1/ p(wg )> < Puresh (i-e., if the effective
number of the particles falls below a threshold value), resample

the particles according to the new weights. Note that the

2. The expectation step history of particles (xl X llap R P} is resampled in

Since different time-series samples are independent parallel.
stochastic variables, we can write (c) Finish when all data points have passed [t = max(7)]

and estimate the log-likelihood as
In p(X|Y,0,8) =Y In p(Xql¥a.0.50). (A5)

a ] P
where a is an index of the time-series samples. Each InL,(0) = Z In <; Zl;’p)' (A8)
In p(X,|Y,,0,s,) is evaluated by using a particle smoother teT P
algorithm that approximates the non-Gaussian distribution of . ) o
the state x; (i = 1, ...,D) as a collection of many particles, B.ased on. the particle smcother, thc posterior distribution of
each of which represents a sample from the distribution the time series of the state is approximated as
[18,19]. For the ath time series, let x;’ p denote the pth particle P
for representing x! at time point 7 € T and let y;, denote an P(XalYa,001,54) = Z wg(s( X, — X{f) (A9)
observed value at a time point t € 7. The procedure of the =l
particle smoother is described as follows, for a=1,...,A.

(@ For i=1,...,D and p=1,...,P, set the initial where X/ indicates a sample path ({xf,’f},i =1,...,Dt €
states as xo ~ N (,u,a, Viq) and normahze the weights as T). On the basis of this approximation, we calculate the
w? =1/P. average of the complete-data log-likelihood as

|
( Ml a)2 4 F D
00,00) = Zzzwﬂ ——ln2nV,a— N ——ln2n(ol
a=1 p=1 i=1 a=1 p=1teT i=1
()-8 T 1), g o D s T
_ oAl +Y 3N > ——1n2rr(n,) Ton .
! a=1 p=11€eT i=l i
[

3. The maximization step TABLE II. Predetermined parameters used in the learning algo-

. . . ithm. The interval [—x, sents if distribution.
At the [Ith iteration, the parameter-value update is rithm. The interval [, ] represents a uniform distribution

performed by finding the 6 for which j—te(G) = 0. This

problem leads to linear algebraic equations that can be Parameters in the learning algorithm Value
solved easily because of the linearity assumption in the state number of time series A 9
equations as f;({x}},s) = Z;V k! f({x;},s) and Gaussian  integration time Az 1.0
statistics of the noises. Only for the variance of the initial  entire-time points T {0.1,2,...,400}
condition V;,, we define the minimum value Vi, to avoid  observed-time points 7 {0,2,4, ... ,400}
an unnaturally small value resulting from a problem called  Ppatticle number P 1000
sample impoverishment [33]. threshold for resampling Piyesh 500
initial dynamics parameters {k'} [—0.001,0.001]
4. Settings initial system noise strength o; 0.1
initial observation noise strength 7; 0.2
For the decreasing sequence in the SAEM algorithm {a;}, minimum initial variance Vi, 0.001

we employed «; = 1 (I < 30) or 1/4/({ — 30) (otherwise).
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At the onset of the learning, the means of the initial state
distributions {u; .} are setas p; , = y; ZO, while the variances

PHYSICAL REVIEW E 87, 042716 (2013)

{Via} are set as V;, = 10Vy;,. The other settings for the
learning algorithm are listed in Table II.
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