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Statistical mechanics approach to the sample deconvolution problem
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In a multicellular organism different cell types express a gene in different amounts. Samples from which gene
expression levels can be measured typically contain a mixture of different cell types; the resulting measurements
thus give only averages over the different cell types present. Based on fluctuations in the mixture proportions
from sample to sample it is in principle possible to reconstruct the underlying expression levels of each cell type:
to deconvolute the sample. We use a statistical mechanics approach to the problem of deconvoluting such partial
concentrations from mixed samples, explore this approach using Markov chain Monte Carlo simulations, and
give analytical results for when and how well samples can be unmixed.
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I. INTRODUCTION

Organs in higher organisms are complex tissues containing
a variety of different cell types. Brain tissue, for instance,
contains not only neurons, but also supporting cells like the
astrocytes and oligodendrocytes. Kidney tissue contains the
filtering units (podocytes) as well as cells of the capillary
system (tubules). Whereas two cells of different cell type have
largely the same DNA sequence, only a cell-type specific set
of genes will be expressed in a cell [1,2].

Over the last two decades, experimental methods have
been developed which allow one to measure the amount of
messenger-RNA (mRNA) from different genes in a sample
[3,4]. However, one may not be interested in expression levels
averaged over all cell types in such a sample, but may want to
know the mRNA levels present in the different cell types. A
particularly pressing example arises in cancer research, where
tissue samples typically contain solid tumor and healthy tissue
in unknown proportions [5].

Denoting the proportion of cell type a in sample μ by p
μ
a ,

and the concentration of mRNA from gene i in cell type a by
xa

i , the concentration of mRNA from gene i in sample μ, X
μ

i

is given by

X
μ

i =
n∑

a=1

pμ
a xa

i + ξ
μ

i , (1)

where the residuals ξ
μ

i stem from sample-specific fluctuations
of concentrations or random experimental errors. The number
of different cell types is denoted by n. Additionally, we have
the constraints 0 < xa

i , 0 < p
μ
a < 1, and

∑
a p

μ
a = 1 ∀ μ.

Sample deconvolution [6] is the inverse problem of recon-
structing the concentrations of gene products xa

i in each cell
type, as well as the mixing proportions p

μ
a of the samples

from measurements of mixed samples X
μ

i . The information
necessary for this reconstruction must come from fluctuations
in the mixing proportions across samples: A cell type with
high concentrations of mRNA of genes i and j will induce
positively correlated fluctuations of the measurements X

μ

i and
X

μ

j as the fraction of this cell type varies from sample to sample
(see Fig. 1).
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Equation (1) also arises in a broad range of contexts
outside molecular biology. It is the fundamental equation of
factor analysis, a statistical approach where different unknown
factors xa contribute with linear weights pa to some outcome
X [7]. Applications arise, for example, in the context of face
recognition [8], data analysis in ecology [9], or fluorescence
microscopy [10,11].

There are two questions we address in this paper. First,
what are the conditions such that learning from fluctuations
is possible at all? And second, how accurately can the
reconstruction be made? We first discuss a general constraint
on the minimal number of samples needed from linear algebra.
We then formulate a Bayesian model for sample deconvolution
and study this model from the point of view of statistical
physics. We explore the model numerically using Markov
chain Monte Carlo (MCMC) sampling of the posterior. Finally,
we derive analytical results for the accuracy of reconstruction
for a simple, nontrivial case of the problem.

As an initial remark, we derive a constraint on the minimal
number of samples needed for reconstruction from linear
algebra. Looking at the number of variables in Eq. (1) we
have, neglecting the residuals, the matrix equation

⎛
⎜⎜⎜⎝

X1
1 · · ·

...
. . .

⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
MN

=

⎛
⎜⎜⎜⎝

p1
1 · · ·

...
. . .

⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
�M(n − 1)+

×

⎛
⎜⎝ x1

1 · · ·
...

. . .

⎞
⎟⎠

︸ ︷︷ ︸
nN.

,

(2)

Denoting the total number of samples by M , the number of
genes by N and the number of cell types by n, there are
MN measurements on the left and M(n − 1) + nN unknown
variables on the right-hand side. If the number of unknown
variables exceeds the number of data points, the system of
equations is underdetermined. For a measurement of gene
expression levels, the number N of genes will typically be
of the order of hundreds or even thousands, exceeding by
far the number n of cell types in a sample, or the number
M of samples. For N � (n,M) the condition not to have an
underdetermined set of equations reduces to M > n, so the
number of samples taken has to be at least larger than the
number of cell types.
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FIG. 1. (Color online) The sample deconvolution problem. (a) A
tissue sample containing a mixture of different cell types is taken.
The concentration of a particular gene product in the sample is a
linear combination of the concentrations in each cell type. (b) Two
different tissue samples generally contain different mixtures of cell
types, while the concentration of gene products is largely constant
across cells of a given type. (c) Part of the variation of expression
levels across samples is due to fluctuations in the mixing proportions.
This provides the basis for reconstructing concentrations in each cell
type and mixing proportions.

II. BAYESIAN MODEL FOR SAMPLE DECONVOLUTION

We formulate a Bayesian approach to sample deconvolu-
tion. This approach follows the lines of Bayesian non-negative
matrix factorization [12–14], but deviates from previous
approaches to sample deconvolution [15–17]. For concreteness
we assume that the residuals ξ

μ

i in Eq. (1) are independent and
identically distributed Gaussian variables. Other distributions
will be discussed below. These residuals stem from fluctuations
in the concentrations of the same cell type (“biological noise”)
and random experimental error (“technical noise”). Given the
mixing proportions p

μ
a and the concentrations in cell types

xa
i , the distribution of residuals induces the distribution of the

measurements X
μ

i

P (X|p,x) = (
2πσ 2

ξ

)− MN
2 e−H(p,x;X), (3)

with the Hamiltonian

H(p,x; X) =
∑
μ,i

(
X

μ

i − ∑
a p

μ
a xa

i

)2

2σ 2
ξ

. (4)

Bold symbols are used to denote matrices: (X)μi = X
μ

i , etc.
The quantity of interest; namely, the probability of a given

set of mixtures and of concentrations in cell types given the
measurements, follows from Bayes theorem; the so-called
posterior probability P (p,x|X) = P (p,x)P (X|p,x)

P (X) is expressed in
terms of the likelihood (3), the prior P (p,x), and the marginal
likelihood P (X) (which for a given set of measurements is just
a multiplicative constant).

For the prior P (p,x), a particular choice has to be made.
A natural choice for the mixing proportions is the Dirichlet
distribution, which restricts the possible points to the simplex

and automatically fulfills the condition
∑

a p
μ
a = 1. We denote

the parameters of the Dirichlet distribution by αa . For the
expression levels we choose independent Gamma distributions
with shape parameters ka and scale parameters θa , allowing for
different parameters of this distribution for each cell type.
The Gamma distribution has positive support only, and is
used widely to describe the distribution of gene expression
levels [18]. In the general algorithm we discuss below, any
distribution can be implemented. For this particular choice of
the prior we get

P (p,x|X) =
[∏

μ

δ

(
n∑

a=1

pμ
a − 1

)]
e−HBayes(p,x;X)/ZX, (5)

with the Hamiltonian

HBayes(p,x; X) =
∑
μi

(
X

μ

i − ∑
a p

μ
a xa

i

)2

2σ 2
ξ

+
∑
ai

[
(ka − 1) ln xa

i − xa
i

θa

]

+
∑
μa

(1 − αa) ln pμ
a . (6)

The first term in Eq. (6) comes from the likelihood, penalizing
the deviation of a possible solution {pμ

a ,xa
i } from the measure-

ment {Xμ

i }. The second and third term are the Gamma priors for
the expression patterns and the Dirichlet density for the mixing
proportions, respectively. The values of the mixing proportions
are restricted to the simplex using a δ function in Eq. (5). The
posterior distribution (5) describes the state of our knowledge
of the mixing proportions and concentrations in each cell type,
given the measurements. From the perspective of statistical
physics, the mixing proportions and concentrations in each
cell type define a phase space, and the posterior distribution
(5) defines a Hamiltonian (6) describing how strongly the
probability measure of mixing proportions and concentrations
is focused in particular parts of this phase space. The partition
function

ZX(β) = P (X) = Trp,x e−βHBayes(p,x;X), (7)

with Trp,x = ∫
dp

∫
dx

∏
μ δ(

∑n
a=1 p

μ
a − 1) sets out the sta-

tistical mechanics of sample deconvolution at β = 1. The
corresponding entropy S = ∂

∂β
1
β

ln ZX|β=1 is a measure of the
uncertainty of reconstruction.

III. SAMPLE DECONVOLUTION ALGORITHM

First, we explore the Boltzmann posterior distribution (5)
numerically. For this purpose we use MCMC sampling of the
posterior as has been done before for similar Bayesian models
in the context of non-negative matrix factorization (NMF)
[12–14]. The MCMC sampling explores the entire space
of reconstructions weighted with the posterior probability.
An arbitrary starting configuration C0 = {p,x} is chosen and
from this starting point a new neighboring configuration C1

is generated by randomly increasing or decreasing one of
the free parameters by a small amount within the positivity
constraints and the constraint on the mixing proportions.
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The new configuration is accepted with the probability
pacc = min(1, e−(H1−H0)) with energies H0 and H1 corre-
sponding to configuration C0 and C1, respectively (Metropolis
rule). Since only the ratio of the posterior probability of two
configurations enters, the marginal likelihood P (X) is not
needed.

We test this algorithm on artificially generated datasets.
For this purpose a target solution xT is drawn randomly
from Gamma distributions with shape parameters ka and scale
parameters θa . The target mixture pT is drawn randomly
from a Dirichlet distribution with parameters αa . Then the
measurements XT are generated according to Eq. (1) by adding
Gaussian noise of variance σT 2

ξ . The Metropolis rule is used to
sample the posterior (5) of the mixtures p

μ
a , the concentrations

xa
i , and the parameters describing the prior x̄a , σ 2

x,a , αa , and
σ 2

ξ . In this way only the general shape of the prior distribution
needs to be chosen, the actual parameters of the distribution
are estimated from the data.

This MCMC sampling allows one to sample the regions
in phase space where the posterior probability is high. An
estimate of the mixtures and concentrations is provided by
the mean values of xa

i and p
μ
a obtained by averaging over a

large number of configurations visited during the sampling
process. In addition to this posterior mean, we also compute
the standard deviations of xa

i and p
μ
a under the posterior. These

standard deviations quantify the remaining uncertainty in the
reconstruction, given the noise in the limited amount of data,
and can serve as error estimates of the reconstruction. In Fig. 2
we show for each variable xa

i the mean and standard deviation
(as error bars) under the posterior (5) against the targets xT a

i .
The Bayesian approach differs from a class of popular

algorithms for sample deconvolution based on non-negative
matrix factorization (NMF) [15–17]. NMF aims to invert the
relationship X = px, while keeping all matrix entries positive.
Starting with an initial guess of x, the matrix p is calculated
that minimizes the l2-norm

‖X − p · x‖F ≡
√√√√∑

μ,i

(
X

μ

i −
∑

a

p
μ
a xa

i

)2

(Frobenius norm). The minimization proceeds under the
additional constraint of non-negative matrix entries. From
this estimate of p an improved estimate for x is obtained
by applying the procedure in turn to x. Iterating these steps
the distance ‖X − px‖F of the reconstructed solution from the
data matrix never increases. This implies a Gaussian noise
model and corresponds to a minimization of HL in Eq. (4).
Convergence of the iterative scheme is thus guaranteed and
reaches a local minimum of the Hamiltonian (4).

As an example from the class of NMF algorithms we
applied the deconf algorithm [15] to the same artificial data
as used for the Bayesian algorithm. Figure 2 shows how
the Bayesian approach outperforms the NMF-based deconf.
Thirty samples are needed by deconf to reach a reconstruction
accuracy similar to the Bayesian algorithm using only five
samples. Another NMF algorithm we tried [17] achieved an
even lower accuracy.

Of course prior information in Eq. (6) on the distribution
of targets facilitates the reconstruction for the Bayesian
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FIG. 2. (Color online) Reconstruction by Bayesian algorithm
(left) and the deconf algorithm (right) for different number of
samples. The reconstruction estimates xE are obtained from the
same target solution xT drawn from a Gamma distribution for
all plots. The algorithm estimates the values of xE , pE and the
prior parameters x̄a , σ 2

x,a , αa , and σ 2
ξ . The reconstruction with the

Bayesian algorithm is clearly more accurate: the reconstruction
accuracy rx = 1

nN

∑
a,i(x

Ea
i − xT a

i )2 of the Bayesian algorithm using
5 samples is comparable to the accuracy of the deconf algorithm
using 30 samples. Additionally, the standard deviation of the posterior
distribution serves as a natural measure for uncertainty of the estimate,
giving rise to the individual error bars in the case of the Bayesian
algorithm. These error bars provide a measure for the precision of
the reconstruction. Parameters used for both algorithms are N = 500,
n = 3, M = 5, 10, and 30, α = 30 for all cell types equally, k = 9
and θ = 1/3 also for all cell types equally, and σT

ξ = 0.1. In order
to distinguish single points with their corresponding error bars, the
values of only one in twenty of the 500 genes are plotted.

algorithm. However, the prior is not responsible for the entire
difference in performance between the Bayesian and the NMF
approach. Figure 3 shows that the effect of the prior is largest
when the number of samples is small. This is to be expected,
since the relative contribution of the prior to Eq. (6) increases
when the amount of information coming from the measure-
ments decreases. Even without using prior information, the
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FIG. 3. (Color online) The prior information is most important
when few samples are available. We plot the average reconstruction
accuracy rx = 1

nN

∑
a,i(x

Ea
i − xT a

i )2 against the number of samples
M for the Bayesian algorithm with different priors and the deconf
algorithm. For only few samples the Bayesian algorithm with prior
(circles) clearly outperforms the NMF (squares) but also the Bayesian
algorithm without prior (pentagons). Without the use of prior
information the Bayes algorithm is performing equally to the NMF
algorithm for a small number of samples. With increasing sample
number, the Bayes algorithm without prior learns much faster from
the additional information, gradually approaching the performance
of the Bayes algorithm with prior. We note that replacing both the
Dirichlet prior and the Gamma prior with Gaussian priors (diamonds)
for datasets with mixing proportions and expressions levels drawn
from the Dirichlet and Gamma distribution, respectively, has very
little effect. Simulation parameters are as in Fig. 2.

Bayesian algorithm performs as well as the NMF algorithm in
the low sample number regime. For an increasing number of
samples the performance of sampling without prior approaches
the performance with use of prior information. This is expected
as well, since then the relative contribution of the prior to
Eq. (6) becomes asymptotically negligible. NMF approaches,
formulated as optimization problems, give a point estimate in
phase space that reproduces the matrix of measurements X
as closely as possible, leading to the well-known problem of
overfitting [19,20].

IV. PARTITION FUNCTION AND THEORETICAL
RECONSTRUCTION ACCURACY

We now address the theoretical limit of sample decon-
volution. For a given set of measurements X, the statis-
tics of mixtures and concentrations is described by the
partition function (7). To keep the analytical calculations
tractable, we approximate both the Dirichlet distribution
for the mixing proportions and the Gamma distribution for
the expression levels by a Gaussian distribution. Especially
if the variance of the Dirichlet distribution is small, we
expect this to be a good approximation. To validate this
approximation, we tried a Gaussian prior on the datasets
actually generated by the Dirichlet and Gamma distributions
in the numerical simulations (see Fig. 3). For the parameters
used here, we observe only small effects from using the
approximate Gaussian priors. The Gaussian priors change the

Hamiltonian (6) to

HBayes(p,x; X) =
∑
μi

(
X

μ

i − ∑
a p

μ
a xa

i

)2

2σ 2
ξ

+
∑
μa

(
p

μ
a − p̄a

)2

2σ 2
p,a

+
∑
ai

(
xa

i − x̄a

)2

2σ 2
x,a

, (8)

with means p̄a/x̄a and variances σ 2
p,a/σ 2

x,a as new parameters
for the distributions of mixing proportions and expression
levels, respectively. The partition function ZX in Eq. (7) is
now defined with the new Hamiltonian (8).

Suppose now that a given set of measurements is generated
using Eq. (3) from underlying mixing proportions pT and
concentrations xT . These are the targets that the reconstruction
aims for. In order to explore the behavior of the system for
typical realizations of these targets, the quenched average
of ln ZX over pT and xT needs to be computed [21]. We
restrict ourselves to the so-called annealed approximation
and calculate the average of ZX over the target mixtures and
concentrations. We will show numerically that the difference
between quenched and annealed results are small for a
reasonable choice of parameters. The annealed average over
ZX is given by

〈〈ZX〉〉 =
∫

dpT

∫
dxT

∫
dξ

∫
dX P (pT ,xT ,ξ )

×
[ ∏

μ

δ

( n∑
a=1

pT
μa − 1

)]
δ(X − pT xT − ξ )ZX.

(9)

The average 〈〈·〉〉 is over all data matrices weighted by
their probabilities under the generative model P (pT ,xT ,ξ ) =
exp{− 1

2σ 2
ξ

ξ 2 − 1
2σ 2

x
(xT − x̄)2 − 1

2σ 2
p

(pT − p̄)2} for given pa-

rameters x̄a/p̄a , σ 2
x,a/σ 2

p,a , and σ 2
ξ . This average of the partition

function ZX leads to a large set of integrals, which in the
thermodynamic limit N → ∞ can be evaluated using the
saddle-point approximation [21–24]. For the thermodynamic
limit we consider the scaling ansatz M = αN and σ 2

ξ = σ̃ 2
ξ N .

In a concrete situation N is of course finite, and α, σ̃ξ will be
small (but also finite). In a lengthy but standard calculation we
obtain the saddle point equations

q̂ab = α

4σ̃ 2
ξ

〈papb〉p,pT , qab = 〈xaxb〉x,xT ,

q̂T
ab = − α

2σ̃ 2
ξ

〈
pT

a pb

〉
p,pT , qT

ab = 〈
xT

a xb

〉
x,xT , (10)

q̂T T
ab = α

2σ̃ 2
ξ

〈
pT

a pT
b

〉
p,pT , qT T

ab = 〈
xT

a xT
b

〉
x,xT ,

with averages defined as

〈(· · · )〉p,pT = 1

Zp

∫ ∏
a

d pT
a

∫ ∏
a

d pa (· · · )

× δ

(
n∑

a=1

pT
a − 1

)
δ

( n∑
a=1

pa − 1

)

× exp

{
− 1

4σ̃ 2
ξ

∑
ab

(
papbqab + pT

a pT
b qT T

ab
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− 2pT
a pbq

T
ab

)
− 1

2σ 2
p

∑
a

(pa − p̄)2 − 1

2σ 2
p

∑
a

(
pT

a − p̄
)2

}
(11)

and

〈(· · · )〉x,xT

= 1

Zx

∫ ∏
a

d xT
a

∫ ∏
a

d xa(· · · )

× exp

{
−

∑
ab

(
xaxbq̂ab + xT

a xbq̂
T
ab + xT

a xT
b q̂T T

ab

)

− 1

2σ 2
x

∑
a

(xa − x̄)2 − 1

2σ 2
x

∑
a

(
xT

a − x̄
)2

}
. (12)

The q variables in Eq. (10) are the order parameters of the
system. They are connected to the Euclidean distance between
the reconstruction and its target, rx = 1

nN

∑
a,i(x

a
i − xT a

i )2 and

similarly rp = 1
nM

∑
a,μ(pμ

a − p
T μ
a )2, through the relation-

ships rx = N
n

∑
a(qaa − 2qT

aa + qT T
aa ) and rp = N

n

∑
a(q̂aa −

2q̂T
aa + q̂T T

aa ). The saddle-point equations (10) have to be
solved numerically. We note the formal similarity of the
number of cell types with replicas used to calculate quenched
averages. A quenched calculation of this system would
thus result in a system of equations bearing a two-replica
structure [25].

Solving the saddle-point equations (10) numerically for the
first nontrivial case of n = 2 cell types, we are particularly
interested in the difference between target and the recon-
structed mixtures and concentrations and how this difference
depends on the number of samples M . To this end, we define a
normalized order parameter rn

x ≡ rx

2σx
, which is zero for perfect

reconstruction and one for random guessing from the prior
distribution of the target solution. Figure 4 shows how the
reconstruction improves with increasing number of samples M

for a high (top) and low (bottom) noise level, respectively. The
improvement of the reconstruction is not surprising because
each additional sample brings different mixing proportions and
induces correlations in the measurements X

μ

i across genes,
from which both concentrations in the cell types and mixing
proportions can be reconstructed. There is no finite threshold
in the number of samples below which reconstruction is im-
possible, at any nonzero value of α = M/N the reconstruction
is better than a random choice of concentrations and mixtures.

To compare these results with numerical simulations, we
evaluated the quenched average by drawing target mixtures
and concentrations from the Gaussian prior distribution
and the measurements X

μ

i generated from Eq. (3). Then
Markov chain Monte Carlo (MCMC) sampling is used to
draw the reconstructed mixtures and concentrations from the
Boltzmann posterior distribution (6). We also simulated the
annealed average by including prior for the target mixtures
and concentrations into the Hamiltonian and sampling over
the target mixtures and concentrations as well. Very good
agreement between these numerical and the analytical results
in the high noise regime is seen in Fig. 4 (top). In the low
noise regime, numerical simulations show a deviation of the

numerical quenched
numerical annealed
analytical

rx
n

0

0.2

0.4

0.6

0.8

1

α
10−6 10−3 1 1000

rx
n

0

0.2

0.4

0.6

0.8

1

α
10−6 10−3 1 1000

FIG. 4. (Color online) Top: High noise regime, σξ = 2. Here,
numerical simulations corresponding to annealed and quenched
average are in good agreement with the analytical annealed result.
With the increase of the fraction of samples α the reconstruction
accuracy improves from random guessing (rn

x = 1) to a perfect re-
construction (rn

x = 0), but many samples are needed (α = M/N > 1)
to reach a low rn

x . Annealed and quenched simulation results are in
good agreement, indicating the annealed calculation to be a good
approximation to the quenched calculation in this case. Bottom:
Low noise regime, σξ = 0.4. The whole curve for the reconstruction
accuracy is shifted to the left; now, fewer samples are needed
(α = M/N < 1) to obtain a precise reconstruction. In this regime the
annealed approximation does not predict the quenched average well
for the whole range of α, pointing out the limitations of the annealed
approximation in this case. The parameters are chosen in both cases
as: M = 1 − 500 at N = 500, n = 2, p̄ = 1/2, and σp = 0.1 for all
cell types equally; x̄ = 3 and σx = 1 also for all cell types equally.

annealed approximation from the quenched result in a certain
regime of α. This points out the limitations of the annealed
approximation. Here, a full, quenched treatment of the problem
would be necessary to get an accurate description of the
reconstruction accuracy for all parameter regimes.

For the calculation of the partition function (9) we assumed
the concrete case of Gaussian distributed residuals. For the
algorithm, there is no loss of generality involved, any well-
behaved probability density can be used in Eq. (5), leading
generally to a Hamiltonian that is not quadratic. For the
analytic calculation, Taylor expanding such a Hamiltonian
around X would giveH(p,x; X) = a0 + a1(X − px) + a2(X −
px)2 + · · · . Our analytical calculation focuses exclusively on
the second-order term. The first-order term alone (apart from
not being normalizable), would induce no correlations between
the targets pT ,xT and the estimated solution p,x. It may
be possible, at least in principle, to evaluate the integrals
arising from even polynomials beyond second order, but the
resulting expressions will not admit simple order parameters.
The Gaussian distributed residuals (3) thus define the nontrivial
yet tractable model of sample deconvolution.
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V. OUTLOOK

In summary, we have developed a Bayesian model for
reconstructing cell-type specific gene concentrations from
samples containing an unknown mixture of cell types with
unknown concentrations. To explore the reconstruction ability
of this method we used MCMC sampling of the solution
space weighted by the posterior distribution. This turns out
to outperform methods based on minimizing the distance
between the matrix of measurements X and the matrix product
of mixing proportions p and concentrations x. Formulating
the problem in the language of statistical mechanics, we have
obtained an analytical solution for the reconstruction accuracy
using the annealed approximation for the specific case of n = 2
cell types. This solution can be extended easily for any finite
number of cell types. This annealed approximation shows
deviations from the quenched result in a certain parameter

regime. In order to close this gap, a full, quenched calculation
would be necessary.

As ever, the proper choice of the prior may be a delicate
step, and Gaussian noise terms or priors need not optimally
describe real datasets. A study based on experimental datasets
would be needed to settle this issue. But if a better choice for
the prior is found, it would be straightforward to implement
into the algorithm, leaving the rest of the Bayesian framework
unchanged.
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