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Control of bursting synchronization in networks of Hodgkin-Huxley-type neurons
with chemical synapses
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Thermally sensitive neurons present bursting activity for certain temperature ranges, characterized by fast
repetitive spiking of action potential followed by a short quiescent period. Synchronization of bursting activity
is possible in networks of coupled neurons, and it is sometimes an undesirable feature. Control procedures
can suppress totally or partially this collective behavior, with potential applications in deep-brain stimulation
techniques. We investigate the control of bursting synchronization in small-world networks of Hodgkin-Huxley-
type thermally sensitive neurons with chemical synapses through two different strategies. One is the application
of an external time-periodic electrical signal and another consists of a time-delayed feedback signal. We consider
the effectiveness of both strategies in terms of protocols of applications suitable to be applied by pacemakers.
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I. INTRODUCTION

The brain consists of about 100 specialized modules with
different functions, each of them a complex network itself, and
is thus a paradigmatic example of a complex dynamical system
[1]. The network unit, the neuron, receives excitatory inputs
from a few thousands of other neurons and processes them
according to some deterministic rules [2]. Models of biological
neuronal networks must consider both the intrinsic dynamics
at each neuron as well as their connection architecture
[3]. Moreover, there are both electrical (gap-junction) and
chemical synapses, the latter being excitatory or inhibitory and
possessing a dynamics of their own depending on the neuron
behavior. The synaptic connectivity is dynamically altered by
changes in strength as a response to either use or disuse of
transmission over the synapse itself and also by changes in
the quantity and absorption properties of neurotransmitters
[4]. Such mechanisms of synaptic plasticity are key factors
explaining such high-level brain activities as memories and
learning.

A dynamical description of a bursting neuron requires the
use of mathematical models possessing two time scales: (i)
a fast time scale characterized by repetitive spiking and (ii) a
slow time scale with bursting activity, where neuron activity
alternates between a quiescent state and spiking trains [5]. The
spiking dynamics of the action potentials can be described
by the Hodgkin-Huxley model, which is a conductance-based
model of an excitable neuron, its protein molecule ion
channels (Na+ and K+) being represented by conductances
and its lipid bilayer by a capacitor [6]. Bursting activity
in Hodgkin-Huxley models of neuronal activity is usually
included through additional calcium currents [7]. Moreover,
bursting behavior can be also related to persistent Na+ currents
in the pre-Botzinger complex [8–10], in the mesencephalic
trigeminal sensory neuron [11], and M-currents in the
hippocampus [12]. Other Hodgkin-Huxley-type models in
which bursting activity appears can be found in Refs. [13,14].
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Bursting activity can be also observed in thermally sensitive
neurons: A Hodgkin-Huxley-type model of thermally sensitive
neurons has been proposed by Huber and Braun [15–17],
which describes spike train patterns experimentally observed
in facial cold receptors and hypothalamic neurons of the
rat [18], electroreceptor organs of freshwater catfish [19],
and caudal photoreceptors of the crayfish [20]. There have
been studied time delay- and coupling strength-induced syn-
chronization transitions in scale-free networks of thermally
sensitive neurons [21]. The synchronous behavior of two
coupled thermally sensitive neurons has been numerically
investigated as a function of the coupling strength, exhibiting a
transition between a tonic firing and a bursting behavior [22].

The existence of a slow time scale in coupled bursting
neurons enables us to define a bursting phase and frequency
(its time rate) for each of them, even though on the spiking
time scale they behave asynchronously [23]. The adjustment of
the bursting phases and frequencies of two or more neurons
can be treated as an example of chaotic phase synchronization,
or the occurrence of a certain relation between phases of
interacting systems, bursting neurons in our case, while the am-
plitudes (related to the spiking time scales) can remain chaotic
and uncorrelated [24]. The presence of synchronized rhythms
has been experimentally observed in electroencephalograph
recordings of electrical activity in the brain, in the form of an
oscillatory behavior generated by the correlated discharge of
populations of neurons across the cerebral cortex [25].

Some types of synchronization of bursting neurons are
thought to play a key role in Parkinson’s disease [26,27],
essential tremor [28], and epilepsy [29]. Hence, a possible
way to control pathological rhythms would be to suppress the
synchronized behavior. This can be obtained through appli-
cation of an external high-frequency signal, and it constitutes
the main goal of the deep-brain stimulation technique [30,31].
Deep-brain stimulation consists of the application of depth
electrodes implanted in target areas of the brain like the
thalamic ventralis intermedius nucleus or the subthalamic
nucleus [32]. The overall effects of deep-brain stimulations
are similar to those produced by tissue lesioning and have
proved to be effective in suppression of the activity of the

042713-11539-3755/2013/87(4)/042713(13) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.87.042713


C. A. S. BATISTA et al. PHYSICAL REVIEW E 87, 042713 (2013)

pacemakerlike cluster of synchronously firing neurons, so
achieving a suppression of the peripheral tremor [26].

While most progress in this field has come from empirical
observations made during stereotactic neurosurgery, methods
of nonlinear dynamics are beginning to be applied to under-
stand this suppression behavior. In this work we consider a
neuronal network model of thermally sensitive neurons (which
display bursting activity) described by the Huber-Braun model
[15–17]. We consider the existence of chemical synapses
among neurons, for which the transmission times are important
factors to be taken into account, when compared with gap-
junction (electrical) coupling [33]. Chemical synapses can
describe the connections of physically distant neurons, so
we describe a connection architecture which enables such
long-range couplings. The synaptic dynamics simulates the
impulsive effect of a presynaptic neuron on a postsynaptic one
when the former fires a spike.

A computational model of a neural network consists of
a network architecture, which specifies how neurons are
connected, and a neuronal dynamics attached to each unit,
or node. The connections among neurons (of electrical or
chemical nature) are the links of this network. The network
connection architecture we use in a given model depends
critically on the level of description we aim to develop for
the neural network. The most fundamental level of description
is the network of individual neurons. The human brain consists
of approximately 1011 neurons, linked together by 1014 to 1015

connections, amounting to nearly 104 synapses per neuron [3].
This makes a detailed description of the brain a task yet
beyond our ability. It is only in simpler species, like the
worm C. elegans, that this description is feasible for studies of
computational neuroscience [34].

However, neuroanatomic studies reveal that neurons with
similar connectional and functional features are grouped into
clusters with 105 to 106 cells with spatial localization. Such
clusters form structures called cortical areas or subcortical
nuclei [35,36]. A second level of description is, thus, a network
whose nodes are the cortical areas, linked by axon fibers.
For a few species anatomical data are available, e.g., the cat
and the macaque monkey [37–40]. These descriptions have
encouraged the use of clustered networks, or networks of
networks, each cluster describing a cortical area with a given
number of neurons [41].

In any level of description, we expect that the connection
architecture of a neural network displays some distinctive
statistical properties, related to graph-theoretical concepts. It
is known that, in real neural networks, neurons are neither
completely nor randomly connected. Studies of connectivity of
some neural networks in both the microscopic (C. elegans) and
the mesoscopic (cat corticocortical matrix) suggest that the net-
works exhibit the so-called small-world (SW) property, since
they display features of both regular and random lattices [42].

Here we consider a SW network, consisting of a lattice in
which each neuron has both local and nonlocal connections
[43]. A neuron is connected to its nearest and next-to-nearest
neighbors, as well as to a small number of randomly chosen
nonlocal neurons [42]. It can be shown that the resulting
network has a small average path length, in the same way
that random networks do, but still retaining an appreciable
degree of clustering, as in regular lattices [44].

In this work we consider the control (or suppression) of
bursting synchronization using two types of control strategies.
The first technique is to apply a time-periodic harmonic signal
of fixed frequency and amplitude to one or more selected
neurons [45]. Another strategy, proposed by Rosenblum
and Pikovsky [46–48], makes this external signal depend
on a mean-field behavior of the lattice at nearby times: a
time-delayed feedback control procedure. We compare the
application of this time-delayed feedback through different
protocols. Both types of control procedures have been applied
to networks of bursting neurons using Hodgkin-Huxley-type
models of thermally sensitive neurons, where the synapses
were supposed to be of a chemical nature.

The structure of this paper is as follows. In Sec. II we
present the model of thermally sensitive neurons to be used
in numerical simulations. Section III deals with the coupled
neural network and the existence of bursting synchronization,
studied by means of a conveniently defined geometrical phase.
Section IV considers the control of bursting synchronization
through an external time-periodic signal, and Sec. V studies
the control performed by a time-delayed feedback signal. Our
conclusions are left to the last section.

II. NEURONAL DYNAMICS

In the following we describe briefly the equations and
parameters of the Huber-Braun model for thermally sensi-
tive neurons. More details on the model can be found in
Refs. [15,16,20]. The main dynamical variable for the ith
neuron, belonging to a given network with i = 1,2, . . . ,N , is
the membrane potential Vi , whose time evolution is influenced
by a number of currents from different sources, in the form
(the membrane potential is measured in mV and time in ms)

CM

dVi

dt
= −IiNa − IiK − Iisd − Iisa − Ii�, (1)

where CM is the membrane capacitance. IiNa, IiK, and Ii�

are, respectively, the Na+ and K+ ionic currents and the leak
current, like in the Hodgkin-Huxley model (currents, or rather,
current densities, are measured in μA/cm2). The currents Iisd

and Iisa refer to intrinsic subthreshold oscillations: Iisd to
the intrinsic membrane depolarization current and Iisa to the
repolarization oscillations.

We associate a given conductance (measured in mS/cm2)
to each current in the following form:

IiNa = ρgNaaNa(Vi − VNa), (2)

IiK = ρgKaK(Vi − VK), (3)

Iisd = ρgsdasd (Vi − Vsd ), (4)

Iisa = ρgsaasa(Vi − Vsa), (5)

Ii� = ρg�(Vi − V�), (6)

where gNa, gK, gsd , gsa , and g� are the maximal conductances,
and the reversal (Nernst) potentials for each ionic current are
denoted by VNa, VK, Vsd , Vsa and V�.

It turns out that INa and IK are simplified fast Hodgkin-
Huxley currents representing Na+ and K+ channels, respec-
tively. These fast currents are responsible for spike generation
[20]. Isd and Isa are slow currents which are responsible for
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TABLE I. Parameter values of the neuronal dynamics model according to Ref. [20].

Membrane capacitance CM = 1.0 μF/cm2

Conductances (mS/cm2)

gNa = 1.5 gK = 2.0 gsd = 0.25 gsa = 0.4 g� = 0.1

Characteristic times (ms)
τNa = 0.05 τK = 2.0 τsd = 10 τsa = 20

Reversal potentials (mV)
VNa = 50 Vsd = 50 VK = −90 Vsa = −90 V� = −60
V0Na = −25 V0K = −25 V0sd = −40

Other parameters
ρ0 = 1.3 φ0 = 3.0 T0 = 20 ◦C τ0 = 10 η = 0.012 μA
γ = 0.17 sNa = 0.25 sK = 0.25 ssd = 0.09

subthrehold activation; i.e., they activate more slowly at lower
membrane potentials [15]. These slow currents are necessary
to generate bursting behavior.

We would like to remark that Isd represents a generic
voltage-gated Ca2+ channel and Isa a current with behavior
reminiscent of SK channels. However, while real SK channels
are Ca2+-sensitive rather than voltage-sensitive, the combina-
tion of Isa and Isd present in this model yields a behavior simi-
lar to voltage-gated Ca2+ channels coupled with SK channels.
This procedure of replacing an ion-sensitive with a voltage-
gated channel is common in biophysical models of neurons:
For example, the inactivation of fast Na+ channels is not really
voltage-gated, but it is modeled this way in many models of
neuronal dynamics. Hence, this model represents SK channels
as voltage-sensitive because Isa reasonably behaves like SK
without the need for keeping track of intracellular Ca2+.

For thermally sensitive neurons ρ is a scale factor depending
on the temperature T which, for the kinetic ion model, is

ρ = ρ

(T −T0)
τ0

0 , (7)

where ρ0, T0, and τ0 are parameters.
The activation currents aNa, aK, asd , and asa have their

evolution described by the differential equations

daNa

dt
= φ

τNa
(aNa,∞ − aNa), (8)

daK

dt
= φ

τK
(aK,∞ − aK), (9)

dasd

dt
= φ

τsd

(asd,∞ − asd ), (10)

dasa

dt
= φ

τsa

(−ηIisd − γ asa), (11)

where τNa, τK, τsd , and τsa are characteristic times, and η,
γ are other parameters, and we define a second temperature-
dependent scale factor,

φ = φ

(T −T0)
τ0

0 . (12)

Any inactivation of the ionic channels are neglected [15]. The
factor η serves for increasing Ca2+ concentration following Isa ,
and γ accounts for active elimination of intracellular Ca2+.

The activation functions in the stable state, namely aNa,∞,
aK,∞, asd,∞, are related to the membrane potential by sigmoid

functions:

aNa,∞ = 1

1 + exp[−sNa(Vi − V0Na)]
, (13)

aK,∞ = 1

1 + exp[−sK(Vi − V0K)]
, (14)

asd,∞ = 1

1 + exp[−ssd (Vi − V0sd )]
, (15)

where sNa, sK, and ssd are constants and V0Na, V0K, and V0sd

are activation voltages. The parameter values to be used in
this paper are listed in Table I. The temperature we use
in numerical simulations is T = 8.0 ◦C, for which we find
bursting behavior characterized by repetitive spiking and the
interspike interval (ISI) exhibits a chaotic evolution, followed
by a quiescent regime [49–54]. A detailed analysis of the
dependence of the neuron behavior with the temperature can be
found in Ref. [20].

A representative example of bursting is shown in Fig. 1(a):
The membrane potential of a single neuron described by the
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FIG. 1. (Color online) Time evolution of the (a) membrane poten-
tial (b) recovery variable (inverse of the subthreshold repolarization
current) for an isolated neuron at temperature T = 8.0 ◦C. Other
numerical parameters are listed in Table I. The red arrows indicate
the times at which bursting cycles begin.
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FIG. 2. (a) Normalized clustering coefficient (circles) and normalized average path length (squares) as a function of the probability of
nonlocal shortcuts for a network with N = 2000 nodes. The reference probability is p∗ = 0.001, with L(p∗) = 1.0 × 10−6 and C(p∗) =
2.0 × 10−6. (b) Time evolution of the bursting phase of two selected neurons in a SW network with p = 0.01. Dashed lines stand for uncoupled
neurons; solid lines are for coupled neurons with gc = 0.01 mS/cm2.

Huber-Braun model undergoes repetitive spiking after periods
of quiescent behavior. The beginning of each outburst of
repetitive spiking is also a local maximum of the recovery
variable U = 1/Iisa and may be considered as the beginning
of a bursting cycle [Fig. 1(b)]. This makes it possible to define
a geometric phase. Let tk be the time at which a kth bursting
cycle begins. The phase is obtained by simple interpolation
as [23]

ϕ(t) = 2πk + 2π
t − tk

tk+1 − tk
, (tk < t < tk+1), (16)

and increases monotonically with time. However, due to
the chaotic evolution of the membrane potential related to
repetitive spiking, it turns out that the interval tk+1 − tk is
different for each burst. Hence, a bursting frequency,


 = dϕ

dt

.= ϕ(t) − ϕ(0)

t
, (17)

gives the time rate of the phase evolution (in kHz).

III. NETWORK CONNECTIVITY

Two key quantificators for complex networks are their aver-
age distance between nodes L and the clustering coefficient C.
The latter, roughly speaking, is the degree of overlap between
neighborhoods of different sites. In other words, if we have a
given node i connected to two other nodes j and k, C gives a
probability that the nodes j and k are themselves connected.
Small-world networks are characterized by small L values
and a relatively large C value. Regular lattices have large
values for C, but they have local connections only, which
accounts for a large value of L. In contrast, random networks
have small values for both L and C [43]. This suggests that
SW networks are between these two limiting situations. We
obtained SW networks following a procedure from Newman
and Watts [55]: We start from a regular lattice with nearest
neighbors and next-nearest neighbors; then we add nonlocal
shortcuts in this lattice with a probability p. These short-
cuts are ultimately responsible for diminishing the average

path length in the network, whereas the nearest neighbors
account for the large clustering coefficient displayed by SW
networks.

Hence, the two parameters characterizing the network
architecture to be used are the number of neurons N and the
probability of nonlocal shortcuts p. The network connectivity
can be described by the adjacency matrix aij whose elements
are equal to 1 (0), if the neurons i and j are (are not) connected.
If the probability p is small, this matrix is band-diagonal and
presents sparse nonzero elements at both sides. In Fig. 2(a)
we plot the normalized clustering coefficient C(p)/C(p∗)
(where p∗ = 0.001) and the normalized average path length
L(p)/L(p∗) as a function of the probability of nonlocal
shortcuts for a network with N = 2000 nodes. We have
chosen to work with p = 0.01, for which C ∼ 0.9 is relatively
large, whereas L ∼ 0.2 is comparatively small, such that the
conditions for a SW network are fairly fulfilled.

The coupling among neurons enters in the model through a
synaptic current Isyn which is added in the differential equation
(1) governing the behavior of the membrane potential for the
ith neuron,

CM

dVi

dt
= −IiNa − IiK − Iisd − Iisa − Ii� − Isyn, (18)

where

Isyn = gc

N∑
j=1

aij rj (t)(Vsyn − Vj ), (19)

where gc is a coupling strength with conductance dimensions,
aij are the elements of the adjacency matrix, Vsyn is the synaptic
reverse potential, and rj (t) is the fraction of bond receptors
of the j th neuron, whose time evolution is described by the
differential equation (“synaptic dynamics”) [56]

drj

dt
=

(
1

τr

− 1

τd

)
1 − rj

1 + exp(−Vj + V0)
− rj

τd

, (20)

where Vj is the membrane potential of the postsynaptic
neuron and τr and τd are characteristic rise and decay times,
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TABLE II. Parameter values for the synaptic dynamics according
to Ref. [21].

Characteristic times (ms)
τr = 0.5 τd = 8

Reversal potentials (mV)
Vsyn = 20 V0 = −20

respectively, of the chemical synapse. The numerical values of
the coupling parameters to be used in the simulations reported
in this work can be found in Table II.

In the numerical simulations of SW networks of thermally
sensitive neurons we use networks with N = 2000, with
shortcut probability p = 0.01 and coupling strength gc =
0.01 mS/cm2, unless stated differently. Solving the coupled
system of 5N equations (using a fourth-order Runge-Kutta
method with fixed step size) yields Vi(t) for each neuron, such
that we can trace its time evolution and the times tk at which
the bursting cycles occur. After a sufficiently long integration
we can retrace the time series and compute, using Eq. (16),
the time evolution of the corresponding phase. The effect of
coupling can be observed in Fig. 2(b), where we compare
the phase evolution for two neurons when uncoupled (dashed
lines) and after coupling (solid lines). It is clear that one of
the effects of coupling is to induce phase synchronization
of bursting, ϕ1(t) = ϕ2(t) = · · · ϕN (t), in such a way that the
coupled neurons, even though not fully synchronized, are able
to display a collective effect, bursting at the same time. The
mean field of a network of synchronized bursters displays
large-amplitude oscillations reflecting the coherent behavior
of the assembly.

Two useful numerical diagnostics of bursting synchro-
nization are the mean field of the network and Kuramoto’s
order parameter. The former is obtained by averaging the
membrane voltages of all neurons belonging to the network
at a given time: Vm = (1/N )

∑N
i=1 Vi . If the bursters are

nonsynchronized, i.e., if they begin their bursting cycles at
different times, the corresponding mean field exhibits small-
amplitude noisy fluctuations with time. In a synchronized
state, however, the mean field time evolution displays large-
amplitude oscillations. The expected effect of the control is
thus the reduction to minimal levels of the network mean field.

The complex phase order parameter is defined as [57]

z(t) = R(t)exp (i�(t)) ≡ 1

N

N∑
j=1

exp(iϕj (t)), (21)

where R and � are the amplitude and angle, respectively,
of a centroid phase vector for a one-dimensional lattice with
periodic boundary conditions. If the neurons are uncoupled,
for example, their bursting phases ϕi(t) are expected to be
uncorrelated such that their contribution to the result of the
summation in Eq. (21) is typically small (due to statistical
coincidences). In the limit of an infinite site (N → ∞) we
expect R(t) to vanish. On the other hand, in a completely phase
synchronized state the order parameter magnitude asymptotes
the unity, indicating a coherent superposition of the phase
vectors at each time. We usually compute the time-averaged
order parameter magnitude R = limT →∞(1/T )

∫ T

0 R(t)dt .
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R

FIG. 3. (Color online) Time-averaged order parameter magnitude
as a function of the coupling strength for SW networks with different
values of the shortcut probability p: 0.0001 (green triangles), 0.001
(red diamonds), 0.004 (black squares), 0.020 (blue circles).

The time-averaged order parameter magnitude is plotted, in
Fig. 3, against the coupling strength gc, for SW networks with
shortcut probabilities ranging from zero to 0.02. When the
latter parameter is zero, the network has regular connections
only, and thus it is unlikely to display synchronized behavior,
if the coupling strength is small enough. In fact, R fluctuates
between 0.05 and 0.60 in the coupling parameter range
considered (green triangles in Fig. 3).

On the other hand, even a small probability is able to
make at least part of the neurons to synchronize their bursting
phases. For p = 0.001 (red diamonds in Fig. 3) and 0.004
(black squares in Fig. 3) a transition from a nonsynchronized
to synchronized behavior is observed when gc increases. The
transition may occur for extremely small values of gc, as when
p = 0.02 (blue circles in Fig. 3).

From the above results, it is likely that the network (or
at least parts of it) will synchronize if the coupling strength
and the probability of nonlocal shortcuts is large enough. The
synchronization of neuron activity has been related to some
pathological rhythms like essential tremor and Parkinson’s
disease [26,32]. One strategy to diminish or suppress these
oscillations is to apply some external intervention so as to take
the network out of a synchronized state. This is the subject of
the following sections.

IV. CONTROL THROUGH AN EXTERNAL
TIME-PERIODIC SIGNAL

Inspired in techniques of deep-brain stimulation, in which
an external time-periodic electric signal is applied to a cortical
area to mitigate abnormal rhythms appearing in pathological
conditions, we can investigate the control of bursting synchro-
nization through a time-periodic signal with a given amplitude
and frequency [29–31]. Such perturbation, when applied to
an ensemble of Rulkov neurons [58,59] has been shown
to produce global bursting frequency locking for scale-free
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networks [60] and nonlocally coupled networks [61,62], as
well as clusters of SW networks [45].

A time-periodic signal applied to a given neuron can be
represented by an external injected current of amplitude I0 (in
μA/cm2) and frequency ω (in kHz) of the form

Iext = I0 sin(ωt), (22)

which is added to the right-hand side of Eq. (18). In strongly
coupled networks (like globally or power-law coupled neu-
rons) this intervention can be made on a single selected neuron.
For scale-free networks, where there is a strongly connected
hub, the latter can be the target of the intervention. In sparsely
connected networks, like SW or random ones, it is unfeasible
to randomly select a single neuron, since it is so poorly
connected that a modification in its dynamics does not
influence the network in a significant way. Hence, we choose
to make the intervention in all neurons. This is biologically
feasible since the electrodes injecting an ac current into a given
region of the brain do modify the extracellular field potentials
for a number of nearby neurons.

In order to investigate the effect of this external source we
have used coupling strength values for which the unperturbed
lattice (I0 = 0) exhibits bursting synchronization. This syn-
chronization between the bursting neurons and the external
signal is possible due to the coupling effect on the triggering
or termination of a burst in the individual neurons. A burst can
be terminated (the neuron is driven to a quiescent state) if the
external signal is positive. Conversely, a burst can be delayed if
the signal is negative. The combination of these effects leads
to the synchronization of the driven neuron with the signal.
The effect of coupling, once it takes into account the mutual
influences of all neurons in the network, is to change the mean
field that each neuron feels.

When the bursting phases ϕi are equal, for a set of neurons,
the corresponding frequencies 
i = ϕ̇i are likewise equal
(the opposite is not necessarily true, though, for out-of-phase
bursters can synchronize their frequencies, as is well known).
The frequency mismatch 
i − ω is plotted in Fig. 4 against
the control frequency ω for different values of the control
amplitude I0. For each value of ω the bursting frequencies

i are scattered over a relatively narrow interval, generating a
fuzzy strip of points. The wider this strip, the less synchronized
(in frequency) are the bursters. The difference 
i − ω vanishes
for a narrow interval of frequencies centered at ω = ω0 ≈
0.005 kHz, indicating frequency locking with the external
signal at frequencies around ∼5 Hz [Fig. 4(a)].

Increasing the driving amplitude enlarges the frequency-
locking interval [Figs. 4(a) and 4(b)]. For driving frequencies
larger than those of this interval the strip of bursting fre-
quencies is notably wide, indicating that the bursting neurons
switch to frequencies different from those of the driving
signal and of the other mutually synchronized bursters [23].
Figures 5(a) and 5(b) depict the time evolution of the external
driving signal Iext for ω = 8 Hz, I0 = 0.10 and 0.15 μA/cm2,
respectively. In the former case, the effect of the driving
signal is weak, and we observe a small reduction in the
mean field amplitude [Fig. 5(c)] and likewise a small decrease
of the order parameter magnitude [Fig. 5(e)]. Actually the
latter undergoes low-frequency oscillations, characterizing a
kind of beat. For larger amplitude, however, the mean field
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FIG. 4. Frequency mismatch of bursting neurons vs the external
driving frequency for a SW network with gc = 0.01 mS/cm2, p =
0.01 and a driving signal with amplitude (a) I0 = 0.010 μA/cm2 and
(b) I0 = 0.015 μA/cm2.

oscillation amplitudes decrease [Fig. 5(d)], indicating that
the synchronized bursting is partially suppressed in this case.
This observation is reinforced by the behavior of the order
parameter [Fig. 5(f)], although with the same kind of beat.

Now we consider the effect of a driving signal with frequen-
cies inside the locking interval (ω = 5 Hz) and at the left-hand
side of it (ω = 1 Hz). These two cases, with the driving
amplitude unchanged, are considered in Figs. 6(a) and 6(b),
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FIG. 5. Time evolution of the external driving signal Iext [(a) and
(b)], mean field [(c) and (d)], and order parameter magnitude [(e)
and (f)] for ω = 8 Hz, I0 = 0.10 μA/cm2 [(a), (c), and (e)], and
I0 = 0.15 μA/cm2 [(b), (d), and (f)].
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FIG. 6. Time evolution of the external driving signal Iext [(a) and
(b)], mean field [(c) and (d)], and order parameter magnitude [(e)
and (f)] for I0 = 0.15 μA/cm2 and ω = 1 Hz [(a), (c), and (e)] and
ω = 5 Hz [(b), (d), and (f)].

respectively. In both cases there is no noticeable change in the
oscillations of the network mean field [Figs. 6(c) and 6(d)],
indicating that the synchronized state is not affected by the
control signal for such frequencies, a conclusion supported by
the order parameter magnitude [Figs. 6(e) and 6(f)].

It turns out that a detailed knowledge of the frequency-
locking region, in the amplitude vs frequency diagram, is
essential to design a proper application of the external control
signal. In this diagram the frequency-locking regions are
represented by an Arnold-like tongue similar to that obtained
for periodically forced oscillators [Fig. 7(a)]. The width of
this Arnold tongue ω, increases with the signal amplitude
[Fig. 7(b)]. The wider the frequency-locking interval is, the
more robust is the external driving with respect to imperfect

parameter determination and noise, which is a question of
considerable experimental importance.

The tongue is clearly asymmetric for small amplitudes,
for its left boundary is steeper than the right one. In order
to characterize quantitatively this asymmetry we also define
a partial width δω with respect to the center ω0 of the
locking frequency interval [Fig. 7(b)], which also increases
with d, whereas its complement ω − δω practically does not
increase with I0, as can also be seen in the left boundary of the
tongue depicted in Fig. 7(a).

V. CONTROL THROUGH A TIME-DELAYED
FEEDBACK SIGNAL

The use of an external input as a control device for neuron
bursting involves a number of problems related with the choice
of parameters, especially the amplitude and frequency. If
the amplitude of the external signal is too large, for example,
we could have neuron damage, and if the frequency falls inside
a given mode-locking tongue (or, as we have seen, at its left-
hand side also) we would have practically no effect in terms
of control. Another procedure to accomplish bursting control
consists of using a time-delayed feedback signal. This has
the advantage of always working with signals of appropriate
intensity, and it has been shown to be capable to suppress
chaotic bursting synchronization in neuronal networks with
several types of coupling: global (all-to-all) [46,47], random
[48], and scale-free [63].

According to the value that the mean field takes on for a
given time t and its value at an earlier time τ (the control
delay), we can design a feedback signal to be applied to the
network so as to drive the system out of a synchronized state.
This is feasible if a probe is inserted in the network measuring
the mean field at different times, and integrating the effect
of time-delayed values into a feedback scheme which applies
to the network a control signal. The latter is similar in essence
to the one studied in the previous section, but its amplitude
and frequency are no longer constants but instead determined
by the network dynamics itself.
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FIG. 7. (a) Arnold-like tongue of frequency locking for coupled bursting neurons in a SW network. (b) Full width (squares) and partial
width (circles) of the mode-locking tongue as a function of the driving amplitude.
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Let Vm(t) and Vm(t − τ ) be the neuronal mean field
measured at two times with a delay τ (measured in ms). The
feedback electric signal is

Ifeed = gf [Vm(t − τ ) − Vm(t)], (23)

where gf is a control amplitude (also with conductance di-
mensions), which may or may not vary during the application,
according to the protocol used. The intensity of the control
signal is thus proportional to the difference between the actual
mean field and the time-delayed one. Let us consider first the
case in which the network is nonsynchronized: the mean field
presents small-amplitude fluctuations during an arbitrarily
large time. Hence, the difference Vm(t − τ ) − Vm(t) is likely
to be small, and practically no feedback is needed. On the
other hand, if the network is synchronized the oscillations in
the mean field makes the difference large in general, and the
intensity of the control signal is proportional to this difference.
As the control drives the network out of a synchronized state,
the mean field oscillations become smaller and thus the control
signal itself does not need to be as strong as before.

A. Free-running feedback signal

The effect of a free-running time-delayed feedback signal
is illustrated by Fig. 8, obtained for two different values of gf

and the same values of the time delay τ = 2 ms. In Figs. 8(a)
and 8(b) we plot the time evolution of the feedback signals Ifeed

for gf = 0.010 mS/cm2 and 0.015 mS/cm2, respectively. We
observe that, after the feedback signal is switched on, the
oscillations of the mean field Vm are just slightly decreased for
gf = 0.010 mS/cm2 [Fig. 8(c)] and much more diminished
for 0.015 mS/cm2 [Fig. 8(d)]. Indeed, after the beginning of
the control the order parameter magnitude decreases to 0.8 in
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FIG. 8. Time evolution of the free-running time-delayed feedback
signal Ifeed [(a) and (b)], mean field [(c) and (d)], and order parameter
magnitude [(e) and (f)] for gc = 0.01 mS/cm2 [(a), (c), and (e)] and
gc = 0.015 mS/cm2 [(b), (d), and (f)]. In both cases τ = 2 ms.

the former case [Fig. 8(e)] and to almost zero in the latter one
[Fig. 8(f)].

B. Protocols for a smart feedback signal

Let us assume that the feedback circuitry necessary to the
control procedure is designed to work as a kind of “smart”
pacemaker. We can, in principle, program this pacemaker to
obey a given control protocol, where we wish to comply with
two basic characteristics: (i) The external signal must be as
low as possible so as not to perturb too much the same neurons
we want to control; (ii) the external signal must be kept small
so as to conserve energy and prolong the battery life of the
pacemaker. The criterion (i) is almost automatically satisfied
for a time-delayed feedback signal, since the control signal
(being proportional to the mean field) is never larger than the
mean field for the values of gf we used in our simulations. The
criterion (ii) is somewhat more difficult to fulfill, so we need to
compare different control protocols in order to measure how
much energy they need to achieve a determined goal (in our
case, an efficient suppression of synchronization).

1. Protocol 1

In the free-running operation, the control is always “on.”
An alternative procedure would be a pulsed operation, which
we now consider. The first protocol (P1) consists on applying
the feedback signal at a given time t = ti and switching
it off, a short interval after, at t = tf . As a representative
example of the usefulness of this protocol to control bursting
synchronization, we depict in Figs. 9(a) and 9(b) the time
evolution of the time-delayed feedback signal Ifeed for gf =
0.010 mS/cm2 and 0.015 mS/cm2, respectively. In both cases
the signal is switched on at ti = 2.0 ms and switched off
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FIG. 9. Time evolution of the time-delayed feedback signal
(protocol P1) Ifeed [(a) and (b)], mean field [(c) and (d)], and the
order parameter magnitude [(e) and (f)] for gc = 0.010 mS/cm2 [(a),
(c), and (e)] and gc = 0.015 mS/cm2 [(b), (d), and (f)]. In both cases
τ = 2 ms.
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FIG. 10. Time evolution of the (a) time-delayed feedback signal
(protocol P1) Ifeed, (b) mean field, and (c) order parameter magnitude
for three different values of the time delay: τ , 2τ , and 3τ , with
τ = 10 ms and gc = 0.010 mS/cm2.

at tf = 3.0 ms. The corresponding mean field, which has
large-amplitude oscillations of ca. 15 mV amplitude (for the
uncontrolled network), diminishes its amplitude to ∼10 mV
[Fig. 9(c)] and ∼ 5 mV [Fig. 9(d)] as long as the control signal
is applied. The order parameter decreases to 0.6 [Fig. 9(e)] and
0.2 [Fig. 9(f)] for these cases.

The control signal is oscillatory but its amplitude decreases
during application since the network becomes more synchro-
nized due to the control. Moreover, the network has a certain
“inertia”: After the control is switched on it takes a certain time
to achieve a significant reduction in the mean field; after the
control is switched off it takes a certain time for the network to
resume its previous (synchronized) behavior. These effects are
enhanced for increasing coupling strength [compare Figs. 9(c)
and 9(d)].

In order to examine the influence of the time delay on
the effectiveness of the feedback control through protocol P1,
we switch on the control at ti = 1.5 ms and switch it off
at tf = 2.0 ms, using a time delay τ = 1.0 ms [Fig. 10(a)].
Then we repeat the application of control at times ti = 3.0 and
5.0 ms with the same duration and with time delays 2τ and
3τ , respectively. In Fig. 10(b) we observe that the oscillations
of the mean field decrease their amplitudes as τ is increased.
Moreover, the order parameter plunges into smaller values as
τ increases [Fig. 10(c)].

The results of Fig. 10 suggest that increasing the time
delay is an efficient and “nonexpensive” way to achieve
desynchronization of the network (instead of increasing the
strength parameter gf ). In fact, as shown in Fig. 11, the mean
order parameter magnitude of a controlled network decreases,
as a general trend, with the time delay τ , for different values
of the control amplitude gf (the mean is computed as long
as the control is applied). It is worth noting that, if the latter
is too small, there is practically no effect of the time delay,
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0.4

0.6

0.8

1

R
FIG. 11. (Color online) Order parameter magnitude as a function

of the time delay for different values of the control amplitude: gf =
0.005 mS/cm2 (black circles), gf = 0.010 mS/cm2 (green circles),
gf = 0.015 mS/cm2 (red squares), and gf = 0.020 mS/cm2 (blue
diamonds).

unless it is so large that it is unfeasible from the point of view
of the simulation time (or the time of a hypothetic realistic
application). We conclude that, for the time delay to play a
significant role in the desynchronizing effect, the amplitude
must be higher than ∼0.015 (indicated by red squares in
Fig. 11).

The effectiveness of the control procedure on reducing
or suppressing synchronization can be measured by the
suppression coefficient [47],

S =
√

Var(Vm0)

Var(Vmf )
, (24)

where Vm0 and Vmf are the values of the mean field in the
absence and presence of the control, respectively, and Var(·)
stands for the variance of the mean field oscillations. The
feedback scheme is ideally efficient when the variance of
the controlled mean field vanishes, irrespective of its value
without control, corresponding thus to an infinite value of
S. As a general rule, the larger the value of S, the more
efficient the feedback will be on suppressing synchronization.
It is convenient to consider regions with large values of S, or
domains of control, in the control parameter plane where the
control strength gf is plotted against the time delay τ .

Figure 12 displays the suppression coefficient for a time-
delayed control signal as a function of gf and τ , indicating that
a good suppression of bursting synchronization is obtained
for gf � 0.012 mS/cm2 and τ � 25 ms. The protocol (P1)
has the disadvantage of the control signal being applied
irrespective of the value of the order parameter. This means that
the control is continually applied even if the order parameter is
small. We can devise other protocols to apply the control signal
in a smart way from the point of view of energy saving, and
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FIG. 12. (Color online) Suppression coefficient as a function of
the control parameters (strength and time delay) for time-delayed
feedback control (protocol P1).

based on monitoring the actual value of the order parameter.
We propose the use of two such “smart” protocols.

2. Protocol 2

Here we establish the order parameter magnitude as a
diagnostic tool of synchronization (it involves rather simple
arithmetic operations which can be could be carried out
by a microchip in the pacemaker circuitry, for example).
We predefine, in a rather arbitrary way, values R > 0.95
as characterizing a (global) synchronized state and values
R < 0.4 as characterizing a target nonsynchronized state, i.e.,
the goal which the control procedure is aimed to reach.

The second protocol (P2) is implemented as follows: The
control is switched on, with a given strength gf , only if the
network order parameter magnitude becomes less or equal to
R1 = 0.95. This is a convenient value since, in practice, a
synchronized network has R ∼ 0.95 most of the time, with
small fluctuations. As the neurons become nonsynchronized
the order parameter begins to decrease and it is monitored until
it reaches R2 = 0.40; then it is switched off. Without control
the network tends to resume, after some time, its previously
synchronized state. Hence, when R increases past R3 = 0.50
the control is switched on again with the same value of gf as
before.

While the uncontrolled mean field oscillation amplitudes lie
in the ∼15-mV range, the controlled oscillations have roughly
half this value [Fig. 13(a)], and the signal is applied in the
form of short pulses of constant amplitude gf = gc [Fig. 13(b)]
according to the actual value of the order parameter magnitude
[Fig. 13(c)], which oscillates between R2 and R3. These limits
(but not necessarily their difference) can be lowered if we wish
that the mean field oscillation amplitudes become even shorter.

3. Protocol 3

The third protocol (P3) is similar to P2: When R � R1 the
control is switched on until R � R2, when it is switched off,
and it is switched on again only if R � R3 [Fig. 14(c)], with a
similar decrease of the mean field oscillation amplitudes, when
compared with P2 [Fig. 14(a)]. The difference with P2 lies in
the intensity of the control signal. To further save energy, each

FIG. 13. (Color online) Time evolution of (a) mean field, (b) nor-
malized control signal amplitude, and (c) order parameter magnitude
for a time-delayed feedback signal applied according protocol P2,
with gf = 0.012 mS/cm2 and τ = 1 ms. The area under the control
pulses is depicted in green.

time we switch on the control we use initially a very small
value of gf (say, 10% of gc) and test whether or not R is kept
smaller than R3: If so, gf is not altered; if not, we slightly
increase gf and test again, until we reach a satisfactory value,
which is usually of the order of 50% of gc [Fig. 14(b)].

However, since the control pulses in P3 are of lower
amplitude than in P2, they have to be applied more often;
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FIG. 14. (Color online) Time evolution of (a) mean field, (b)
normalized control signal amplitude, (c) order parameter magnitude,
for a time-delayed feedback signal applied according protocol P3,
with τ = 1 ms. The area under the control pulses is depicted in green.
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FIG. 15. (Color online) Running averages of the signal current
squared I 2 [measured in (μA/cm2)2] for (a) an external time-
periodic signal, with ω = 8 Hz, I0 = 0.010 μA/cm2 (red) and I0 =
0.015 μA/cm2 (black); (b) a free-running feedback signal, with
gf = 0.015 mS/cm2, τ = 1 ms (black) and 3 ms (red); (c) a feedback
signal using the protocols P2 (black), and P3 (red).

i.e., the intervals between two pulses are shorter than for
protocol P2. We integrated the area under the curve of the
control pulses [depicted in green bars in Figs. 13(b) and 14(b)]
in order to evaluate the “energy content” of the control signals
according to the protocols P2 and P3, having the same interval
R2 < R < R3 for the order parameter. This quantity has been
found to be 36 400 for protocol P2 (Fig. 13) and 36 300 for P3
(Fig. 14), resulting in a slight advantage of P3 over P2.

4. Comparisons among different control procedures

A more direct way to compare the energy expenditure
for the different control procedures we have introduced is
to compute the power related to the injected currents, both
the external time-periodic signal (22) and the time-delayed
feedback signal (23). Assuming an effective conductance
geff , the time-averaged power required for each signal is
P = I 2/geff . In Fig. 15 we plot the running average of the
signal current squared I 2 for a given time window. The actual
energy consumed is proportional to the total area under the
curves shown.

For the external signal (22) this quantity can be evaluated
explicitly,

I 2 = I 2
0

2

[
1 − sin(4πT/T0)

4πT/T0

]
, (25)

where T is the time window used for the running average and
T0 = 2π/ω is the natural period of the signal. When evaluating
running averages it often turns out that T ≈ T0; hence, it results
in a small amplitude oscillation around I 2

0 /4. As a matter
of fact, Fig. 15(a) shows the quantity I 2 fluctuating around

0.005 (μA/cm2)
2

for an amplitude I0 = 0.10 μA/cm2, and
0.012 (μA/cm2)

2
for I0 = 0.15 μA/cm2. In Fig. 15(b) we

have computed I 2 for the free-running time-delayed feedback
signal with gf = 0.015 mS/cm2, and τ = 1 ms (red) and τ =
3 ms (black). Since the value of I 2 decreases exponentially
with time for τ = 3 ms it turns out that its effect, besides more
efficient for suppressing synchronization, is also more energy
saving than for τ = 1 ms.

Finally, in Fig. 15(c) we compare the two protocols: P2
(black) with the gf = 0.015 mS/cm2 (as in Fig. 13); and P3
(red) (as in Fig. 14). For P2 we must keep in mind that gf

is not constant, whereas the time delay τ is the same for
them. The area under the curve for P3 is shorter than for
P2, which reinforces our earlier observation that P3 is slightly
more energy saving than P2. As for the protocol P1, it cannot
be directly compared with P2 and P3 because the times at
which the control is switched on and switched off are rather
arbitrary and do not follow the behavior of the order parameter
magnitude, as P2 and P3 do.

VI. CONCLUSIONS

In this paper we studied the control of bursting synchro-
nization of a neuronal network using a Hodgkin-Huxley-type
model of coupled differential equations that mimics the
dynamical behavior of signal transmission among thermally
sensitive neurons with chemical coupling. We have considered
networks of coupled thermally sensitive neurons, whereas
most of the existing works on this model considered a small
number of neurons. Moreover, up to now only the spiking
regime has been investigated, and we found parameter values
such that thermally sensitive neurons present a bursting regime
with two time scales (a fast spiking scale and a slow bursting
scale), in which a geometrical phase was identified, allowing
studies of phase and frequency synchronization of the bursting
activity.

We used a SW coupling architecture in which we have
regular local connections among neighbor neurons as well
as nonlocal shortcuts randomly chosen according to a given
probability. This probability was chosen such that the average
path length of the network is small, due to the nonlocal
shortcuts, like in a random network, whereas the clustering
coefficient is relatively large due to the local connections
as in a regular network. We characterized bursting phase
synchronization through: (i) the amplitude of the mean field
oscillations of the network and (ii) the bursting phase and its
corresponding order parameter magnitude.

We observed a transition between a nonsynchronized and a
synchronized bursting as the coupling strength increases past a
critical value. This value becomes smaller as the probability of
nonlocal shortcuts is increased, and the network is so sensitive
to them that, for as few as 3% of nonlocal shortcuts (in a
network of N = 2000 neurons) the network already exhibits
bursting synchronization for small coupling strengths. This
suggests the strong influence of nonlocal coupling features in
collective phenomena displayed by complex networks.

Synchronized bursting makes the network mean field
exhibit large-amplitude oscillations that may be undesirable,
as in the case of abnormal rhythms related to Parkinson’s
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disease and epileptic seizures. Hence, we studied procedures to
control bursting synchronization so as to suppress or reduce it
to tolerable levels. In this paper the numerical simulations were
performed with a Hodgkin-Huxley-type model of thermally
sensitive neurons. The temperature for which the bursting
activity was found is lower than the physiological temperatures
for Parkinsons disease and epileptic seizures. In spite of this,
the model exhibits the same kind of behavior of other models
for neuron dynamics where bursting synchronization has been
described and studied, as the Hindmarch-Rose equations, the
Bonhoeffer-Van der Pol model, and the Rulkov map [47].

One such procedure is to insert an external time-periodic
control signal with constant amplitude and frequency. If the
network is already synchronized we can view this external
signal as a harmonic driving acting on a nonlinear oscillator,
thus presenting the same kind of Arnold tongue behavior
expected for such systems. In fact, we identified frequency-
locking regions (tongues) in the control parameter plane
and related their widths to the control amplitude. If we
force the systems out of this frequency-locked state we
can desynchronize a number of oscillators, in particular
using frequencies higher than those belonging to the locking
interval.

This external time-periodic signal has the disadvantage of
having an amplitude which, if large enough, might damage the
neurons on which the signal is being applied. An alternative
procedure is to choose the signal amplitude according to the
difference between the actual neuronal mean field and the mean
field registered earlier (with a time delay τ ), i.e., a time-delayed
feedback signal which, by construction, has an amplitude
typically smaller than the variable it intends to perturb. For
example, if the action potential of the synchronized neurons

vary between 0 (just before a spike) and −70 mV (in the
refractory postspike state) a feedback control signal amounts
to just ∼0.2 mV amplitude, which not only do not damage the
neuron but also do not perturb it so to drive the neuron out of
a bursting state.

In principle, the time-delayed feedback signal could be
implemented through a pacemaker, and we proposed three
different protocols for its use, besides the free-running appli-
cation, taking into account the energy used to reduce bursting
synchronization. In the first protocol we apply the control
pulses at well-defined time intervals. We can control bursting
synchronization by varying the time delay used in the feedback
signal, and we showed that the order parameter can be made to
vanish using a suitable value of τ . In particular, we identified
the regions (in the control parameter plane) for which good
suppression of synchronization is achieved.

Other protocols can be devised to save energy by applying
the control signal only when the order parameter of the network
is outside a specified range (of low values). In the second
protocol we apply constant control pulses such that the order
parameter is kept inside this range, and in a third protocol
the minimum possible value of pulse amplitude is chosen for
the same control goal. The latter protocol displays a slightly
shorter energy consumption with respect to the former.
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